
PUBLISHED IN: PROCEEDINGS OF THE IEEE CROSSCLOUD WORKSHOP 2014 1

Access control delegation for the Cloud
Nikos Fotiou, Apostolis Machas, George C. Polyzos and George Xylomenos

Mobile Multimedia Laboratory
Department of Informatics

Athens University of Economics and Business,
Athens, Greece

Email:{fotiou, polyzos, xgeorge}@aueb.gr, a.machas@dias.aueb.gr

Abstract—Cloud computing has become the focus of attention
in the industry, from the point of view of both providers and
customers, as well as researchers. However, security concerns
still impede the widespread adoption of this technology. Most
enterprises are particularly worried about the lack of control over
their outsourced data since the authentication and authorization
systems of Cloud providers are generic and they cannot be easily
adapted to the requirements of each individual enterprise. An
adaptation process requires the creation of complex protocols,
often leading to security problems and “lock-in” conditions.
In this paper we present the design of a lightweight solution
that overcomes these problems. We have implemented and
incorporated this solution in a popular open-source Cloud stack:
OpenStack. Our solution eliminates the need for developing
complex adaptation protocols, offers data owners the flexibility to
switch among Cloud providers, or use multiple, different Cloud
providers concurrently, and enhances end-user privacy.

I. INTRODUCTION

Cloud computing is an emerging paradigm that offers a cost-
effective way for outsourcing data storage and computation.
Nevertheless, despite its intriguing properties, enterprises are
reluctant to fully adopt it, since they are concerned–among
other things–about losing the governance of their outsourced
assets, i.e., losing the ability to enforce their own, enterprise-
specific, security policies. According to PwC’s Global State
of Information Security Survey 2012 [1], the largest perceived
Cloud security risk is the “uncertain ability to enforce provider
security policies”, whereas according to the survey of Sub-
ashini and Kavitha [2] one of the biggest security challenges
for providing Cloud-based services is the “adherence of the
Cloud provider to the security policies of its clients”, as
well as “the administration of user authorization systems”.
It is therefore observed that, not only the mismatch between
provider-enterprise security policies impedes Cloud adoption,
but overcoming this problem is a challenging task that requires
further research. Indeed, “effective models for managing and
enforcing data access policies, regardless of whether the data
is stored in the Cloud or cached locally on client devices” was
identified back in 2010 as a top research priority, by the Euro-
pean Network and Information Security Agency (ENISA) [3].

One question that may arise is how likely it is for loss
of governance of the outsourced data to occur, and what is
its impact. According to ENISA’s Cloud Computing Security
Risk Assessment report [4], the loss of governance is a
risk with very high probability, and with very high impact.
The same report states that two of the vulnerabilities that

may expose an enterprise to that risk are “unclear roles and
responsibilities” and “poor enforcement of role definition”.
This outcome comes as no surprise, since the authentication
and authorization systems of Cloud providers cannot capture
the organizational structure and the security policies of each
individual enterprise. The interoperability between the corre-
sponding systems requires the development of complex API’s;
this, however, increases the chances of a security breach due
to implementation errors, according to the Cloud Security
Alliance [5].

In this paper, we propose a novel solution that gives full
control of the access control assessment to the data owner,
introducing minimal overhead for the Cloud provider. Our
solution is based on a similar system that we developed
for providing access control enforcement delegation in ICN
architectures [6]. In our approach data outsourcing and ac-
cess control assessment are treated as two clearly separated
functionalities, implemented by different system entities: the
former is implemented by a Cloud provider, whereas the
latter is implemented by an Access Control Provider (ACP).
The ACP is a trusted entity that may as well be provided
by the enterprise itself, for example, by leveraging its user
management system. This clear separation introduces many
advantages, including: Cloud providers are relieved from the
burden of implementing the business logic of each individual
enterprise, enterprises can easily migrate from one Cloud
provider to another, and user privacy is enhanced.

The paper is organized as follows. In Section II we discuss
related work in this area. In Section III we detail our scheme.
In Section IV we present our prototype that implements a
secure private Cloud file storage service using the open source
Cloud stack OpenStack. In Section V we evaluate the security
properties of our solution and we analyze its performance.
Finally, we conclude the paper in Section VI.

