
Channel Access Competition

in Linear Multihop Device-to-Device Networks

Vaggelis G. Douros, Stavros Toumpis, George C. Polyzos

Mobile Multimedia Laboratory, Department of Informatics

Athens University of Economics and Business

Patision 76, 104 34, Athens, Greece

E-mail:{douros, toumpis, polyzos}@aueb.gr

Abstract—We study a linear multihop network that is formed
by wireless devices that can directly communicate pairwise
whenever two devices are within range of each other. This Device-
to-Device communication model is expected to play a significant
role in future 5G wireless networks due to its advantages (e.g.,
cellular offloading, increased throughput and low cost/energy
communication). In such networks, devices are typically selfish
and compete for channel access aiming at maximizing their own
throughput while at the same time avoiding packet collisions.

In this setup, we study how an efficient coexistence of these
devices may be achieved, using a game-theoretic approach. First,
we model the contention for the channel as a game and study
the structural properties of the resulting Nash Equilibria (NE).
Then, we design a distributed, round-based scheme that is
guaranteed to converge to a NE. We compare quantitatively and
qualitatively this scheme with previous work. We show that this
scheme converges faster to a NE, in a number of rounds that
is proportional to the logarithm of the number of nodes of the
network. Moreover, the convergence is monotonic, meaning that
the percentage of nodes that finalize their strategy is increasing
in each round.

Keywords—Distributed algorithms, maximal scheduling, Nash
Equilibrium.

I. INTRODUCTION

In future 5G wireless networks, devices that use the same
channel and are close to each other are expected to be able to
communicate directly, without needing to use a Base Station
or Access Point. This concept, called Device-to-Device (D2D)
communication [1], is receiving increasing attention since it
can facilitate various applications: peer-to-peer file sharing,
video dissemination, cellular offloading, etc. In such networks,
devices will be forming multihop wireless networks. Typically,
since these devices belong to different users, they will be
selfishly competing for channel access, meaning that each one
will be interested in sending its own data, without regard for
the interference it is causing to other users.

Following up on our previous work [2], we model this
scenario as a non-cooperative game, focusing on the Nash
Equilibrium (NE) concept, i.e., a state where no device has
motivation to unilaterally change its strategy. The goal of this
work is two-fold. Firstly, we are interested in studying theoret-
ically the properties of Nash Equilibria and, secondly, exploit
these properties to design a practical, efficient and distributed
scheme that converges fast to a NE. The main extensions from
[2] are the following: (i) We analyze the structural properties of

a strategy vector that is a NE. (ii) We propose a sophisticated
scheme that is guaranteed to monotonically converge to a NE
using these properties. (iii) We study this scheme under both
the unicast and the multicast communication model (in [2], we
studied only unicast). (iv) For each particular network, there
are different NE where nodes either transmit their data or wait
and receive data. We show that, under this scheme, all nodes
have a significant probability to end up at a NE as transmitters.

On the other hand, in this work, we consider a linear
multihop device-to-device network, whereas in [2] we have
studied tree topologies, which are more general. This is
due to the fact that the analysis of our scheme assuming
a tree topology is quite complex and also because the one-
dimensional model is more suitable for emphasizing the key
features of our scheme. Furthermore, there have been proposed
important real-life applications where nodes naturally form
a linear multihop network: For example, monitoring some
critical infrastructures and geographic areas by using wireless
sensor networks [3] as well as vehicle-to-vehicle networks for
road safety communications [4].

Our work is different from classic scheduling approaches
that aim at finding maximal scheduling vectors [5]. A maximal
scheduling vector corresponds to a feasible schedule such that
no more devices can be activated without violating the inter-
ference constraints. As we have shown in [2], a NE strategy
vector in the setup that we study is a maximal scheduling
vector but a maximal scheduling vector is not necessarily a
NE strategy vector. A maximal scheduling vector that is not
a NE will never be chosen by autonomous devices, since at
least one of them will be able to improve its payoff by simply
switching to another strategy. Therefore, in our setting it makes
sense to focus on NE instead of maximal scheduling vectors.

