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Abstract—Routers in the Content-Centric Networking (CCN)
architecture maintain state for all pending content requests, so as
to be able to later return the corresponding content. By employing
stateful forwarding, CCN supports native multicast, enhances
security and enables adaptive forwarding, at the cost of excessive
forwarding state that raises scalability concerns. We propose a
semi-stateless forwarding scheme in which, instead of tracking
each request at every on-path router, requests are tracked at
every d hops. At intermediate hops, requests gather reverse path
information, which is later used to deliver responses between
routers using Bloom filter-based stateless forwarding. Our ap-
proach effectively reduces forwarding state, while preserving the
advantages of CCN forwarding. Evaluation results over realistic
ISP topologies show that our approach reduces forwarding
state by 54%-70% in unicast delivery, without any bandwidth
penalties, while in multicast delivery it reduces forwarding state
by 34%-55% at the expense of 6%-13% in bandwidth overhead.

I. INTRODUCTION

The networking research community has recently spent
considerable effort into Information-Centric Networking (ICN)
architectures [1]. The goal of ICN is to primarily facilitate con-
tent distribution by further utilizing in-network data storage
and computation resources. Among the various ICN proposals,
the one that has received the most attention is Content-Centric
Networking (CCN) [2], which is currently the focus of the
Named Data Networking (NDN) project [3]. In CCN, users
request named content packets by issuing Interest packets and
receiving the corresponding Data packets. Routers propagate
Interests towards the appropriate content sources and store
information for each forwarded Interest in a Pending Interest
Table (PIT). When Data arrive, routers push them towards
their requester(s) based on the information stored in their
PIT [2]. If an incoming Data has no match in the PIT, routers
consider the Data as unwanted traffic and immediately discard
it. Packet routing and forwarding is directly performed on
content names, without using host addresses.

The stateful name-based forwarding of CCN offers four
key advantages. First, the network provides native support for
multicast delivery. If multiple users request the same content,
their Interests are suppressed by common on-path routers,
which later duplicate the received Data [2]. Second, host
addresses are omitted, thus avoiding a number of address-
related vulnerabilities (e.g. DoS attacks). Third, routers prevent
the delivery of unwanted data, i.e. data that has not been

explicitly requested (e.g., spam) [2]. Fourth, maintaining per-
packet forwarding state enables routers to realize adaptive
forwarding functionalities, i.e. routers may actively participate
in functions such as link failure recovery, flow control and
detection of malicious user behavior [4].

Tracking each forwarded Interest, however, raises scalability
concerns [5], [6]. Per-packet forwarding state can be avoided
by adopting stateless forwarding [7]: Interests gather path
information on their way to the content source; Data are then
source-routed by reversing the gathered path information. The
removal of forwarding state, however, nullifies the advantages
of CCN forwarding: (i) routers cannot aggregate Interests
or duplicate Data, thus multicast is not supported, (ii) host
addresses – that were omitted on purpose – are required
by some source-routing schemes, (iii) routers cannot drop
unwanted packets because forwarding state is removed, which
is also the reason why (iv) adaptive forwarding is disabled.

In this paper, we propose a semi-stateless forwarding
scheme for CCN. Instead of tracking an Interest at either all
or none of the routers, we store forwarding information at
some routers. An Interest is tracked at every d hops, where
d is a predefined system parameter. If a data path is N
hops long, an Interest is on average tracked at N/d routers
and each router tracks on average 1/d of the forwarded
Interests. At intermediate hops, Interests collect reverse path
information, which is stored at routers tracking that par-
ticular Interest. Data are later forwarded via Bloom filter-
based stateless forwarding [8] between the routers tracking the
corresponding Interest. Our solution reduces the forwarding
state maintained at routers, while preserving the advantages of
name-based forwarding. Specifically, native multicast and host
anonymity are preserved by the adoption of Bloom filter-based
forwarding, while routers can still discard unwanted traffic and
support adaptive forwarding for the fraction of Interests that
they are tracking. In addition, our approach does not radically
change CCN, as it only modifies Interest and Data forwarding,
leaving the control plane (routing information exchange and
bootstrapping) intact.

The forwarding state reduction due to our semi-stateless
scheme comes at the cost of increased bandwidth overhead
for multicast (but not unicast) applications. This is caused by
(i) additional Interest transmissions, as Interests may not be
aggregated at the first common router of the multicast tree and
(ii) redundant Data transmissions due to false positives in the
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Bloom filters. However, this cost is small in comparison to
the gains in state maintenance. In simulations using realistic
topologies, we found that forwarding state is reduced by 54%-
70% in unicast applications, without any bandwidth penalties,
while in multicast application it is reduced by 34%− 55% at
the expense of 6%-13% in bandwidth overhead.

The remainder of this paper is organized as follows. In
Section II we present an overview of CCN and its forwarding.
Section III presents our forwarding scheme in detail, explain-
ing both how Interests are tracked and how Data are forwarded.
We present our evaluation in Section IV for both unicast and
multicast applications and conclude in Section V.