II. RELATED WORK

Single Sign-On (SSO) systems–such as Kerberos and, more
recently, OpenID 2.0 [7] and OAuth 2.0 [8]–have similar goals
with our scheme. In these systems, user identity management
is performed by a separate trusted entity. Kerberos has been
widely used for providing access control to network resources.
In a Kerberos system a Ticket Granting Service (TGS) provides
a “ticket” to an authenticated user that enables her to use a
resource. The TGS and the resource, however, have to belong



2 PUBLISHED IN: PROCEEDINGS OF THE IEEE CROSSCLOUD WORKSHOP 2014

to the same administration realm, or they should be pre-
configured with a shared secret. In our system there is no
restriction on the administrative domains in which the various
entities should belong to. Moreover there is no secret with
which an entity has to be pre-configured.

OpenID is an identity management system that allows
third parties to delegate identity management to an Identity
Provider (IdP) trusted by the user. In an OpenID system,
the IdP is responsible for authenticating the user and for
providing a token that proves that a user is authenticated.
This token is unique per user, therefore it enables the third
party to track user activity. Nunez et al. [9] used OpenID
in conjunction with proxy re-encryption in order to provide
Cloud based identity management services, whereas Khan
et al. [10] have implemented OpenID based authentication
mechanisms for the OpenStack platform. OpenID provides
only user authentication; in an OpenID-based access control
system, the Cloud provider is responsible for evaluating the
access control policies. In our system tokens are ephemeral,
therefore they can not be used to track the long term activity of
a specific user. In addition, in our system the access control
policy is evaluated by a third trusted party and not by the
Cloud provider.

OAuth 2.0 is an IETF standard for authorizing access to
resources over HTTP. OAuth 2.0 requires the resource owner
to be online during the third party authorization procedure
(Section 1.2 of [8]), and requires implicitly the development of
a communication protocol between the resource server and the
authorization server in order to be able to exchange an access
token whose form–as mentioned in Section 1.4 of [8]–is not
specified. The latter limitation raises obstacles to implementa-
tions in which the resource server and the authorization server
belong to different administrative domains. An approach for
providing access control using OAuth 2.0 is the following:
the data owner defines an access control policy using attributes
that can be provided by an authorization server (e.g., user age,
as provided by a social network), these attributes are regarded
as resources and they are accessed by the Cloud provider
using OAuth 2.0; the Cloud provider uses these attributes
and evaluates the access control policy. In this scenario, user
credentials are protected. However, the Cloud provider learns
some information about the user (in this example his age), and
has to understand the authorization server specific attributes in
order to evaluate the access control policy. In our system the
Cloud provider learns nothing about the user and does not have
to understand any authorization server-specific semantics.

Security Assertion Markup Language (SAML) [11] is an
XML-based security assertion language, used for exchanging
authentication and authorization statements about subjects.
Being a language and not a system, SAML is orthogonal to
our work. As a matter of fact, messages in our schemes can
be exchanged using SAML, using the Authentication Request
Protocol (Section 3.4 of [11]). However, our implementation
follows OpenStack’s API, which is incompatible with SAML.

III. SYSTEM DESIGN

In this section we present our system design. We begin with
a high level overview of our scheme and present our goals.

Then we detail the functionality of our system.

A. Scheme overview
In our scheme we consider four basic roles: the data owner

(owner), the data consumer (consumer), the Cloud provider
(CP), and the access control provider (ACP). The goal of an
owner is to store some data in a CP and allow authorized
consumers to perform operations over this data. The data is
protected using an access control policy. An access control
policy is regarded as a function executed in an ACP. This
function accepts as input a consumer’s identification data and
outputs either an error message if the user cannot be autho-
rized, or an integer number that denotes the access level of
the consumer. The access level of a consumer indicates which
operations she can perform over the data that is protected by
the corresponding access control policy.

In our scheme, the following trust relationships are con-
sidered: the owner trusts the ACP to authorize a consumer,
and the owner and the consumer trust the CP to respect the
decision of the ACP. The first trust relationship type can be
trivially established if the ACP belongs to the owner (e.g.,
a leveraged enterprise user management system). The second
trust relationship is a relaxed form of the currently existing
trust relationship between an owner and a Cloud provider:
currently, in the best case, an owner trusts a Cloud provider
to securely store the owner’s business logic, to execute it
correctly and to enforce its outcome.

