
PUBLISHED IN: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS 2014 1

Sink Controlled Reliable Transport for Disaster
Recovery

Charilaos Stais, George Xylomenos, Giannis F. Marias
Mobile Multimedia Laboratory

Department of Informatics
Athens University of Economics and Business,

Athens, Greece
Email:{stais, xgeorge, marias}@aueb.gr

Abstract—We present a reliable transport layer protocol for
sensor networks, targeting disaster recovery applications where
human or robotic rescuers try to gather information from a
possibly fragmented sensor network by moving through the
disaster area. The mobility of the information sink means that
the protocol must quickly adapt to a constantly changing view
of the network, where connections and disconnections are the
norm. Our protocol is purely sink driven, that is, the sink controls
congestion by rate limiting the sensors, choosing how to assign
the available bandwidth to different sensor types and deciding
on the level of reliability to be achieved. In addition, our protocol
operates at the application layer with minimal requirements from
lower layers, allowing its integration with a disaster recovery
application that will set its parameters depending on the disaster
scenario. As a result, our protocol allows simple and inexpensive
fixed sensors to be combined with expensive but reusable mobile
equipment for disaster recovery purposes.

Index Terms—Sensor networks, reliable transport, congestion
control.

I. INTRODUCTION

One possible use of sensor networks is assisting robotic
or human rescuers in disaster recovery. In such scenarios, a
mobile rescuer roams a disaster area, for example, a building
hit by a fire or an earthquake, gathering information from
any available sensors. For example, temperature sensors can
indicate whether nearby areas are on fire, chemical sensors
can detect the presence of people breathing, while audio and
video sensors can reveal what is behind a blocked passage. The
DIstributed Sensor systems For Emergency Response (DIS-
FER) project 1, aims to advance the state of the art in disaster
recovery via sensor network technologies.

In such scenarios, the sensor network may only be partially
connected, as the disaster may have wiped out parts of the
infrastructure. However, as the rescuer moves, it will come into
contact with most sensors, either directly, or via other sensors
in a multihop configuration. As a result, the transport protocol
used to move data from the sources (sensors) to the sink
(rescuer) must establish connections and exchange information
very quickly, as the sink moves within range of the sensors,
reconfiguring itself as the rescuer moves around. In addition,
the transport protocol must be mostly reliable, since the
rescuer cannot count on sensor redundancy to reveal critical

1http://www.aueb.gr/disfer

information. Finally, as data from many sources converge
towards the sink, the transport protocol must avoid losing
packets due to congestion around the sink.

It is crucial to note that all these requirements revolve
around the sink: the sink must receive data with a high prob-
ability of success, sink mobility makes the network change
as nodes come in and out of the network, and it is the area
near the sink that is most likely to be congested. For this
reason, in this paper we present a reliable transport protocol
for sensor networks with mobile sinks that is purely sink-
controlled, in the sense that the sink allocates transmission
rates to all reachable sources and manages the error recovery
process, depending on application objectives.

By moving all the intelligence to the sink, we get many
benefits. First, the sources are simpler, hence cheaper and with
longer battery lives; the sink only needs to operate for a short
period of time, therefore it can spend more energy, and it can
be reused to amortize its cost. Second, the sink can adapt its
behavior to the problem at hand; for example, if congestion
arises it can allocate higher transmission rates to the sensors
that are of higher importance to a specific mission. Third, the
sink-rescuer is the only mobile part, therefore it can adapt its
mobility pattern to the data coming in from the sensors; for
example, it can stay longer at some place in order to gather
more data, or move to a different spot for better reception.
Finally, by properly designing the error control mechanism,
the sink can also set the required level of reliability, depending
on the type and importance of each sensor.

The remainder of this paper is organized as follows. In
Section II we present our assumptions and motivate our
design choices. In Section III we describe how our protocol
operates and in Section IV we explain the rate control scheme
used to handle congestion. Section V describes our prototype
implementation. In Section VI we discuss related work and
present our conclusions in Section VII.