II. BACKGROUND ON CONTENT-CENTRIC NETWORKING

All packets in CCN include a name: users issue Interest
packets specifying the desired content name and receive in
response Data packets with the corresponding content. For
each Interest, a user receives at most one Data packet. Content
names are variable-length hierarchical identifiers similar to
file-system path names or URIs, e.g. /a/b/c.jpg. Interests
are forwarded by routers towards content sources in a hop
by hop manner. At each hop, a router first checks its local
cache to see if a copy of the requested packet is available.
If so, the router immediately transmits the Data packet over
the Interest’s incoming link. Otherwise, the router checks its
Pending Interest Table (PIT) to see if an Interest for the
same Data has already been forwarded. If a PIT entry exists,
the router adds the incoming interface to the PIT entry and
suppresses the Interest. Otherwise, the router stores the Interest
in the PIT and forwards it based on a Longest Prefix Match per-
formed over the Forwarding Information Base (FIB). When the
Interest reaches the content source, the requested Data packet
is transmitted along the reverse path: at each hop, routers check
their PIT for matching Interests and transmit the Data packet
accordingly. If an Interest had arrived from multiple interfaces,
the Data packet is duplicated, thus realizing multicast delivery.
Data packets that do not find a match in the PIT are considered
redundant and are discarded. After a Data packet is forwarded,
the router assumes that the Interest is satisfied and deletes the
PIT entry. Essentially, routers maintain state for each requested
packet: as Interests are forwarded, breadcrumb-like trails are
left inside the PITs. Data are returned to requesters following
the reverse path, consuming PIT entries on their way. Figure 1
shows an example of CCN operation, where the Interests of
three clients (U1, U2 and U3) for a piece of content named
/a/b/c.jpg have been forwarded to a content source (S);
the PIT entries in the intermediate routers correspond to a
multicast tree from the content source to the clients.

CCN’s stateful forwarding offers four key advantages. First,
CCN natively supports multicast delivery. The first common
router towards a content source will aggregate Interests for
the same name and duplicate the Data packets returned. This
is particularly useful in real-time streaming applications [9]–
[11] where users consume the same content in a synchro-
nized manner, i.e. they transmit Interests for the same Data
simultaneously. Second, host addresses are omitted and this
may reduce (or, even, eliminate) a number of address-related

Fig. 1. Basic CCN operation. Arrows show the propagation of Interests
towards content source S. The contents of the FIB and PIT at router R3 are
shown. Data follow the reverse path (tree), based on the PIT of each router.

problems, such as address space depletion, address assignment
and governance [2]. Third, the network delivers only data
that has been requested; routers drop Data packets that do
not have a matching Interest in their PIT, thus unwanted
traffic (e.g. spam) is discarded near the source and not at the
recipient [2]. Fourth, maintaining per-packet forwarding state
is an enabling factor for adaptive forwarding [4], in which
routers may exploit forwarding state to assist functions such
as fast recovery from link failures, congestion avoidance and
early detection of malicious users.

The amount of forwarding state kept in routers, however,
raises scalability concerns related to the PIT size. The number
of Interests that must be stored in the PIT in order to fully
utilize the network depends on the link capacity, the size
of Data packets and the average Round-Trip Time (RTT)
which defines the lifetime of Interests inside the PIT. A rough
estimation for the required number of PIT entries per link is
bandwidth×RTT/data packet size. For example, to fully
utilize a 40 Gbps link with 1000-byte Data packets and an
average RTT of 80 ms, the PIT must contain 400K entries;
this must be multiplied by the number of links hosted by the
router. Furthermore, real-time applications such as multimedia
streaming [9]–[11] and publish-subscribe applications [12],
request Data before they are generated. This leads to an
increased effective RTT, as Interests remain longer in the PIT.
The work in [13] mapped realistic IP traffic onto CCN and
estimated that a 20 Gbps access router would require 1.5M
of PIT entries.1 Furthermore, work in [14] estimates that, in
an extreme worst case scenario, the PIT may reach 30-60M
entries. Taking into account that CCN names are variable-
length and, in general, much longer than host addresses, the
total memory requirements for the PIT grow significantly.

A very large PIT has grave implications for network
throughput. Since the PIT is examined for every arriving
packet, it should ideally reside in the line-cards’ on-chip
memory, which is very fast but has very limited capac-
ity [5], [6]. Initial investigations reported that a hash table-
based implementation is too big to fit inside today’s on-chip
memories [5], [14]. The fallback option is to place the PIT
in the router’s main memory which is much slower, thus

1In this study, the authors assumed that an Interest can correspond to
multiple Data packets. This radically changes the basic CCN behavior of one
Interest per Data and may heavily underestimate the amount of PIT entries.
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causing a performance degradation. Two recently proposed
PIT implementations, DiPIT [15] and Encode Name Prefix
Trie (ENPT) [13], can, under certain assumptions on the traffic
mix and average content-name length, substantially reduce the
memory-footprint of the PIT, but not enough to fit it into a line-
card’s on-chip memory. In addition, DiPIT encodes multiple
Interests in Bloom filters, thus losing the information of which
particular Interests are stored, which is crucial for dropping
stale Interests [14] and adaptive forwarding. ENPT, on the
other hand, organizes the PIT in a trie-like structure with a
linear (O(N)) complexity for insert and lookup operations
(where N is the number of components in a CCN name),
compared to the constant (O(1)) complexity of hash tables.