Our goal is to design a system in which the following
properties hold:

• The system is secure: Provided that all system entities re-
spect the trust relationships described above, it should not
be possible for an attacker to perform an operation over
some protected data, without being properly authorized.

• Data consumer privacy is preserved: In our system a CP
should gain minimal information about the identity of a
consumer. Ideally it should only learn that a consumer
can be authorized by a specific ACP and the consumer’s
level. Moreover an ACP should not be able to tell the
exact data that a consumer wants to access.

• Data can be easily migrated among different Cloud
providers: In our system the only entities that should be
aware of the access control policy and its implementation
details are the ACP and the owner. CPs are oblivious
about the access control policy implementation details.
Therefore, providing two CPs implement our solution,
moving data from one CP to another is as trivial as copy-
pasting it.

• An access control policy does not reveal anything about
the data and the operations it protects: In our system an
access control policy is decoupled from the data and the
operations it protects and it should be defined taking into
account solely consumer attributes.

• An access control policy is re-usable: In our system it
should be possible to use the same access control policy
in order to protect many and diverse data items, stored
in multiple CPs.

• An access control policy can be easily modified: In
our system the modification of an access control policy



PUBLISHED IN: PROCEEDINGS OF THE IEEE CROSSCLOUD WORKSHOP 2014 3

Data OwnerConsumer

Access Control 

Provider

Cloud Provider

Ac
ce
ss
 co

ntr
ol 
po
licy

UR
I

Data, URI

Re
qu
es
t

To
ke
n, 
UR

I

Sig
ne
d t
ok
en

Token, Credentials

Signed token

Da
ta

(3)

(1)

(2)

(4)

(5)

(8)

(9)

(7)
(6)

Fig. 1. Scheme overview.

should not involve any CP; the only entity that should be
involved in the modification of an access control policy
is the ACP where the policy is stored.

A high-level view of the interactions between the system
entities is illustrated in Figure 1. An execution round of our
scheme includes the following steps. Initially an owner stores
an access control policy in an ACP and obtains a URI for
that policy. As a next step she communicates the obtained
URI, as well as the data it protects, to a CP, specifying at
the same time the required access level(s) for each operation.
When a consumer tries to perform an operation over some
protected data for the first time, she receives as a response from
the CP a token and the URI of the access control policy that
protects the data item requested, and she is being redirected to
the appropriate ACP. Then, the consumer authenticates herself
to the ACP, by providing some form of identification data,
and requests authorization, based on the access control policy
that corresponds to the obtained URI. The ACP checks if the
consumer satisfies the stored access control policy; if this is
true, the ACP signs the token, including in the signature the
consumer’s access level. The signed token can now be used
by the consumer in order to perform the desired operation.

B. Detailed system description

In this section we provide details about our system design.
In our system it is assumed that ACPs and CPs have a
pair of public/private keys, and the public keys are known
to the owners, as well as to the consumers. Moreover, it
is assumed that all messages are exchanged over a secure
channel. Throughout this section the notation of Table I is
used. Our system consists of the following functions :

1) Access control policy creation and data storage: This
function is executed using out-of-band mechanisms. With this
function an owner initially creates and stores an access control
policy in an ACP. The ACP in return provides a URIacp.
In order to protect a data item stored in a CP, using an
access control policy represented by URIacp, the owner has
to communicate to the CP the URIacp, the PubACP , as well
as the levels of consumers that are allowed to perform each
operation. A CP maintains for each data item a URIacp, a

TABLE I
NOTATION

PubCP The public key of a CP
PubACP The public key of an ACP
URIdata The URI of a data item stored in a

Cloud provider
URIacp The URI of an access control pol-

icy
SignACP (Y ) The digital signature of plaintext Y

using the private key of an ACP

PubACP and an Access Table that contains tuples of the form
< operation, levels >. A URIacp is re-usable, i.e., it can be
used to protect multiple items stored in many CPs.