II. ASSUMPTIONS AND RATIONALE

We assume a set of sensors operating as a multihop net-
work, using a shared channel (e.g. WiFi or Bluetooth) for
communication. Each sensor acts as a source attempting to
transmit data to a mobile sink (a robotic or a human rescuer
equipped with a computer). We assume that all sensors are



2 PUBLISHED IN: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS 2014

preprogrammed with the network address of the sink. The
network may become disconnected due to sensor failures,
therefore, as the sink moves it may only be able to reach a
subset of the sensors. Whenever we refer below to the network,
we mean the sink and the sources that are reachable by the sink
via one or more hops at any given time. As the sink moves,
this subset changes. We further assume an underlying routing
protocol that attempts to route data between all the nodes in
the currrent network. We do not enforce a specific protocol,
but note that a routing protocol based on the received signal
strength (RSSI) metric, available in most wireless interfaces,
which triggers route recalculations whenever the sink detects
that the node with the highest RSSI has changed [1], is suitable
for our approach.

The sensors are distinguished in multiple types, with each
type being separately rate-controlled. The sink dedicates a
portion of its available bandwidth to each sensor type, and
then assigns part of that bandwidth to each individual sensor of
that type. While for our protocol all sensors are basically data
sources that require a specific transport rate and may alternate
between active and idle states, the distinction of sensors into
multiple types allows applications to decide how to partition
the available bandwidth between the types and, possibly,
operate different bandwidth allocation schemes for each type.
To illustrate the sensor type concept, in our prototype we
assume two types, event and continuous sensors. An event
sensor collects data (e.g. a temperature value or a camera
snapshot) on a periodic basis, while a continuous sensor sends
a continuous stream of data (e.g. live video or audio). In our
setting, event sensors send data periodically and not only when
an event occurs (e.g. when the temperature changes or when
movement is detected), since the mobile sink will need to
gather as much data as possible when the sensor is reachable,
which may only be a brief period.

In terms of congestion control, in our protocol the sink
explicitly controls the transmission rates of all sources. Since
all source transmissions converge at the sink, the sink is at
the best position to detect the onset of congestion and take
measures to control it. Furthermore, the sink is aware of
application requirements, i.e. which sensors are considered
more important, so as to appropriately regulate their rates;
this depends on the scenario and cannot be preprogrammed
at the sensors. Finally, sink mobility means that the network
topology changes all the time, thus complicating distributed
congestion control. While sensors join and leave the network,
the sink always remains in the network, hence it is the best
place to implement congestion control. As a side effect, this
makes sensors simpler, cheaper and with longer battery lives.
Since our protocol targets mobile sinks, it implements a simple
congestion control loop that allows the sink to quickly regulate
each reachable source.

In terms of reliability, our protocol uses negative acknowl-
edgments (NACKs) to trigger retransmissions of lost data
but, unlike most protocols which immediately retransmit lost
data, we transmit data in rounds: first all data packets are
transmitted, then all NACKed packets are transmitted, then
all NACKed retransmissions are transmitted again, and so on.
This allows the sink to stop the recovery process whenever

it deems appropriate, for example, when enough packets have
been received to allow reconstructing the content. When the
source loses connectivity with the sink before the transmission
completes, the sink will have received packets from the entire
transmission rather than only from the beginning, which may
also be useful for approximately reconstructing the data.

Since rate allocation only operates at the sink, the sink can
implement any rate allocation policy desired. In our prototype
we explicitly split the sensors into classes depending on their
type, performing separate rate allocation in each class. In this
manner, event sensors always have a guaranteed chance to
transmit data, while the remaining bandwidth can be used
by the continuous sensors. The rationale is that while higher
transmission rates for continuous sensors make them more
useful (e.g. higher frame rates and resolutions lead to more
informative video), they should be regulated to allow the low
bandwidth event sensors to always transmit there data. The
exact way the bandwidth is split is up to the application; it
can be tuned to a specific rescue mission, taking into account
the sensors in a disaster area. For example, in a building with
a few sensors and many cameras, more bandwidth could be
dedicated to continuous sensors before the rescuer enters the
building.

A final aspect of our protocol is that it operates at the
application level, using UDP/IP messages as the underlying
transport. It can be implemented on any device offering IP
connectivity and a UDP socket interface. Our prototype is
written in Java, allowing it to run on, among other devices,
Android smartphones and tablets, without kernel modifications
or root priviledges. In addition to portability and ease of
debugging, our implementation can be tightly integrated with
the application using it, allowing the application to directly
control aspects of protocol operation such as the allocation of
rates to sensor classes and the level of reliability required.