The CONET architecture, which is basically a stateless
variant of CCN, addressed the issue of forwarding state by
moving the forwarding information from the routers to the
packet headers [7]. In CONET, all packets carry a path
header listing a sequence of node identifiers. During Interest
propagation, routers append their identifier in the packet’s
path header. When the Interest reaches the content source, the
header is reversed and placed as a source-route in the Data
header. By removing the PIT entirely, this stateless forwarding
approach loses the advantages of CCN’s stateful forwarding.
First, support for multicast is reduced, if not totally nullified.
A router no longer has the required information to suppress
Interests and duplicate Data. Interests for the same content
are individually forwarded to the content source, which then
unicasts the corresponding Data to each requester. Second,
forwarding relies on node identifiers (e.g. IPv4 node addresses)
that were originally omitted on purpose. Bringing node iden-
tifiers back to the network architecture will eventually lead
us to the problems that CCN meant to avoid in the first
place. Third, nodes cannot drop unwanted traffic since they
no longer track which Data have been requested. And fourth,
the complete removal of forwarding state from routers does
not allow offering adaptive forwarding functionality.

III. FORWARDING STATE REDUCTION IN CCN

A. Overview

In this paper we present a forwarding scheme for CCN that
combines stateful and stateless forwarding, so as to reduce
the resource requirements of routers, without losing its advan-
tages, i.e. multicast delivery, address-less hosts, detection of
unwanted traffic and support for adaptive forwarding. Instead
of storing forwarding state per Interest in either all or none
of the routers, as in plain CCN and CONET, respectively,
we propose tracking Interests at some of the on-path routers
and using a mix of stateful (in-router) and Bloom filter-based
stateless (in-packet) forwarding [8].

During Interest propagation, instead of updating the PIT at
each router, the Interest is tracked at every d hops, where d
is a predefined system parameter, e.g. d = 3 or d = 4. We
call d the Forwarding State Reduction Factor. Intermediate
routers add reverse path information inside Interests. When
a router tracks an Interest, instead of storing the Interest’s
incoming interface, the router stores the reverse path (or tree)
gathered by the Interest. During Data forwarding, routers that

tracked a particular Interest place the source-route for the
downstream path (tree) in the Data packet and push it towards
the next stateful router(s). Between stateful points, packets are
forwarded according to the in-packet source-route.

Our solution reduces forwarding state requirements, while
preserving the desired properties of CCN’s forwarding. Specif-
ically, native multicast and host anonymity are preserved due
to the adoption of Bloom filter-based forwarding for source-
routing, while dismissal of unwanted traffic and adaptive
forwarding is still supported for the fraction of Interests that
each router is tracking. Though the latter two are supported
in a more coarse manner, our approach compares favorably
to either fully stateless forwarding solutions [7] or Interest
compression schemes that drop fine-grained forwarding infor-
mation [15]. Our forwarding scheme consists of two logical
parts: (i) updating the PIT upon the arrival of an Interest and
(ii) tracking reverse path information in Interests and using it
in Data forwarding. We elaborate on these below.

B. Interest tracking

The main idea in our approach is to track an Interest at
every d hops. We describe three Interest tracking policies that
can achieve this.

1) Probabilistic tracking: In this policy, a router decides
to track every incoming Interest with probability 1/d. For
example, when d = 4, an Interest is tracked with probability
1
4 = 0.25, thus routers track 25% of the received Interests. The
probabilistic decision alone is not sufficient for two reasons.
First, it obstructs the aggregation of Interests at common on-
path routers in multicast applications. When an Interest reaches
a router, the probability of not storing the Interest is

(
d−1
d

)
.

Considering that d ≥ 2, when a new Interest reaches a router
where an Interest for the same content has already been stored,
it is more probable that the new Interest will not be stored
there, therefore it will not be suppressed. To avoid this, upon
receiving an Interest, routers first check their PIT and proceed
with the algorithm only if no match is found. The second
inefficiency regards the probability of not tracking an Interest
at all. In a N -hop path, the probability of not storing an
Interest at any intermediate hop2 is

(
d−1
d

)N
. When d = 4 and

N = 8, the probability of not storing an Interest at any router is
0.758 ≈ 0.1, i.e. 10% of the Interests issued by that particular
application are source-routed on an end-to-end basis. As we
will discuss later in Section III-C, this has a negative impact
on the stateless forwarding part of our protocol due to false
positives in Bloom filters: when the amount of source-routing
information exceeds a limit, Bloom filter-based forwarding
degenerates and causes excessive redundant traffic [8]. We
therefore bound the number of stateless hops with the use
of a Hop Counter (HC) placed in the Interest header. HC is
increased at every hop and reset to 0 when a router decides
to store the Interest. If HC reaches d, indicating the Interest
was not stored for the previous d hops, the router definitely
stores the Interest. Figure 2 shows the detailed algorithm for
the Probabilistic tracking policy.

2We assume a unicast path, i.e. the same Interest has not previously crossed
part (or all) of the path.
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procedure PROB TRACKING(interest, incoming port)
pit entry := PIT lookup(interest)
if pit entry not null then

storeInPIT (interest, incoming port)
return ◃ Interest suppressed

end if
hc := incrementHopCounter(interest)
rand := random()
if rand ≤ (1/d) or hc = d then

storeInPIT (interest, incoming port)
resetHopCounter(interest)

end if
out port := FIB lookup(name)
forward(interest, out port)

end procedure

Fig. 2. Probabilistic Interest tracking policy.