II. SYSTEM MODEL

We consider a scenario where N nodes form a linear
network {1− 2− · · · −N} and each node i can communicate
with either its left-neighboring node i − 1 (L transmission)
or its right-neighboring node i + 1 (R transmission). Time
is slotted: transmissions start only at the beginning of a slot
and last for the complete duration of the slot. Nodes always
have packets to send to their neighbors. An R transmission
is successful iff nodes i + 1 and i + 2 have chosen to wait,
whereas a L transmission is successful iff nodes i−1 and i−2
have chosen to wait. As in [2], a successful transmission offers
a payoff of 1−c, where c ∈ (0, 1), a failed transmission offers
a payoff of −c, and choosing to wait offers a zero payoff.978-1-4799-0959-9/14/$31.00 c© 2014 IEEE



Nodes exchange messages either in a 2-hop or in a 3-hop
neighborhood.

This setup can be easily modeled as a non-cooperative
game with the players being the nodes and the strategy si
of a player i being one of the following: {R,L,W}. In fact,
it is a special type of non-cooperative game, called graphical
game [6], since the payoff of a node is determined only by a
subset of the players (those that are two hops away) instead
of all the players. For this setup, we have shown in [2] that:
(i) a NE exists, (ii) each NE is Pareto optimal, (iii) the best
response dynamics scheme [6] does not always converge to a
NE and (iv) there is a naive scheme that can lead to a NE.
In this work, we will analyze the structural properties of a
strategy vector that is a NE and, based on these properties, we
propose a more sophisticated scheme that leads faster to a NE.

III. NE PROPERTIES

In this section, we state two theorems that specify useful
properties of strategy (sub)vectors at a NE. From now on, we
use the pronoun “he” when we refer to a node, in line with
the standard convention of game theory for the players.

Theorem 1: Let s = (s1, s2, . . . , sN ) be a strategy vector
that corresponds to a NE with si = R. Then:

1) If i = N −1, then the subvector (sN−1, sN ) is equal
to (R,W ).

2) If i = N−3, then the subvector (sN−3, sN−2, sN−1,
sN ) is equal to (R,W,W,L).

3) If i ≤ N−4, then the subvector (si, si+1, si+2, si+3)
is equal to (R,W,W,L) or (R,W,W,R), where, in
the second case, the R transmission of node i + 3
satisfies this theorem as well.

Proof: For each case, it is enough to show that the
following two conditions hold:

• Condition A: Nodes whose strategy appears in one of
the above subvectors do not have motivation to change
unilaterally their strategies.

• Condition B: There is no other strategy subvector that
fulfills condition A with si = R.

1) As for condition A, it is straightforward to check it.
As for condition B, the only other possible subvector
is (R,L) which does not fulfill condition A since it
leads to a collision.

2) Concerning condition A, indeed, no node can improve
his payoff by changing his strategy on his own.
Concerning condition B, if node N−2 or node N−1
chooses to transmit, condition A cannot be satisfied
since there will be a collision with the R transmission
of node N − 3 and he would be motivated to refrain
from transmitting. If node N chooses W , condition
A is not satisfied as node N − 1 has motivation to
choose R.

3) As for condition A, we have already discussed the
case (R, W, W, L). As for the case (R,W,W,R), this
subvector fulfills condition A only if the subvector
that starts with node i+3 fulfills condition A as well.
As for condition B, we have argued on why no other
subvectors may arise in the previous paragraph.

As a final comment, it is worth mentioning that if i = N − 2,
there is no NE where node i transmits R. This is due to the fact
that the subvector (sN−2, sN−1, sN ) = (R,W,W ), that is the
only subvector that corresponds to a successful R transmission,
is collision-free but cannot be part of a NE, since node N − 1
is motivated to choose R. Therefore, node i cannot choose R
at a NE.

Theorem 2: Let s = (s1, s2, . . . , sN ) be a strategy vector
that corresponds to a NE with si = L. Then:

1) If i = 2, then the subvector (s1, s2) is equal to
(W,L).

2) If i = 4, then the subvector (s1, s2, s3, s4) is equal
to (R,W,W,L).

3) If i ≥ 5, then the subvector (si−3, si−2, si−1, si) is
equal to (R,W,W,L) or (L,W,W,L), where, in the
second case, the L transmission of node i−3 satisfies
this theorem as well.

Proof: The proof is similar to the proof of Theorem 1, so
we omit it.