III. PROTOCOL DESCRIPTION

Communication between the sensors and the sink in our
protocol proceeds in five stages: connection establishment,
sensor information exchange, data exchange, idle and connec-
tion release.

Sensor Sink 

Fig. 1. Connection establishment stage.

A. Connection establishment

When the sink begins operation, it listens to a well-known
UDP port for connection requests from sensors. The sensors
wait until the sink becomes reachable before connecting to it.
In our prototype, the sink periodically sends a probe message,
MSG_HELLO, to the well-known IP address and UDP port
of the sink, until it receives a response; the probe interval
is configurable. If the routing protocol supports it, the sink



PUBLISHED IN: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS 2014 3

can ask the routing engine to be notified when the sink
becomes reachable. The MSG_HELLO message includes the
sensor identifier, unique in the sensor network, and its type;
in our prototype, only event and continuous sensor types exist.
When the sink receives such a message, it responds with
an MSG_HELLO_ACK message which indicates a separate
UDP port where the sensor should send the following control
messages. The sink notes the time when it sent the message,
so as to later measure the round-trip time (RTT) to that sensor.
The use of a separate control port per sensor allows the sink to
dedicate one thread to receiving new connection requests, and
a separate thread for each connection to a specific sensor, thus
avoiding the need to multiplex messages from multiple sensors
over a single control connection. The connection establishment
messages are depicted in Figure 1.

Sensor Sink 

Fig. 2. Sensor information exchange stage.

B. Sensor information and idle
After receiving a response from the sink, the sensor prepares

an MSG_INFO message which includes the delay between
receiving the message from the sink and sending the response,
the data rate requested by the sensor, whether the sensor
is ready to send data at this point in time or not, the data
packet size and the total size of the data to send. When the
sink receives the MSG_INFO message it calculates the time
elapsed since sending the MSG_HELLO_ACK, subtracting the
delay in the message to get the RTT to the sensor. At this
point, the connection has been established and the sink is
aware of the sensor’s bandwidth requirements. If the sensor
has indicated that it is not ready to send data at this point,
the sink moves to an idle state, waiting until the sensor
sends a MSG_CTRL_DATA with no parameters. Then, the sink
starts the data exchange by sending an MSG_CTRL_START
message to the sensor, indicating the data rate to use and
a UDP data port to use for the transmission. If the sensor
indicated in the MSG_INFO message that it was ready to send
data, the MSG_CTRL_START message is sent immediately
as a response. The initial rate allocated to the sink is set as
explained in Section IV. The sensor information messages are
shown Figure 2.

Sensor Sink 

Fig. 3. Data exchange stage.

C. Data exchange

After the sink sends the MSG_CTRL_START, the actual
data transfer begins, using the UDP data port assigned for
the transfer; control messages, such as NACKs and rate
updates, are exchanged out of band over the control channel,
without being rate controlled. This allows control messages
to be sent without waiting behind a, possibly long, queue of
data messages. The sensor breaks down its transmission into
packets with the size indicated in the MSG_INFO message,
until all the data indicated in the MSG_INFO message is
exhausted. Data packets only have a single header field, a
segment number used to sequentially number all data packets.

When a missing packet is detected, the sink sends a
MSG_NACK to the sensor over the control channel. However,
the sensor does not immediately retransmit lost messages.
After the transmission is complete, all missing messages
are retransmitted, generating further NACKs from the sink,
if needed. This procedure is repeated in rounds, until all
messages are received [2]. Once recovery is complete, the sink
sends a MSG_CTRL_DONE message to indicate a successfully
completed data transfer. Both endpoints then move to an idle
state, until the sensor generates a new MSG_CTRL_DATA mes-
sage. If the need arises, the sink will send a MSG_CTRL_RATE
message to the sensor indicating its new rate allocation, as
explained in Section IV. The data messages are shown in
Figure 3.

Note that round-based recovery allows the sink to use
any packets received without waiting for retransmissions. The
sink may even stop the recovery process by sending the
MSG_CTRL_DONE message. For example, when an image is
transmitted using redundancy coding, the sink may stop the
recovery process when enough packets have been received to
adequately recostruct the image. This allows the application
to fine tune the reliability of the protocol.

Sensor Sink 

Fig. 4. Connection control and release stage.