2) Hash-based tracking: This policy tackles the rendezvous
inefficiency of Probabilistic tracking, i.e. aggregating Interests
for the same Data in common on-path routers, with the use of
a hash function. When router i receives an Interest, it performs
the following computation

ν = hash(content name+ suffixi) mod d

If ν = 0, we say that the Interest made a rendezvous at this
node and the router stores it in the PIT. We hash the content
name appended with a router-specific suffixi, in order to
produce a different ν for the same Interest at each hop. If we
did not use the suffix, hashing the content name alone would
produce the same result at all routers, thus the Interest would
either be stored in all routers (if ν = 0) or in none (if ν ̸= 0).
If the selected hash function has good uniformity properties, ν
is uniformly distributed in [0, d−1] and Interests are stored at
each router with probability 1/d, as desired. If all routers use
the same hash function (e.g. MD5) and each router uses a fixed
suffixi (e.g. its MAC address), then multiple Interests for
the same Data will deterministically rendezvous at the exact
same routers.3 Hence, routers will be able to suppress Interests
without performing a PIT lookup. The cost of this policy is the
hash computation at each router. As in Probabilistic tracking,
the issue of not storing an Interest at all remains, thus we
apply the hop counter-based upper bound here as well.

3) Hop Counter-based tracking: In this policy, routers
track Interests based on the value of the Hop Counter (HC)
inside the Interest header. HC is incremented at each hop
and when HC = d, routers store the Interest in their PIT.
Routers always perform an initial PIT lookup in order to
suppress multicast Interests regardless of the HC value, as
in Probabilistic tracking. The initial value for the HC is set
by the issuing host but instead of setting it to 0, the initial
HC is randomly selected in the range [0, d − 1] so as to
distribute forwarding state to all routers. If the initial HC was
always set to 0, routers with distance d− 1 from hosts would
be kept stateless. In the example of Figure 1, if d = 3, all
Interests issued by hosts would be tracked by R4, while R1

3Note that the suffix is not communicated, thus host anonymity is preserved.

Fig. 3. An example of Bloom filter-based forwarding. Links are annotated
with LIDs (m = 6 and k = 2). Only left-to-right LIDs are shown.

to R3 would have an empty PIT. PIT state would thus be
unevenly distributed: R4 would be a bottleneck point and R1

to R3 would not participate in (say) adaptive forwarding at
all. In contrast, with a randomly selected HC, there is a 1/d
probability for each on-path router to track the Interest.

With all policies, the reduction of forwarding state is
achieved at the cost of additional Interests in multicast ap-
plications, compared to CCN. That happens because Interests
are not necessarily aggregated at the first common router of
the multicast tree. For example, assume that U1 and U2 in
Figure 1 consume the same content. If d = 3, their Interests
will be aggregated at either R1, R2 or R3, although R1 is
the nearest common point. When Interests are aggregated at
R2, an additional Interest is transmitted, compared to CCN.
For Interests that rendezvous at R3, two additional Interests
are transmitted. This is a penalty our scheme pays in order to
reduce forwarding state in routers. The amount of additional
Interests depends on the Forwarding State Reduction Factor
d. For larger values of d, forwarding state is further reduced,
but Interests may be suppressed further away than the first
common on-path router. The overhead caused by additional
Interests is also subject to the group size and the density of
the multicast tree. When the multicast tree is sparse, Interests
are rarely aggregated anyway, thus few additional Interests can
be transmitted. Note that this penalty affects multicast delivery
only; with unicast, there is no Interest aggregation, hence there
is no such penalty. We further discuss the impact of increased
Interest transmissions in Section IV.

C. Semi-stateless data forwarding

We now describe how semi-stateless packet forwarding can
be incorporated into CCN, without sacrificing the native multi-
cast and node anonymity of CCN. In our scheme, the network
supports multicast efficiently, even though the forwarding state
may be stored in non-branching points of the multicast tree.
That is, the source-routing scheme duplicates data only at
branching points, even when the source-route is maintained
elsewhere, without resorting to multiple unicast transmissions
and without re-introducing host addresses to CCN.

In Bloom-filter based forwarding, the links of a delivery
path (or tree) are encoded in a Bloom filter which is then
placed as a source-route in the packet, hence the term in-
packet Bloom filter (iBF). To encode path links in iBFs,
links are assigned with a Link Identifier (LID). An LID
is an m-bit string with only k bits set to 1 (k << m).
The k bits are determined using k hash functions. LIDs are
unidirectional (a bi-directional link is assigned two LIDs)
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(a) Interest from U1: R1 updates the Interest iBF. R2 tracks the
Interest in its PIT with the iBF for R2 → R1 → U1. R2 resets the
Interest iBF to 0 and further forwards the Interest.

(b) Interest from U2: R1 updates the Interest iBF. R2 adds the iBF
to its existing PIT entry and suppresses the Interest. The stored iBF
contains the multicast tree to U1 and U2.