2) Data operation, unauthorized request: This function is
executed by a consumer in order to perform an operation over
some protected data, stored in a CP. The consumer sends
a data operation request message to the CP. This message
contains the operation and a URIdata. Upon receiving such a
request the CP creates a unique token and sends it back to the
consumer, along with the corresponding URIacp. Therefore,
the following exchange of messages takes place:

MSG #1 : Consumer → CP : Operation, URIdata

MSG #2 : CP → Consumer : URIacp, T oken

It should not be possible for a third party to guess a token. In
order to keep track of the generated tokens Cloud providers
maintain a Token Table that contains entries of the following
form: < Token, authenticated, expires, URIacp, Level >.
When a new token is generated, a new entry is added to this
table, with authenticated being set to false and expires
being set to the generation time plus a very small amount of
time, sufficient to obtain an authorization.

3) Consumer authentication and authorization request:
This function is executed by a consumer upon receiving the
response of the data operation request. Initially the consumer
sends her identification data, along with the PubCP and the
URIacp and Token she received with message MSG #2,
to the ACP responsible for evaluating the access control
policy stored in URIacp. The ACP verifies the consumer’s
identification data against URIacp. If the consumer satisfies
URIacp, the ACP creates a new message that contains the
token, the authorization level of the consumer, the amount
of time that the token should be valid (i.e., its lifetime), the
URIacp, and the PubCP . Then it signs this message and sends
it back to the consumer. Therefore during this function the
following messages are exchanged:

MSG #3 : Consumer → ACP : IDdata, PubCP ,
URIacp, T oken

MSG #4 : ACP → Consumer : M2, SignACP (M2)

where:

M2 = Token, Level, Lifetime, URIacp, PubCP



4 PUBLISHED IN: PROCEEDINGS OF THE IEEE CROSSCLOUD WORKSHOP 2014

4) Data operation, authorized request: With this function
a consumer, claiming to be authorized, requests to perform an
operation over some protected data. The request includes the
operation, the URIdata, the token, the token’s lifetime and the
signature of the M2 part of the MSG #4 message. Therefore
the following message is sent:

MSG#5 : Consumer → CP : operation, URIdata,
T oken, Level, Lifetime, SignACP (M2)

Upon receiving this message a CP performs the following
actions:

1) Find the token in the Token Table and check if it has
expired. If it has expired, return an error

2) If the authenticated field of the corresponding record
in the Token Table is false then

a) Retrieve PubACP that corresponds to URIdata
b) Retrieve the URIacp that corresponds to the token
c) Reconstruct the M2 part of the MSG #4 message
d) Verify SignACP (M2), using PubACP

e) If the signature verification succeeds adjust the
expiration time of the token according to the
LifeT ime field, set authenticated equal to true,
set the appropriate value in the Level field, and
proceed to Step 3a.

f) If the signature verification fails, return an error
and exit

3) if the authenticated field of the corresponding record
in the Token Table is true then

a) Find the URIacp and the level that corresponds to
the token, from the Token Table

b) Find the URIacp and the level for the requested
operation that corresponds to the URIdata, from
the Access Table

c) Check if the retrieved values match. If they match
perform the operation, else return an error

Once the CP adjusts the Token Table and marks a token as
authenticated, then the consumer does not have to include
the Level, Lifetime, SignACP (M2) fields in her subsequent
requests; the Token is sufficient.

IV. IMPLEMENTATION

As a proof of concept we implemented a secure file stor-
age service1 using a popular open source Cloud stack, the
OpenStack2. In particular we leveraged the functionality of
the OpenStack component Swift, which is used for building
object storage systems. The implemented system allows file
storage and retrieval, as well as the following operations over
the stored files: organizing files in containers, listing the files
of a container, copying a file, moving a file and deleting a file.
We implemented our communication channels using HTTPS
and we pre-configured the consumer software with the public
keys of the CP and the ACP components.

1http://pages.cs.aueb.gr/˜fotiou/software/access/index.html
2http://www.openstack.org/

A. Swift-based architectures

A Swift-based object storage architecture is composed by
two networks: the internal (private) network that consists of
storage nodes, and the external (public) network that consists
of a proxy server and (optionally) an authentication server.
The proxy server accepts HTTP requests and processes them
using a Web Server Gateway Interface. The parameters used
in each request are encoded as HTTP headers. Each request
is pipelined through a number of add-ons, each of which may
transform it, forward it, or respond on behalf of the system to
the user.