D. Connection control and release

Since the path between the sink and the sensor may become
disconnected due to the sink’s mobility, the connection may
fail between data transfers, without either side noticing. For
this reason, the sink periodically sends an MSG_CTRL_ALIVE
message to the sensor, which is acknowledged by an
MSG_CTRL_ACK message from the sensor that includes the
delay incurred between receiving the MSG_CTRL_ALIVE and
responding with the MSG_CTRL_ACK. In addition to confirm-
ing that the connection is still alive, this procedure allows the
sink to periodically measure the RTT of the connection. If the
sensor or the sink wishes to complete the connection, they
can send a MSG_CTRL_BYE message, which does not need
to be acknowledged, as after either side drops the connection,



4 PUBLISHED IN: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS 2014

the other one will eventually timeout: the sink times out if no
responses are received to its MSG_CTRL_ALIVE messages,
while the sensor times out if no MSG_CTRL_ALIVE messages
arrive. The MSG_CTRL_BYE message simply allows the other
end to release the resources dedicated to the connection with-
out waiting for a timeout. The connection control messages
are shown in Figure 4.

IV. CONGESTION MANAGEMENT

The congestion management mechanism of our protocol is
agile and purely sink-driven. Since we focus on congestion
around the sink, we know the total available bandwidth as it
depends on the technology used by the sink and sensors for
data exchange. We first reserve a fixed part of this bandwidth,
e.g. 30%, for the control message exchanges which are not
rate-controlled. Then, the sink splits the remainder to event and
continuous sensors using a ratio determined by the application,
e.g. 10%-90%, depending on the number and type of sensors
present at the disaster site.

The congestion management algorithm periodically evalu-
ates the state of individual connections and the system as a
total. The sink monitors the RTT of each connection using
the MSG_HELLO_ACK, MSG_INFO, MSG_CTRL_ALIVE and
MSG_CTRL_ACK messages; the processing delay at the sensor
is always subtracted to get an accurate RTT estimate. The
congestion management algorithm maintains the last few RTT
samples and their moving average.

Whenever the algorithm runs, it first checks whether the
average for each sensor has increased compared to the previous
value by more than a configurable threshold. If this occurs
four times in a row, then the corresponding connection is
congested, otherwise it is not. If the connection is congested,
the sink instructs the sensor to reduce its rate by 20%, via a
MSG_CTRL_RATE message.

After each individual sensor is checked, if a new sensor has
been connected or an existing one has been disconnected, the
entire system is checked to see whether global adjustments
need to be made. This takes places separately for each sensor
class. First, we calculate the total rates requested (not assigned)
by the sensors of the class. If these are below the available
bandwidth, they will all get what they asked for. New sen-
sors will get their requested rate in the MSG_CTRL_START
message which directs them to start sending data. Sensors
that were previously rate limited, will increase their rate by
20%, while other sensors will get their requested rate; in both
cases, the change is announced via a MSG_CTRL_RATE. If,
on the other hand, the requested badnwidth is higher than the
available one, the available rate is shared equally among all
sensors of that class. The sensors are notified as above, i.e.
either via a MSG_CTRL_START or via a MSG_CTRL_RATE
message.

The congestion management algorithm is very simple, as
we expect congestion to be concentrated around the sink.
Since the sink is constantly on the move, it is very unlikely
that a distributed congestion control management will have
time to converge. While TCP uses an Additive Increase -
Multiplicative Decrease (AIMD) algorithm, our scheme uses

fixed and symmetric steps. This is because TCP sources
constantly probe the network for capacity, hence entering deep
into the congested region before having to abruptly backoff. In
our scheme sensors are conservatively rate controlled, hence
congestion is expected to appear slowly, therefore there is no
need for dramatic rate reductions.

V. IMPLEMENTATION

Our prototype was implemented in Java, consisting of
around 20 KB of bytecode for the sensor and 40 KB of
bytecode for the sink. The implementation runs entirely at
the user level, allowing it to be compiled jointly with the
application using it. The prototype uses configuration files to
set the behavior of the protocol, for example, the shares of
bandwidth between the sensor categories; these can instead be
set directly by the application. Similarly, the prototype uses
files stored on disk in lieu of actual sensor data; these can
instead be objects generated by the sensor. A well-known UDP
port and IP address needs to be agreed between the sink and
sensors to allow them to rendezvous, but the additional control
and data ports for each sensor are assigned automatically by
the protocol. The protocol does not require any changes to
the kernel or the libraries of the operating system, or even
superuser access, since it operates over simple UDP/IP sockets.