Fig. 4. Interest propagation using iBFs to track reverse paths. Only right-
to-left LIDs are shown.

and need not be unique in the network. A delivery path is
encoded in an iBF by ORing the constituent path link LIDs.
The source-route is usually constructed centrally, either by
the source node or by a separate routing module [8]. In
Figure 3, the iBF for transmitting packets from R1 to R3 is
LIDR1→R2 |LIDR2→R3 = 000111. In the forwarding plane,
routers extract the iBF from packets, examine which of their
outgoing links are part of the iBF and transmit the packet over
those links. If the expression

iBF&LIDi == LIDi

evaluates to true, then the router assumes that LIDi is part
of the Bloom filter and transmits the packet over link i. For
multicast delivery, we simply add the LIDs of all the tree
links; the forwarding logic remains the same. In Figure 3,
the iBF for multicasting packets from R1 to {R3, R4} is
LIDR1→R2 |LIDR2→R3 |LIDR2→R4 = 100111.

To integrate Bloom filter-based forwarding in CCN, we
extend Interest and Data packets to carry an iBF in their
headers. Interest packets accumulate the iBF for the traversed
(reverse) path and Data packets carry the iBF for the delivery
path (or tree). Specifically, upon receiving an Interest, routers
update the Interest’s traversed path by adding (ORing) the
outgoing LID of the packet’s incoming link. If a router decides
to store an Interest in its PIT, it also stores the iBF and then
resets the iBF in the Interest before further forwarding it.
When the respective Data packet arrives, the router acts as
a relay point by inserting the stored iBF in the Data packet
and then forwarding it based on the iBF. Figure 4(a) shows
an example where d = 2, U1 and U2 are two multicast users
and the network uses Hop Counter-based tracking. At some
point, U1 requests the packet /vid/packet/3 with initial
HC = 0. U1 creates the Interest with an empty iBF (i.e. all
bits are set to 0) and transmits the packet. R1 receives the
Interest, increases the HC and adds the LID for the reverse

direction, i.e. LIDR1→U1 , to the Interest iBF (step 1). R1

forwards the Interest to R2. Node R2 increases the HC to 2
and adds LIDR2→R1 to the Interest iBF (now containing the
path R2 → R1 → U1). Since HC = 2 (= d), R2 stores the
Interest along with the iBF in its PIT (step 2). R2 then resets
the Interest’s HC and iBF and forwards the Interest (step 3).
This continues until the Interest reaches the data source.

During Interest forwarding, if a router finds a matching PIT
entry, it adds the Interest’s iBF to the iBF already stored in
the PIT. The resulting iBF is the union of the already stored
and the additional path links, which form a multicast tree.
This is shown in Figure 4(b). U2 transmits an Interest for the
same content as U1 did, with initial HC = 0. The request
arrives at R1 which updates the Interest’s HC and iBF (step
1) and forwards the Interest to R2. At that point, R2 updates
the Interest’s iBF, adds it to the iBF already stored in the PIT
and suppresses the Interest (step 2). The PIT entry at R2 now
contains the iBF for the multicast tree R2 → R1 → {U1, U2}.

Upon the arrival of a Data packet, a router checks its PIT
and if a matching entry exists, it replaces the Data iBF with
the stored iBF and further forwards the packet. If no PIT
entry exists, the router forwards the Data packet according
to its iBF. If no LID matches the Data packet’s iBF, the router
drops the packet. Finishing the example of Figure 4, when
the Data packet /vid/packet/3 arrives at R2 , the router
replaces the Data iBF with the one stored in the PIT. The
iBF now contains LIDR2→R1 , LIDR1→U1 and LIDR1→U2 ,
therefore the packet is delivered to R1 which then duplicates
the Data packet to U1 and U2. It is important to note that
even though the iBF is stored at a non-branching router (R2),
Bloom filter-based forwarding ensures that the Data packets
are only duplicated at branching nodes (R1).

Our forwarding scheme requires slight changes in the
CCN architecture. Apart from the modified Interest and Data
handling operations, the incorporation of Bloom filter-based
stateless forwarding does not affect the architecture’s control
plane. That is, there is no need for any additional routing
information exchange. Routers only need to know their own
outgoing LIDs, which can be autonomously computed, e.g.
by Double Hashing [16] the MAC address of the network
interface during node bootstrap. There is no need to coordinate
LID assignment, as LIDs do not need to be globally unique. In
addition, source-routes are constructed in a distributed manner
and no separate centralized module is required to construct the
Bloom filters [17]. Nodes also remain anonymous, as in CCN.
Security is not downgraded, as due to the Bloom filter-based
and source-specific representation of the source-routes, it is
very difficult to perform targeted attacks to nodes. Hosts are
unaware of router LIDs and it is highly improbable that a host
can guess a valid iBF to attack a particular node [8]. Content
sources obtain valid iBFs only when Interests arrive at them,
but they have no idea where these iBFs lead and they rarely
obtain an iBF for an entire end-to-end path.4

There are three performance tradeoffs involved when in-
corporating Bloom filter-based forwarding in CCN. First, all

4The path has to be smaller than d hops (minus the initial value of HC in
Hop Counter-based tracking).
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TABLE I
GRAPH CHARACTERISTICS OF TOPOLOGIES USED IN EXPERIMENTS.