Objects stored in a Swift-based architecture are organized
in a three level hierarchy. The topmost level of this hierarchy
is the accounts level, followed by the containers level (second
level) and the objects level (third level). The accounts level
contains user accounts. Each user account is associated with
many containers from the containers level. A container is used
for organizing objects, therefore a container is associated with
many objects from the objects level. An object may be a file
or a folder (that contains other objects). Every object within
a container is identified by a container-unique name. Each
request for an operation over an object contains a URI that
denotes the account, the container and the name of the object
in question.

B. Add-on implementation

The CP part of our scheme has been implemented as a Swift
add-on added in the pipeline of the add-ons processing incom-
ing requests. For each supported operation a user may specify
an account-wide URIACP , a container-wide URIACP , or an
object-wide URIACP . For each URIACP the corresponding
PubACP is provided. When a request is pipelined for the first
time through our add-on, the add-on checks if a URIACP has
been set for the object URI specified in the request (or its
container, or its account); if this condition is true, the add-on
generates a new token, using the token generation mechanism
provided by Swift, and creates a MSG #2 message as
described in Section III-B. The add-on creates a new entry
in the Token Table that contains the token, as well as the
corresponding URIacp. The authenticated field of this entry is
set to false and the expiration time is set equal to the current
time plus 10 sec. Finally the add-on responds with MSG #2
to the consumer.

Upon receiving MSG #2, the consumer initiates the
authentication and the authorization process, which involves
the exchange of messages MSG #3 and MSG #4 with the
appropriate ACP. In our system we implemented a simple ACP
that authenticates users using a username and a password,
and authorizes them using an access control list stored in
an SQLite database. With the reception of MSG #4 the
consumer is ready to perform an authorized request. The first
time an authorized request is made, all parameters of message
MSG #5 have to be set. In all subsequent requests only the
token is sent to the CP.



PUBLISHED IN: PROCEEDINGS OF THE IEEE CROSSCLOUD WORKSHOP 2014 5

V. EVALUATION

A. Security evaluation

It can be easily observed that our system enhances consumer
privacy. The only information that a CP learns about a
consumer is that he has a trust relationship with a particular
ACP, as well as his level. Of course, the latter can be
encoded in such a way that it will not reveal any meaningful
information. Any other sensitive information is stored in the
(trusted) ACP. Moreover, regardless of the lifetime of a token,
a consumer may drop it and request a new one in order to
avoid being profiled by a CP. Finally an ACP does not gain
any information about the actual data item that a consumer
wants to access: the only information that the ACP learns is
the public key of the entity that hosts the desired item.

Another security feature of our system is that access control
policies can be easily modified. Access control policies are
stored in a single point (in the ACP) and all protected assets
have a pointer to that policy; therefore, the modification of
an access control policy does not involve communication with
the CP(s) in which protected data is stored. When an access
control policy is changed, all new consumers will be autho-
rized using the new policy, whereas all already authorized
consumers will be re-authorized with the new policy when
their token expires.

We now proceed to the security analysis of our system using
the threat model proposed by Wang at al. [12], adapted to
the context of our system. For our analysis we consider three
different attack scenarios: (A) a malicious entity that can be
authorized under an access control policy Pmal, acting as a
consumer trying to perform an operation over a data item
protected by an access control policy Pleg , with Pmal and
Pleg stored in the same ACP, (B) a malicious entity that acts
as a CP pretending to host an item protected by an access
control policy Pleg , and trying to access a data item protected
by Pleg stored in a different CP, and (C) a malicious entity
trying to impersonate a consumer from the same system. In
all cases we assume that messages are exchanged through a
secure channel and communication endpoints cannot lie about
their identity. Finally, we do not consider the case in which a
malicious entity acts as an ACP and steals the credentials of a
consumer, since this attack is out of the scope of our system.

