
PUBLISHED IN: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION, INTELLIGENCE, SYSTEMS AND APPLICATIONS 2014 1

Ultra Low Delay Switching for Networked Music
Performance

George Baltas and George Xylomenos
Mobile Multimedia Laboratory, Department of Informatics

Athens University of Economics and Business
Athens 10434, Greece

g@gbaltas.com, xgeorge@aueb.gr

Abstract—Low latency is essential for videoconferencing ap-
plications such as presence and collaboration between remote
participants. In modern videoconferencing systems, the Selective
Forwarding Unit (SFU) has the role of transparently duplicating
and forwarding media streams between participants, hence it
must be able to process large volumes of incoming packets at very
high rates. SFU performance is heavily affected by the network
I/O mechanisms employed to move packets from the Network
Interface Card (NIC) to user space, and then move the copies
back to the NIC. Traditional mechanisms, such as POSIX sockets,
are not designed for high performance networking and prove to
be a major bottleneck in such scenarios, by increasing packet
latency and undermining the SFU’s scalability. In this paper, we
present a novel SFU platform which was designed to handle the
ultra-low latency requirements of Networked Music Performance
(NMP) applications, that is, the collaboration of musicians in real
time. We implement a prototype SFU based on POSIX sockets
and outline its performance bottlenecks. To overcome them, we
turn to the netmap framework for fast packet I/O, which provides
direct but safe access to the NIC buffers. We argue that ultra-
low latency videoconferencing is a natural application for netmap
and thus design and implement a netmap-based SFU.

Index Terms—Networked music performance, selective for-
warding unit, delay

I. INTRODUCTION

In Networked Music Performance (NMP) musicians located
at different places perform together via network connec-
tions [1]. To achieve proper synchronization between artists,
NMP requires a very low end-to-end delay threshold, hence
NMP can be seen as videoconferencing optimized for very low
delay. In modern videoconferencing systems, remote clients
communicate with each other via real-time media packet
streams. On the sending end, each client transmits one or
more audio/video streams. Each user has a preferences profile,
which marks a subset of the available streams as interesting
to the user. On the receiving end, only streams included in
the user’s profile are received and presented. For example,
one might want to hear all participants but only watch one
of them. This translates to receiving audio streams from all
clients but a single video stream from only one client. In terms
of media quality, recent videoconferencing systems employ
layered encoding schemes where layer 0 is the base layer and
layers 1 to n are enhancement layers. Different quality layers
are transmitted independently as separate streams, hence users
can request the base layer and any number of consecutive

enhancement layers they deem sufficient in terms of quality
and acceptable in terms of bandwidth requirements.

In order to implement multiparty conferencing, a commu-
nication scheme between multiple clients is needed. The first
option to use direct communication; each outgoing stream is
sent to all other clients via multicast. This approach was found
to reduce latency, but does not scale to multiple participants
and requires network protocols that are not currently deployed
on the Internet at large [2]. A second option is for each client
to unicast each stream to each interested client; this does not
require multicast support, but it requires a lot of processing (for
replication) and bandwidth (for transmission) resources at the
client. A third option is to employ a high performance machine
as part of the videoconferencing infrastructure that handles,
among other things, client communication. This machine,
known in the literature as a Selective Forwarding Unit (SFU),
is a server that relays data between participants [3]. In this
approach, each client sends all of its streams only to the SFU,
who is responsible for handling the rest. Assuming that the
SFU is aware of client preferences, it can replicate and forward
each stream only to the clients interested in it. While this
involves stream replication at the SFU, it provides a centralized
way to deal with packet replication and forwarding.

In legacy videoconferencing systems, a Multipoint Confer-
encing Unit (MCU) is used instead of the SFU. The MCU
mixes the audio streams and transcodes the video streams
received by all clients, so as to send a combined audio and
video stream to each client. As a result, the MCU requires
very large amounts of computational power and introduces
significant delays for media processing, due to the need
to decode and re-encode all media. In contrast, the SFU
simply redirects incoming streams to clients, minimizing the
introduced delay, hence it is far more suitable for NMP.

Summarizing the above, the path of a media packet is as
follows: A media snippet is captured by the corresponding
hardware, encoded in an appropriate format and packetized.
Then, the packet is transmitted to the SFU over the network.
The SFU performs all required processing to transmit the
packet to all interested clients. The clients receiving the packet
read, decode and finally present the media snippet to the user.
The goal of the Musinet project [4] is to minimize the delays
incurred in each part of that path, from capture and encoding,
to replication, reception and playback. In this paper, we focus
on the SFU, the centralized network I/O component used to



2 PUBLISHED IN: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION, INTELLIGENCE, SYSTEMS AND APPLICATIONS 2014

receive and transmit packets between participants.
The remainder of this paper is structured as follows. In

Section II we describe a baseline SFU implementation based
on POSIX sockets, as well as a dummy client used for
SFU testing, and discuss the performance bottlenecks of this
approach. We then show in Section III how the netmap frame-
work offers direct but safe access to the network interface,
so as to bypass the bottlenecks introduced by sockets. In
Section IV we describe our netmap-based SFU implementation
and show how it avoids the limitations of the sockets-based
alternative. We conclude and discuss future work in Section V.