IV. FINDING A NE

In [2], we discuss a naive algorithm under which nodes ex-
change messages with nodes that are up to two hops away. The
idea is the following: Initially, each node chooses randomly
his strategy. If he has a successful transmission, he transmits
at the following round too. This imposes some limitations on
the strategies of some of his one-hop and two-hop neighbors.
More specifically, if a node i has a successful R transmission,
then nodes i − 1 and i − 2 (if they exist) will not be able to
have a successful R transmission. So, when they update their
strategy, they should exclude this option. Similarly, if a node
i has a successful L transmission, then nodes i+ 1 and i+ 2
(if they exist) should exclude L from further updates of their
strategies.

Each node that does not have a successful transmission
examines these limitations to decide whether he can have a
successful transmission (e.g., he may have a successful L
transmission but not a successful R transmission) or he should
wait for the next round. If so, he flips a coin and if the coin
allows it, he transmits, otherwise he stays quiet. The algorithm
ends when each node has either a successful transmission
or waits and each node that waits cannot have a successful
transmission.

In this naive scheme, a node is interested in learning
only whether he has a successful transmission or not, using
exchanges of messages with up to his two-hop neighbors. This
information is not sufficient to guarantee that a node that has a
successful transmission will not need to change his strategy at
a following iteration of the algorithm. For example, consider 3
nodes with the strategy vector (s1, s2, s3) = (R,W,W ). Node
1 will choose R in the next iteration, even if no NE with an
R transmission for node 1 can arise. This has two undesirable
effects for the nodes: It is a waste of resources and delays the
convergence to a NE.

We propose a more sophisticated scheme where nodes have
motivation to exchange messages with up to their three-hop
neighbors to alleviate the shortcomings of our algorithm in
[2]. The algorithm is presented in pseudocode. The core of



the algorithm is based on Propositions 1 and 2 that are closely
related to Theorems 1 and 2.

Proposition 1: Let s = (s1, s2, . . . , sN ) be a strategy
vector with si = R. Then:

1) If i = N − 1 and (sN−1, sN )=(R,W ), the algorithm
will end up at a NE where this equality holds.

2) If i = N − 3 and (sN−3, sN−2, sN−1, sN ) is equal
to (R,W,W,L), the algorithm will end up at a NE
where this equality holds.

3) If i ≤ N − 4 and (si, si+1, si+2, si+3)=(R,W,W,L),
the algorithm will end up at a NE where this equality
holds.

4) If i ≤ N − 4 and (si, si+1, si+2, si+3)=(R,W,W,R),
the algorithm will end up at a NE where the strategy
vector includes either this subvector or the subvector
(R,W,W,L).

Proposition 2: Let s = (s1, s2, . . . , sN ) be a strategy
vector with si = L. Then:

1) If i = 2 and (s1, s2)=(W,L), the algorithm will end
up at a NE where this equality holds.

2) If i = 4 and (s1, s2, s3, s4)=(R,W,W,L), the algorithm
will end up at a NE where this equality holds.

3) If i ≥ 5 and (si−3, si−2, si−1, si)=(R, W, W, L), the
algorithm will end up at a NE where this equality
holds.

4) If i ≥ 5 and (si−3, si−2, si−1, si)=(L, W, W, L), the
algorithm will end up at a NE where the strategy
vector includes either this subvector or the subvector
(R,W,W,L).

Due to space constraints, we omit the proof of Propositions
1 and 2. The algorithm aims at identifying strategy subvectors
that are guaranteed to be part of the eventual NE. Nodes
that belong to these subvectors do not change any more their
strategies, having completed their statuses. The rest of them
go on updating their strategies by taking into account the
limitations due to successful transmissions that we discussed in
the naive scheme. Clearly, if a node has a unique strategy left
as an option, then he completes his status as well. So, when a
node has a successful transmission, he transmits at the same
direction at the next transmission round only if his strategy is
part of a strategy subvector mentioned in either Theorems 1
or 2. Otherwise, he flips a coin to decide upon his strategy.
When all nodes complete their statuses, a NE has arisen and
the algorithm ends.

After the initial random choice of the strategies (lines 2-5),
there are two big for-loops that are executed in each transmis-
sion round. In the first for-loop (lines 7-31), the algorithm
examines cases 1-3 of Propositions 1 and 2. In the second for-
loop (lines 32-43), it examines case 4 of Propositions 1 and
2. In the last two lines, it examines whether all nodes have
completed their statuses or another round starts.