AS 1221 1755 3257 224

Nodes 104 87 161 74

Links 151 161 328 101

Diameter 8 11 10 9

Avg (Max) degree 3 (18) 4 (11) 4 (29) 3 (8)

packets (both Interests and Data) must carry iBFs, hence
bandwidth overhead is increased due to the extra field in packet
headers. Second, the PIT stores iBFs instead of interface ports.
While iBFs are typically 128-256 bits long [8], up to x ports
can be encoded with an x-bit mask, e.g. 32-bits for 32 ports;
note that a full port mask, rather than a port number, is needed
at the PIT in order to support multicasting. Hence, the actual
memory reduction of the PIT is not equivalent to the reduction
of PIT entries, e.g. a 50% reduction of the PIT entries does
not lead to a 50% reduction in the actual memory footprint.
Third, iBF-based forwarding is susceptible to false forwarding
decisions which cause redundant traffic, especially as more
LIDs are added to the iBF. The scale of this overhead depends
on the size of the multicast group and the value of d.5 We
elaborate on these tradeoffs in Section IV.

IV. EVALUATION

A. Simulation setup

We evaluated the effectiveness of our approach through sim-
ulations, using ISP topologies obtained from Rocketfuel [18]
and the Internet Topology Zoo [19]. Table I shows the graph
characteristics of the tested topologies. Due to lack of space,
we report results for topology 224, though we observed similar
behavior in all tested topologies. In each test, we considered
routers with a single link to be access routers and then
attached 500 hosts in total, uniformly distributed across access
routers. We tested our scheme with both unicast and multicast
applications. The same experiments were performed with basic
CCN, the results of which were used as a point of reference.
Each experiment was repeated 20 times, changing the random
generator seed in each repetition. In the experiments, iBFs
are 16 bytes long (m = 128 bits) and LIDs are computed
using Double Hashing [16] with k = 4. In all tests, routing
information in routers (FIBs) was pre-populated, allowing
Interests to reach content sources over the shortest paths, with
hop count as the routing metric.

Our evaluation focused on the reduction of forwarding state
in routers in terms of (a) the number of PIT entries and (b)
the actual memory consumed by the PIT. For the memory
footprint, we considered a hash table-based implementation
which is reported to be the most suitable data structure for
the PIT [14]. We assumed that memory pointers are 32 bits
and that the interface ports in basic CCN were encoded with
32-bit masks. For the size of content names, we adopted the
real-world measurements of [13] which reported two sizes:
small content names that are on average 20 bytes and large

5With unicast paths, the probability of false forwarding decisions is
negligible for the values of d considered.

content names which are on average 56 bytes. For multicast
applications, apart from the reduction of forwarding state,
we measured the bandwidth overhead due to (a) additional
Interests caused by not storing PIT entries at the first common
router on the multicast tree and (b) redundant Data caused by
false positives in the Bloom filters.

B. Unicast

We simulated unicast delivery with a file transfer applica-
tion, assuming that the majority of the requested content is
located in a few (large) content servers located in the center of
the network6 and hosts download files from these sources. For
simplicity, transfers are performed in a Stop-and-Wait fashion,
i.e. hosts transmit one Interest at a time. We ran the simulation
and took a snapshot of the network state at time t = 1 min
while all connections are active, for both basic CCN and our
scheme. The results are shown in Figure 5. We present results
for the three Interest tracking policies: PROB for Probabilistic
tracking, HASH for Hash-based tracking and HC for Hop
Counter-based tracking.

Figure 5(a) shows the average number of PIT entries
(tracked Interests) per router as a function of d, normalized
against basic CCN. On average, HC reduces the number of PIT
entries to 1/d, that is, when d = 3, routers track 1/3 = 33.3%
of the forwarded Interests, i.e. a reduction of approximately
66%. When d = 4, the fraction of tracked Interests drops to
25%, i.e. a 75% reduction. PROB and HASH perform similarly
to each other, but worse than HC, due to the upper bound
of stateless hops that we set in order to limit the amount of
path information in source-routes, which makes them maintain
state at additional routers. Figure 5(b) shows the cumulative
distribution (CDF) of the tracked Interests across routers for
d = 4. In all three tracking policies, state is distributed
evenly, avoiding state concentration points. Figure 5(c) shows
the actual memory occupied by the hash table-based PIT for
small and large content names as a function of d for HC,
the best performing tracking policy, again normalized against
basic CCN. The reduction of memory is not equivalent to the
reduction of PIT entries as, for each Interest, the PIT stores
a 16-byte iBF instead of a 4-byte (32-bit) port mask. Still,
the reduction is noticeable: when d = 3, the PIT memory
footprint is reduced to 46% (a 54% reduction) and to 39%
(a 61% reduction) of basic CCN, for small and large content
names, respectively. For d = 4, the PIT is reduced to 35% (a
65% reduction) and 30% (a 70% reduction) of basic CCN, for
small and large content names, respectively.

C. Multicast

We simulated multicast delivery with a live media streaming
application. Sources transmit packets at a constant rate and
hosts consume the live stream by proactively transmitting
Interests for subsequent streaming packets [9]–[11]. In mul-
ticast applications, group sizes usually follow a Zipf-like
distribution [20] and we adopted this in our experiments. For
the Zipf distribution, we follow the methodology of [21]: the

6Servers are attached to the router with the highest degree.
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Fig. 5. Evaluation results for unicast applications. In (a) and (c) results are normalized against basic CCN.