II. A SOCKET-BASED IMPLEMENTATION

We begin by implementing a socket-based SFU to highlight
the delay issues arising due to the particular demands of this
application. At the transport level, communication between the
clients and the SFU is achieved by sending and receiving
UDP packets using two ports: A control port is used for
signaling and a data port is used for exchanging media streams.
All incoming or outgoing packets use a simplified version
of RTP. In our implementation, each packet carries a 32 bit
Synchronization Source Identifier (SSRC) field in its header.
The SSRC uniquely identifies a stream within the session and
consists of two parts: a 28 bit client identifier (cID) and a 4
bit stream identifier (sID). This structure allows us to easily
determine the client that transmitted a given packet, a very
frequent operation both at the clients and at the SFU.

In order for a client to participate in a session, it must
first register with the SFU using the control port. During
registration, the client receives a cID from the SFU, which
can be used to generate a continuous range of SSRCs by
appending an sID field for as many audio and video streams
the client wishes to generate. When registering a client, the
SFU updates an internal routing structure and initializes the
client’s preferences. Once registration is complete, the client
can start sending control packets to update its preferences or
unregister, and data packets for relaying to the other clients.
In addition to the SSRC, all packets sent from a client include
a timestamp and a flags field showing the packet type (control
or data) and the payload type, e.g., video/base layer.

When using POSIX sockets, a packet must make a series of
steps before being sent to the NIC for transmission. Initially,
the packet payload resides within a user space buffer. For
UDP packets, a system call such as sendto() is used to
pass the payload to the host networking stack, which triggers
a rather long and expensive kernel control path. The kernel
is responsible for allocating a packet buffer, copying the
payload there from user space, routing, building the headers
and queuing the packet for transmission. The last step involves
invoking the NIC driver and building a device compatible
packet representation. On the receive side, the kernel processes
incoming packets by allocating storage buffers, queuing the
buffers for reception, and then passing the received packet
up through the networking stack. During this process the
packet is checked for errors, routed, stripped of its headers and
appended to the socket receive queue. When the user issues
a system call such as recvfrom(), the packet is removed

from the corresponding socket queue, checked for errors and
copied from kernel memory to a user-provided buffer.

A. Client application

In our platform, the client application is responsible for
transmitting the user-generated data streams and receiving
data streams from other clients. Unlike the SFU, the client
application should run on a variety of operating systems using
commodity hardware, therefore sockets are a good candidate
for the client’s network I/O. Our client implementation uses
two types of threads: an engine thread and one or more
packet generator threads. The engine thread is responsible for
sending and receiving packets to/from the SFU. In our current
implementation, received packets are logged and dropped;
eventually, a real conferencing client will be modified to
work with our SFU. The engine thread is also responsible for
handling the session management packets exchanged with the
SFU. A packet generator thread is responsible for producing
a dummy packet stream for simulation purposes. When a
packet is produced, the generator thread notifies the engine
thread accordingly. One or more generator threads can be
running in the same process and their traffic details (packets
per second, packet size, and so on) are fully customizable to
help performance testing. The client application also maintains
counters for RX/TX packets/bytes and measures I/O speed,
packet loss and average latency during the last second.

Latency, as measured by the client application, represents
the time required for a captured frame to be sent to the SFU,
from there to be forwarded to all interested clients and finally
to be delivered to the client application. Since clients cannot
be expected to use tightly synchronized clocks, especially in
wide-area networks, we modified the SFU for testing purposes
so that after forwarding a packet to all interested clients, it
echoes the packet back to its origin client. When a client
receives a packet with its own cID, it measures the difference
between the current time and the timestamp in the packet
header. Since both timestamps are produced by the same clock,
their difference represents the maximum end-to-end latency
observed for the current packet. This includes the SFU induced
latency and can therefore be used as a performance metric
for comparing different SFU implementations, assuming that
network latency between clients and the SFU is fairly static,
as in our controlled laboratory testing environment.

Kernel

SFU

Network Interface

Routing table

Receive socket Send socket

Fig. 1. A Socket-based SFU.



PUBLISHED IN: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION, INTELLIGENCE, SYSTEMS AND APPLICATIONS 2014 3

B. SFU application

The socket mechanism provides a high level of abstraction
and hides many details involved in receiving and sending
packets. Therefore, implementing a socket-based SFU is rather
straightforward. When idle, the SFU listens on the control
and data ports for incoming packets. Since packets can arrive
at both ports, we use select() to multiplex these inputs.
To assess SFU latency, we focus on how data packets are
handled. When a data packet arrives, we can read it into a
user-space buffer by calling recvfrom(); note that we can
only read one packet per call and packets are read only in
a FIFO manner. Once the packet is in the user-space buffer,
we can begin the packet forwarding process. For every client
that the packet needs to be sent to, we modify the source and
destination address of the same user-space buffer (to avoid
copying) and pass it to sendto(). Again, we can only send
one packet at a time. When the packet has been sent to all its
destinations, we can start processing the next packet. If none
is available, we return to the idle state. An overall view of the
application layer SFU is given in Fig. 1.