As a final comment, the algorithm uses the best response
concept: (i) when it identifies strategy subvectors that are
guaranteed to be part of a NE (i.e., cases where nodes complete
their statuses), (ii) in lines 36 and 41 of the pseudocode. In
both cases, no oscillations may arise and the adoption of the
best response scheme will definitely lead to strategies that will
be part of a NE.

Algorithm 1 Finding a NE through a distributed iterative
scheme: The Unicast Case

1: Notation: C: Completed status, P : Pending status, N :
Number of Nodes, S: Successful Transmission

2: for i = 1 → N do
3: i.status=P
4: each node i chooses randomly his strategy.
5: end for
6: for k = 1 → MAX NUMBER OF ITERATIONS do
7: for i = 1 → N do
8: If node i has chosen R or L, node i± 1 informs him

whether the transmission was successful or not. Each
node i computes his payoff.

9: if i.transmission==S and i.strategy==R then
10: if i ≤ N − 3 and (i+ 3).strategy!=W then
11: i.status=C, (i+ 1).status=C, (i+ 2).status=C
12: if (i+ 3).strategy==L then
13: (i+ 3).status=C
14: end if
15: end if
16: if i == N − 1 then
17: i.status=C, (i+ 1).status=C
18: end if
19: end if
20: if i.transmission==S and i.strategy==L then
21: if i ≥ 4 and (i − 3).strategy!=W then
22: i.status=C, (i− 1).status=C, (i− 2).status=C
23: if (i− 3).strategy==R then
24: (i− 3).status=C
25: end if
26: end if
27: if i == 2 then
28: i.status=C, (i− 1).status=C
29: end if
30: end if
31: end for
32: for i = 1 → N do
33: if i ≥ 4 and i.status==P and i.transmission==S

and i.strategy==R and (i − 3).status==C then
34: i.status=C
35: else
36: i.next strategy=L
37: end if
38: if i ≤ N − 3 and i.status==P and

i.transmission==S and i.strategy==L and
(i + 3).status==C then

39: i.status=C
40: else
41: i.next strategy=R
42: end if
43: end for
44: Nodes that have completed their statuses send a local

broadcast message to their neighbors along with their
strategy.

45: if all nodes have completed their statuses, the algorithm
ends at a NE. Else, the nodes that have incomplete
status, update randomly their strategy by taking into
account any limitations that are imposed by the strategy
of the nodes that have completed their statuses (as
discussed in the text).

46: end for
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Fig. 1: Performance evaluation for the unicast case for the sophisticated algorithm: Expected value and the Cumulative Distribution
Function (CDF) of the convergence time.

V. PERFORMANCE EVALUATION FOR

THE UNICAST CASE

We have simulated our schemes to evaluate their perfor-
mances under topologies of various sizes (from 5 nodes up to
1000 nodes). For each topology size, we have executed 10,000
simulations. In [2], we studied the efficiency of a NE in terms
of the min./max./average number of successful transmissions
at a NE. In this work, we focus on the convergence time of the
proposed schemes to lead to a NE. The first set of simulations
is used to evaluate the average number of iterations so that the
algorithm converges to a NE versus the size of the topology.
We compare the sophisticated scheme with two variations of
the naive scheme of [2]: (i) A scheme that uses an unbiased
coin when a node needs to decide whether to transmit or
not and (ii) a scheme that uses a biased coin giving higher
probability to transmit. We experimented with different values
of the probability to transmit and we present the results for 2/3,
which is a representative value for the trends that we notice.
The motivation for this biased version is that, in principle, a
node would prefer to transmit than to wait.

Fig. 2 presents the results. As expected, the number of
rounds increases with the size of the topology. The sophisti-
cated scheme presents the best performance demanding, on the
average, from 5 rounds (for 5 nodes) to 23 rounds (for 1000
nodes). However, this increase is quite slow, e.g., augmenting
the nodes from 200 to 500 demands only 3 more rounds on the
average to find a NE. This means that even for topologies that
consist of many nodes, the algorithm converges fast. Actually,
the increase is proportional to the logarithm of the number
of nodes N of the topology. Experimentally, we find that
the average number of steps for the convergence to a NE is
∼= 7.65 log10(N) (see Fig. 1a). We also note that the algorithm
converged to a NE without exceeding the maximum number
of iterations (which was set to 50) with probability > 0.999
for all studied topologies.