VI. RELATED WORK

There is a large body of work on transport protocols for
wireless sensor networks. According to the taxonomy in [3],
we can classify transport protocols in two axes, depending
on their approach to reliability and congestion control. In
terms of reliability, a protocol may offer unreliable or reliable
service, while in terms of congestion control, a protocol may
offer no congestion control, distributed congestion control
or centralized congestion control. Actually, reliability can be
further subdivided: hop-by-hop reliability via retransmissions,
as in RMST [4], end-to-end reliability via retransmissions, as
in RCPT [3] and STCP [5], and forward reliability without
retransmissions, as in ReInForM [6]. Our protocol implements
reliable service with centralized congestion control, with reli-
ability achieved an end-to-end via retransmissions.

While the hop-by-hop reliability of RMST is useful for a
wireless environment, most wireless networks can retransmit
lost packets at the link layer, an approach that works well
enough [4]. We therefore concentrate on congestion induced
losses, as in RCPT and STCP, which we handle end-to-end.
The use of multiple transmissions without NACKs, as in
ReInForM, requires a well-connected sensor network, which
is unlikely in disaster recovery applications. For congestion
control, we chose a centralized approach as in RCPT for
many reasons. First, as all data converge at the sink, packet
drops will occur if the sensors are not somehow regulated.
Second, in our target application the sink is mobile, therefore
distributed congestion control would probably never converge.
Third, by concentrating all congestion control decisions at the
sink as in [3], we can modify its behavior depending on the
environment and ap;lication. Fourth, this approach does not



PUBLISHED IN: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS 2014 5

require sensors to implement any congestion control measures
as in [5].

Our protocol is most similar to RCPT [3], as it is based
on the sink explicitly controling the transmission rates of the
sensors and sending NACKs to the sensors. The differences
between RCPT and our protocol are due to the fact that we
explicitly address mobile sinks, as in COSMOS [1], therefore
we have implemented simpler and faster control loops than
RCPT, while avoiding the distributed congestion control of
COSMOS which we expect to be slow to converge. On the
other hand, while both STCP and ReInForM provide limited
reliability, our approach allows the sink to dynamically define
and control the reliability level depending on the application,
unlike ReInForM where the reliability goal is fixed when a
packet is generated and never changes [6], and STCP where
the sink control reliability but the sensors set the reliability
goals [5].

VII. CONCLUSION

We have presented a reliable transport protocol for sensor
networks which is especially suitable for disaster recovery
applications. Our protocol assumes that the sink is mobile,
thus requiring a fast and agile method for congestion control.
The protocol is purely sink driven, thus allowing application
policies to be set without previously configuring the sources.
Furthermore, it allows the available bandwidth to be split
between different classes of sensors and within the sensors
of each class depending on application preferences. The relia-
bility level achieved can also be fine tuned by the application,
which can be very tightly integrated with the protocol, as they
both operate at the application level.

ACKNOWLEDGMENT

This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds
through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: THALIS - Athens
University of Economics and Business - DISFER.

REFERENCES

[1] K. Karenos and V. Kalogeraki, “Traffic management in sensor networks
with a mobile sink,” IEEE Trans. on Parallel and Distributed Systems,
vol. 21, no. 10, pp. 1515–1530, 2010.

[2] C. Stais, A. Voulimeneas, and G. Xylomenos, “Towards an error control
scheme for a publish/subscribe network,” in Proc. of the IEEE ICC, 2013,
pp. 3743–3747.

[3] J. Paek and R. Govindan, “RCRT: Rate-controlled reliable transport for
wireless sensor networks,” in Proc. of ACM SenSys, 2007, pp. 305–319.

[4] F. Stann and J. Heidemann, “RMST: reliable data transport in sensor
networks,” in Proc. of the IEEE SNPA Workshop, 2003, pp. 102–112.

[5] Y. Iyer, S. Gandham, and S. Venkatesan, “STCP: a generic transport layer
protocol for wireless sensor networks,” in Proc. of the ICCCN, 2005, pp.
449–454.

[6] B. Deb, S. Bhatnagar, and B. Nath, “ReInForM: reliable information
forwarding using multiple paths in sensor networks,” in Proc. of the IEEE
LCN, 2003, pp. 406–415.