 0

 20

 40

 60

 80

 100

 1  2  3  4  5  6  7  8  9

P
IT

 e
n

tr
ie

s 
(%

)

d

PROB
HASH

HC

(a) Average PIT entries per router.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1  2  3  4  5  6  7  8  9

A
d

d
it

io
n

a
l 

In
te

re
st

s 
(%

)

d

PROB
HASH

HC

(b) Additional Interests transmitted.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1  2  3  4  5  6  7  8  9

A
d
d

it
io

n
al

 D
at

a 
p

ac
k

et
s 

(%
)

d

PROB
HASH

HC

(c) Additional Data transmitted.

Fig. 6. Evaluation results for multicast applications. Group sizes follow a Zipf distribution. Results are normalized against basic CCN.

size of the ith group is group size(i) = ⌊Niα + 0.5⌋. We
ran the experiments for N = 1000 multicast groups and set
α = −0.51 so that the smallest group size is 7. For each group,
we ran the streaming application using both our scheme and
basic CCN. In each experiment, we took a snapshot of the
network state at t = 5 min, when the streaming applications
have reached a steady state.

Figure 6 shows our scheme’s performance, normalized
against basic CCN. Figure 6(a) shows the average number
of PIT entries (tracked Interests) per router as a function of d.
Unlike with unicast, here the various Interest tracking policies
have more pronounced differences, with HASH being the best
performing policy. Figure 6(b) shows the fraction of additional
Interests transmitted, normalized against basic CCN. In HC,
checking the PIT at each hop, in conjunction with the random
value of the initial hop counter, ensures that Interests are
aggregated more effectively near the actual branching points
of the tree, thus significantly reducing the additional Interests
compared to the other two policies. Figure 6(c) shows the frac-
tion of redundant Data due to false positives in Bloom filters,
normalized against CCN. Since HC aggregates Interests more
effectively than the other policies, fewer links are encoded
in iBFs, resulting in less false positive forwarding decisions.
The other two policies fail to aggregate Interests early enough,
therefore too many links are stored in iBFs, thus producing
more redundant traffic. As a result, even though the HC policy
was not the best in terms of forwarding state reduction, it is
the policy that creates the least amount of additional Interests
and redundant Data. Overall, when d = 3, the HC policy

on average reduces the amount of tracked Interests to 48%
of CCN (i.e. a reduction of 52%) at the expense of 25%
additional Interests and 5% additional Data. When d = 4,
tracked Interests are reduced to 40% of CCN (i.e. a reduction
of 60%) at the expense of 35% additional Interests and 9%
additional Data.

In order to better understand the behavior of our scheme, we
then analyzed the effectiveness of the HC policy with respect
to group size, for various values of d. For this study, we
re-ran the multicast experiments with group sizes following
a Uniform distribution in order to get sufficient samples for
all group sizes: we created N = 1000 multicast groups with
sizes uniformly distributed in [5, 250]. For each group, we ran
the multicast application for HC and basic CCN and took a
snapshot of the simulation at time t = 5 min. We binned the
results for presentation purposes and show them in Figure 7.
With respect to PIT entries, Fig. 7(a) shows that HC works
best with smaller groups; as group size grows, state eventually
converges to a value depending on d. On the other hand, the
fraction of additional Interests grows with group size up to a
certain threshold, after which it starts decreasing, as shown in
Fig. 7(b). In general, since the initial HC values are selected
randomly, Interests may not be suppressed at the first common
router, as described in Section III-B. This is a minor problem
for very small groups where the multicast trees are relatively
sparse and there exist only a few aggregation points anyway.
As groups grow and the multicast tree becomes denser, the
possibility of not storing state at aggregation points increases,
and so do the additional Interests. As more users issue Interests
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Fig. 7. Evaluation results of the HC policy with respect to multicast group size. Results are normalized against basic CCN.

 0

 20

 40

 60

 80

 100

 1  2  3  4  5  6  7  8  9

P
IT

 e
n
tr

ie
s 

(%
)

d

100 groups
1000 groups
5000 groups

(a) Average PIT entries per router.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1  2  3  4  5  6  7  8  9

A
d

d
it

io
n

al
 I

n
te

re
st

s 
(%

)

d

100 groups
1000 groups
5000 groups

(b) Additional Interests transmitted.

 0

 5

 10

 15

 20

 25

 30

 1  2  3  4  5  6  7  8  9

A
d
d

it
io

n
al

 D
at

a 
p

ac
k
et

s 
(%

)

d

100 groups
1000 groups
5000 groups

(c) Additional Data transmitted.

Fig. 8. Evaluation results of the HC policy for various numbers of groups with a Zipf distribution of group sizes. Results are normalized against basic CCN.

for the same Data, the probability of aggregating an Interest
closer to the first branching router increases, therefore, once
the group size passes a threshold, the amount of additional
Interests starts decreasing. The same pattern is observed for
the redundant Data, as shown in Fig. 7(c). For very small group
sizes, the multicast trees have very few aggregation points that
could lead to redundant Data. As group size grows, larger trees
are encoded in iBFs since Interests are not suppressed at the
first branching router, increasing the number of false positives.
Beyond a group size threshold, the multicast tree has become
dense enough so that common Interests are suppressed early,
hence fewer links are encoded in the iBFs. In addition, as
group size increases, more links are added to the multicast
tree, hence fewer links can produce false positives.