The unbiased version performs quite well, demanding a
small number of extra rounds with respect to the sophisticated
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Fig. 2: Comparison of the proposed algorithms. Average round
for convergence to a NE under unicast.

scheme to find a NE. The number of rounds is proportional
to the logarithm of the nodes of the topology, however the
constant multiplier is bigger than the algorithm that we already
proposed. On the other hand, the performance of the biased
version is worse and deteriorates as the number of nodes
increases. Moreover, about 5% of the simulations of big
topologies exceed the maximum number of iterations without
converging to a NE. These undesirable features of the biased
version are due to the fact that favoring nodes’ probability to
choose to transmit (even though, in principle, a node would
prefer to transmit than to wait) increases also the probability
for collisions and delays the convergence to a NE. This is the
reason why the unbiased version performs better.

Next, we examine in which round, on average, 80% of the
nodes have completed their statuses. We focus only on the
sophisticated algorithm, since the convergence to a NE for a
node that uses the naive algorithm is not monotonic, meaning
that he may change his status from complete to incomplete and
vice versa. As Fig. 1a shows, for all studied topologies that



consist of at least 20 nodes, 80% of nodes will have converged
to their final strategies in just 8 rounds. This means that, on
average, 800 out of 1000 nodes will have converged to their
final strategies in up to round #8 and only 200 of them will
go on updating their strategies in up to round #23.

To further explore that issue for the sophisticated algorithm,
we distinguish the nodes in five categories: (i) Node 1/node
N that have no left/right neighbor. (ii) Node 2/node N − 1
that have one left/right neighbor. (iii) Node 3/node N − 2
that have two left/right neighbors. (iv) Node 4/node N − 3
that have three left/right neighbors. (iv) Every other node that
has at least four left/right neighbors. We use this grouping
based on Theorems 1 and 2, as the nodes that belong to the
same category are expected to have similar probabilities to
participate in a strategy subvector that is guaranteed to be part
of a NE. This is due to the fact that this probability depends
on the number of left/right neighbors, so nodes that have the
same number of left/right neighbors (0, 1, 2, 3, 4+ neighbors
respectively) should be studied together.

Fig. 1b presents the results after 10,000 experiments on a
topology that consists of 10 nodes. The results are very similar
for any bigger topology too. The horizontal axis corresponds
to the round of the algorithm and the vertical axis to the
probability that a node of each category will have completed
his status up to that particular round. The fast convergence for
the vast majority of the nodes is verified by these results. As
we can see, at round #8, each node has a probability of more
than 0.8 to have converged to his final strategy. Moreover, it
is interesting to note that any node can complete his status up
to round #12 with probability > 0.95 and also any node can
complete his status up to round #17 with probability > 0.99.
Further analysis of this diagram leads to the conclusion that
all nodes have significant probability to end up at a NE as
transmitters, which is, in principle, desirable for them.

Finally, as the convergence to a NE for a node that uses
the naive algorithm is not monotonic, the percentage of nodes
that have completed their status in round k+1 can be smaller
than in round k. The monotonic convergence to a NE is a great
advantage of the sophisticated scheme.

VI. ON THE NE UNDER MULTICAST TRAFFIC

In this section, we study the multicast transmission scheme,
where each node aims at sending his packet to all neighbors
that are one hop away from him. Clearly, each node can
choose between two strategies: to transmit (T ) or to wait (W ).
Concerning the payoff, for each intermediate player i, there are
some differences from the unicast case due to the fact that the
transmission cost is equally divided to the number of nodes to
whom the packet is sent. Therefore, if a node waits, his payoff
is again 0; If he transmits and the transmission is successful for
both neighbors (fully-successful transmission), then his payoff
is 2(1 − c/2) = 2 − c; If one transmission is successful and
the other fails (semi-successful transmission), then his payoff
is 1 − c/2 − c/2 = 1 − c; If both transmissions fail, then his
payoff is −c/2− c/2 = −c.

Analyzing the conditions for a successful transmission and
using similar arguments with the unicast case, we find that a
strategy subvector of the form (si−2, si−1, si, si+1, si+2) =
(W,W,T,W,W ) should exist so that node i has a fully-
successful transmission. If either (si, si+1, si+2) = (T,W,W )

Algorithm 2 Finding a NE through a distributed iterative
scheme: The Multicast Case

1: Notation: C: Completed status, P : Pending status, N :
Number of Nodes, S: Successful Transmission

2: for i = 1 → N do
3: i.status=P
4: each node i chooses randomly his strategy.
5: end for
6: for k = 1 → MAX NUMBER OF ITERATIONS do
7: for i = 1 → N do
8: If node i has chosen T , nodes i ± 1 inform him

whether the transmission was successful or not. Each
node i computes his payoff.