1) Malicious entity acting as a consumer: In this attack
scenario a malicious entity, ConM tries to perform an
operation over an item protected by an access control policy
Pleg , stored in ACPA. ConM does not abide by Pleg ,
but he abides by another access control policy, namely
Pmal, also stored in ACPA. ConM ’s goal is to obtain
a MSG #4 message in which the M2 part would be
equal to (Token, Level, Lifetime,URIPleg

, PubCP ).
Under normal circumstances ConM will receive a
MSG #4 message with an M2 part of the following
form (Token, Level, Lifetime,URIPmal

, PubCP ). If
ConM simply replaces URIPmal

with URIPleg
then

SignACP (M2) will not be valid anymore, therefore the CP
will understand the attack. The only way to include URIPleg

in message MSG #4, with SignACP (M2) being valid, is
to include URIPleg

in message MSG #3, i.e., have ConM

send to ACPA a message MSG #3 of the following form:
(IDdata, PubCP , URIPleg

, T oken). However since ConM

does not abide by URIPleg
this message will result in an

error.
2) Malicious entity acting as a CP: In this attack scenario

we assume that the attacker’s goal is to perform an operation
over a data item ItemA stored in CPA and protected by an
access control policy PA, stored in ACPA. The attacker acts
as a Cloud provider, CPB , which hosts a data item, ItemB ,
also protected by PA. Moreover the attacker is able to lure a
consumer ConL, that abides by PA, to perform an operation
over ItemB .

The attacker initially sends a message MSG #1
to CPA and obtains a TokenA; in order for this at-
tack to be successful the attacker has to obtain a
MSG #4 message with an M2 part of the following
form (TokenA, Level, Lifetime, URIPA

,PubCPA
). When

ConL is lured to request to perform an operation over
ItemB , stored in CPB

3, the attacker responds with a mes-
sage MSG #2 of the following form: (URIPA

, T okenA).
Subsequently ConL sends a message MSG #3 to ACPA

of the following form: (IDdata, PubCPB
, URIPA

, T okenA),
and receives a message MSG #4 with an M2 part of
(TokenA, Level, Lifetime, URIPA

,PubCPB
). In order for

the attacker to obtain the desired message he has to replace
PubCPB

, with PubCPA
, but in this case SignACP (M2) will

not be valid anymore, therefore CPA will detect the attack.
3) Malicious entity co-located with a consumer: This attack

scenario is applicable when a CP maintains a user management
system and associates operations over protected data with
particular users (e.g., for charging reasons). In these cases a
CP maintains in its Token Table the identifier of the (CP)
user for whom the token has been generated. The goal of
an attacker in this scenario is to make a CP believe that a
consumer ConL wants to perform an operation OPA over an
item ItemA protected by access control policy PA. For this
scenario it is assumed that the attacker is also a valid CP user
and he is eligible to perform OPA over ItemA. Moreover it is
assumed that the attacker is able to inject messages on behalf
of ConL.

In order for this attack to take place, the attacker requests
to perform OPA over ItemA and proceeds through all steps
until he receives MSG #4. At this point, instead of sending
MSG #5 on behalf of himself, he sends it on behalf of
ConL. It can be easily observed that this attack is trivially
mitigated since the CP also maintains the identifiers of the
users that correspond to each token, therefore MSG #5
will be rejected. It should be noted however that this is
possible due to our design choice to have the CP generate
the tokens, which is not always the case in other similar
systems. This attack, for example, was successfully exploited
by Wang at al. [12] against three popular websites that were
using Facebook connect and Twitter OAuth for associating
their user accounts with their corresponding Facebook and
Twitter accounts.

3According to our assumptions, the attacker cannot pretend to be CPA



6 PUBLISHED IN: PROCEEDINGS OF THE IEEE CROSSCLOUD WORKSHOP 2014

B. Overhead

In our implementation, HTTP methods (GET, PUT,
DELETE) are used for denoting the desired operation. The size
of the RSA keys is 2048 bits and the keys are encoded in JSON
format. The size of an encoded key is 400 bytes. Every other
field is encoded as a string of hexademical digits: tokens are
encoded in a 32 byte string, the digital signatures in a 512 byte
string and the token’s lifetime in an 8 byte string. Finally, a
single byte is used to represent access levels. When a consumer
wants to perform an operation over some data stored in a CP ,
protected by an URIacp, a number of messages has to be
exchanged. If an ACP has already asserted that the consumer
abides by the URIacp, and the corresponding authenticated
Token (that has been generated by the CP) has not expired,
then a single message from the consumer to the CP has to be
sent. In any other case five messages have to be exchanged:
three between the consumer and the CP, and two between the
consumer and the ACP.