Overall, our scheme is more effective for small groups: it
reduces PIT state more and it causes less bandwidth overhead.
When group sizes follow a Zipf distribution, which is the
common case, the vast majority of groups are small, thus
the protocol’s average behavior is heavily influenced by small
groups, while the impact of large groups is much lesser. Hence,
as the number of groups increases, the overall performance
converges towards that of small groups. We illustrate this
in Figure 8 which shows results from running the multicast
experiments with 100, 1000 and 5000 groups with the group
sizes following the Zipf distribution7 for the HC policy. As
the number of groups increases, the protocol’s performance
slightly improves. With 5000 multicast groups, when d = 3,
PIT entries are reduced to 45% of CCN, i.e. a reduction of
55% (Fig. 8(a)), with 23% additional Interests (Fig. 8(b)) and

7We were able to simulate up to 5000 co-existing streaming applications.
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5% additional Data (Fig. 8(c)). When d = 4, PIT entries drop
to 37% of CCN, i.e. a reduction of 63%, with 32% and 8%
of additional Interests and Data, respectively.

Regarding actual table sizes, as opposed to PIT entries,
Fig. 9 shows the size reduction of a hash table-based PIT
for the HC policy with 100, 1000 and 5000 groups (with a
Zipf distribution of group sizes) and the two content name
sizes. When applications use large content names, for 5000
multicast groups and d = 3, the memory footprint drops to
55% of CCN (a 45% reduction), while for d = 4 the PIT
occupies 45% (a 55% reduction) of the memory occupied by
CCN. For applications using large content names, for 5000
multicast groups and d = 3, the memory footprint drops to
66% of CCN (a 34% reduction), while for d = 4 the PIT
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occupies 55% (a 45% reduction) of the memory occupied by
CCN.

As already discussed, with 5000 groups whose sizes follow
a Zipf distribution, in the HC scheme 23%-32% of additional
Interests and 5%-8% of redundant Data are generated com-
pared to basic CCN, depending of the value of d (d = 3 or
d = 4). In terms of actual bandwidth, however, the more nu-
merous Interests are much smaller than Data, thus the overall
bandwidth overhead depends on the size of Interests relative to
Data. In Figure 10 we present the overall bandwidth overhead
of the HC scheme in terms of the fraction of additional bytes
transmitted compared to basic CCN. We assume large content
names (56 bytes), so with the additional CCN meta-data, an
Interest is on average 70 bytes long. We then consider two
types of Data packets: a small Data packet that carries 1500
bytes of payload, targeting a CCN deployment over Ethernet,
and a large Data packet that carries 8000 bytes of payload,
targeting a CCN deployment over either Ethernet with jumbo
frames or a UDP-based overlay. We also take into account the
extra fields required by our scheme in the Interest and Data
packet headers (iBF and HC). With 5000 groups (with sizes
following a Zipf distribution), the overhead is 9% for small
Data packets and 6% for large Data packets when d = 3, while
with d = 4 the bandwidth overhead is 13% and 9% for small
and large Data packets, respectively.

Overall, our evaluation results indicate that for multicast
applications the memory requirements of a hash table-based
PIT can be reduced to 45%-66% of basic CCN, at the cost of
a 6%-13% bandwidth overhead compared to CCN, by using
a moderate Forwarding State Reduction Factor, e.g. d = 3 or
d = 4; smaller values may not effectively reduce forwarding
state, while with larger values the bandwidth overhead begins
to overshadow the state reduction achieved.

V. CONCLUSION AND FUTURE WORK

We proposed a semi-stateless forwarding scheme for CCN
that reduces the amount of forwarding state kept in routers
by combining a mix of stateful (in-router) and Bloom filter-
based stateless (in-packet) forwarding. Our protocol maintains

the advantages of CCN’s forwarding, i.e. support for multi-
cast, enhanced security through address-less hosts, detection
of unwanted traffic and support for adaptive forwarding. In
addition, our solution requires few changes in the CCN archi-
tecture; apart from the extended Interest and Data forwarding
operations, it requires no other extensions. A simulation-
based evaluation over realistic ISP topologies showed that
forwarding state can be reduced by 54%-70% in unicast appli-
cations, without any bandwidth penalties, while in multicast
applications, forwarding state can be reduced by 34%-55% at
the expense of a 6%-13% in bandwidth overhead.

We are particularly interested in improving the scalability
of multicast in the CCN context, as our work in Networked
Music Performance (NMP) relies on achieving ultra low delay
communication between the participating musicians. While
NMP applications on the current Internet are forced to direct
all media streams to a centralized NMP server that redistributes
them to all participants via unicast, in a CCN-based future
Internet NMP participants would directly multicast media to
each other, thus minimizing end-to-end delays without incur-
ring excessive transmission costs [11]. Apart from applying
our scheme to optimize NMP applications, our future work
also involves studying adaptive scenarios where (i) routers
employ our scheme only when they approach their memory
limits and (ii) the value of d is individually selected by each
router so as to minimize its own overhead.
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