9: if i.transmission==S then
10: if i ≤ N − 3 and (i+ 3).strategy!=W then
11: i.status=C, (i + 1).status=C, (i + 2).status=C,

(i+ 3).status=C
12: end if
13: if i == N − 1 then
14: i.status=C, (i+ 1).status=C
15: end if
16: if i ≥ 4 and (i− 3).strategy!=W then
17: i.status=C, (i − 1).status=C, (i − 2).status=C,

(i− 3).status=C
18: end if
19: if i == 2 then
20: i.status=C, (i− 1).status=C
21: end if
22: end if
23: end for
24: Nodes that have completed their statuses send a local

broadcast message to their neighbors along with their
strategy.

25: if all nodes have completed their statuses, the algorithm
ends and this strategy vector is a NE for the topology.
Else, the nodes that have incomplete status, update
randomly their strategy by taking into account any
limitations that are imposed by the strategy of the nodes
that have completed their statuses.

26: end for

or (si−2, si−1, si) = (W,W,T ) hold, then node i has a semi-
successful transmission. Cases where a node has less than
2 left/right neighbors are treated similarly with the unicast
case. At a NE, each node should either wait, or have a fully-
successful transmission, or have a semi-successful transmis-
sion as, even in that case, he has no motivation to change his
strategy to wait, as his payoff will be decreased from 1− c to
0 (note that c ∈ (0, 1)).

We then focus on how to find a NE under multicast
traffic. As the naive scheme can be applied directly without
further changes, we highlight the changes that should be
adopted for the sophisticated scheme. A strategy subvec-
tor (si, si+1, si+2, si+3) or (si−3, si−2, si−1, si) is guaranteed
to be part of a NE of the topology if it is of the form
(T,W,W, T ). This is true since these transmissions will be
(at least) semi-successful and the intermediate nodes that wait
cannot have a (semi-)successful transmission. The only differ-
ence from the unicast case is that the part of the Algorithm 1
in lines 32-43 is not needed any more, as node i ± 3 should
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Fig. 3: Performance evaluation for the multicast case: Comparison of the proposed schemes and analysis of the average
convergence time of the sophisticated scheme.

not need to examine further his strategy and (probably) adopt a
best response scheme in the next round. Corner cases with less
than 3 left/right neighbors are treated similarly with the unicast
case. So, using the above rules and making straightforward
changes to the pseudocode of the sophisticated scheme for the
unicast case, we present in Algorithm 2 a distributed iterative
scheme that converges to a NE from every initial state.

We finally evaluate the performance of the algorithms
using the same metrics with the unicast case. Again, for the
naive scheme, we present both an unbiased and a biased
version. We notice from Fig. 3a that the sophisticated scheme
converges very fast to a NE. The convergence is proportional
to k log10(N), where k is a coefficient and N is the number
of the nodes of the topology. Our simulations show that
k = 4.81 approximates closely the results from the simulations
for various sizes of the topology (Fig. 3b). The unbiased
version of the naive scheme works quite well but this is not
the case for the biased version. Our comments on Fig. 2 hold
for Fig. 3a as well. Concerning the convergence of the 80%
of the nodes of the topology to a NE under the sophisticated
scheme, this is done in up to 5.4 iterations for any type of the
topology that consists of at least 20 nodes (Fig. 3b).

VII. CONCLUSIONS

We focus on linear multihop device-to-device networks
where devices decide autonomously their strategy (either to
transmit or to wait and receive data). In such networks, we
show that the analysis of the structure of a strategy vector at
a NE is not only useful from a theoretical perspective; it can
be the key factor for a practical scheme that has appealing
properties. We propose a sophisticated scheme where devices
communicate in a 3-hop neighborhood that clearly outperforms
our naive scheme in [2] where devices exchange information
in a 2-hop neighborhood. Devices that apply the sophisticated
scheme converge to a NE in a number of rounds that is propor-
tional to the logarithm of the network size. Moreover, when

devices in the neighborhood end up in a strategy subvector
that is a local NE, it is guaranteed that this will be part of
the global NE of the network. This both reduces the waste of
resources and contributes to the faster convergence to a NE.
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