C. Interoperability

Many cloud providers offer storage services (e.g., Amazon
S3, Google Drive, Microsoft OneDrive), as well as an API for
accessing and managing the stored content. This API can be
used to build middleware providing controlled access to the
storage service using our solution. The process for building
this middleware is the following: the account that is used for
accessing the storage services is kept secret, the middleware
is given full permissions over the stored content, and all
applications are configured to interact with the middleware,
which is now used as an interface to the storage service. The
middleware can be built using the infrastructure of the cloud
provider (e.g., Amazon EC2, Google App Engine, Microsoft
Azureus), or as a standalone service provided by a third
party. The middleware should implement the legacy API of
the storage provider in order to facilitate the extension of
existing applications, as well as a standard network storage
API (e.g., CIFS) so as to facilitate the migration from one
storage provider to another.

VI. CONCLUSIONS

In this paper we proposed a solution that enables data own-
ers to outsource data storage and computation, without losing
governance of their assets. Our solution introduces a new role,
that of the Access Control Provider (ACP), that relieves Cloud
providers from the burden of implementing complex security
solutions and enables enterprises to deploy their own access
control mechanisms. Data can be easily migrated from one
Cloud provider to another, since Cloud providers are oblivious
about the access control policy implementation details and
business logic behind it. We demonstrated the feasibility of
our scheme through a proof of concept implementation, using
a real, publicly available, Cloud stack system.

Our solution also creates a new business opportunity. We
envision that a new market can arise due to our solution, that
of the ACPs. In addition to the enterprise specific ACPs, there
can be independent ACPs that offer security services to end-
users. Existing security companies can utilize their expertise

to offer cutting edge access control services without investing
in the Cloud market. Moreover, existing social networks may
leverage their role to act as ACPs. To this end, future work for
our scheme includes support for ACP federations and support
for multiple URIACP definitions per single data item.

ACKNOWLEDGMENT

This research was supported by a grant from the Greek
General Secretariat for Research and Technology, financially
managed by the Research Center of AUEB.

REFERENCES

[1] PwC, “Global state of information security survey,” 2012.
[2] S. Subashini and V. Kavitha, “A survey on security issues in service

delivery models of cloud computing,” Journal of Network and Computer
Applications, vol. 34, no. 1, pp. 1–11, 2011.

[3] S. Gorniak (ed.), “Priorities for research on current and emerging
network trends,” ENISA, 2010.

[4] D. Catteddu and G. Hogben (eds.), “Cloud Computing Benefits, risks
and recommendations for information security,” ENISA, 2009.

[5] Cloud Security Alliance. (2013) The notorious nine cloud computing top
threats in 2013. [Online]. Available: https://cloudsecurityalliance.org/

[6] N. Fotiou, G. F. Marias, and G. C. Polyzos, “Access control enforcement
delegation for information-centric networking architectures,” SIGCOMM
Comput. Commun. Rev., vol. 42, no. 4, pp. 497–502, 2012.

[7] D. Recordon and D. Reed, “OpenID 2.0: a platform for user-centric
identity management,” in Proc. of the 2nd ACM workshop on Digital
Identity Management, 2006, pp. 11–16.

[8] D. Hardt (ed.), “The OAuth 2.0 authorization framework,” RFC 6749,
October 2012.

[9] D. Nunez, I. Agudo, and J. Lopez, “Integrating OpenID with proxy
re-encryption to enhance privacy in cloud-based identity services,” in
Proc of the IEEE 4th International Conference on Cloud Computing
Technology and Science, 2012.

[10] R. Khan, J. Ylitalo, and A. Ahmed, “OpenID authentication as a
service in OpenStack,” in Proc. of the 7th International Conference on
Information Assurance and Security, 2011, pp. 372–377.

[11] S. Cantor, J. Kemp, R. Philpott, and E. Maler (eds.), “Assertions and
protocols for the OASIS Security Assertion Markup Language (SAML)
v2.0,” OASIS, 2005.

[12] R. Wang, S. Chen, and X. Wang, “Signing me onto your accounts
through facebook and google: A traffic-guided security study of com-
mercially deployed single-sign-on web services,” in Proc. of the IEEE
Symposium on Security and Privacy, 2012, pp. 365–379.