C. Performance bottlenecks

Even an optimized application layer SFU introduces delays
on the order of 20 ms [5]. To reduce these delays, we need to
look at all the sources of delay within the SFU. First, in order
to send or receive a single packet using the socket mechanism,
we have to make a system call; there are no system calls for
sending or receiving multiple packets. Furthermore, in order to
check whether incoming data is available or whether we can
write outgoing data, we need an additional system call, such as
select(), as there is no straightforward way to inquire how
many packets are waiting in a socket receive queue. System
calls however incur significant overhead cost and can greatly
decrease performance. Typically, a system call requires at least
a mode switch, a (partial) context switch, parameter passing
between user and kernel space and parameter validation. Our
prototype SFU requires one system call for input multiplexing,
one system call for reading a packet and, in the case of a data
packet i with di receivers, di system calls for transmission. In
total, this creates a cost of di + 2 system calls per packet.

Second, although the SFU does not process the packet
payload, the packet is extensively processed by the network-
ing stack. When forwarding packets, very little processing
is required, as each packet arrives with a header that has
most of the needed information already in place. However,
sockets do not allow applications to take advantage of existing
information, as the networking stack strips the packet of its
header before delivering it to user space applications. For each
packet sent, layer headers are built from scratch; caching tech-
niques may improve performance but still perform redundant
processing. Moreover, both receive and transmit system calls
trigger a kernel control path that includes many operations,
such as allocating and initializing resources, accessing shared
kernel data structures, and so on. In total, each incoming
packet i needs to go through the networking stack di + 1
times to be forwarded to all its destinations.

Third, when receiving or sending a packet through standard
system calls, the kernel does not pass the user space buffer
through the networking stack, but rather copies the packet
between user and kernel memory. Data copying itself does not
necessarily degrade performance, as it can be used to allow
processing multiple packets at a time. In our case however,
sockets do not allow for batch processing, therefore packet
copying is redundant, causing latency and wasting memory
bandwidth. In order to forward a packet i to di destinations,
di + 1 packet copies are needed.

III. NETWORK INTERFACES AND NETMAP

Based on the above discussion, it is clear that going through
the network protocol stack is counterproductive if we simply
want to replicate packets with minimal changes to their head-
ers. In order to bypass the protocol stack, we can access the
Network Interface Card (NIC) directly, but this requires access
to the kernel. An alternative is to use the netmap framework [6]
to directly access packets from user space applications in a safe
manner. This section explains how this works.

A. How NICs work

NICs communicate with the host computer over a bus like
PCI, transferring data using a DMA engine. Usually NICs
provide a fixed-size memory block on-chip (e.g. 64 KB), used
to allocate a receive and a transmit FIFO queue to temporarily
store incoming and outgoing packets, respectively. The capac-
ity of each queue is not static, and can be configured according
to system requirements. This packet buffering is necessary to
minimize the possibility of packet loss or corruption, as well
as to optimize performance in high-rate workloads.

On the host side, the NIC device driver maintains data
buffers in host memory. Note that the host data buffers do
not mirror the NIC receive/transmit FIFOs. The ownership of
the host buffers is divided between the driver and the device.
A receive buffer owned by the device is used to store incoming
packets. When a packet fills the buffer, the ownership is
transferred to the driver, to be eventually returned to the device
when the packet is handled. In a similar way, a transmit buffer
owned by the driver is used to store outgoing packets. When
the buffer is filled by the driver, the ownership is transferred
to the device until the data is moved to the device.

Each driver data buffer is associated with a buffer descriptor,
a data structure that contains the buffer address and various
other fields used by the NIC to store information. The de-
scriptors of receive buffers are organized as a ring (a circular
queue) residing in host memory, forming the receive descriptor
ring. The same applies for the transmit buffers, which form
a transmit descriptor ring. In order to track buffer ownership,
each ring is split using two indexes: head and tail. The device
driver owns descriptors and their corresponding buffers in the
range [head...tail - 1], while the device owns descriptors and
their corresponding buffers in the range [tail...head - 1].

The NIC uses its on-chip memory to fetch and write back
receive and transmit descriptors from the receive and transmit
descriptor ring in host memory. To manage these rings, the
NIC offers a set of programmable registers for each ring,



4 PUBLISHED IN: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION, INTELLIGENCE, SYSTEMS AND APPLICATIONS 2014

which store the host memory address of the descriptor ring,
the length of the ring, and the head and tail pointers. An on-
chip DMA engine is used to transfer data between the NIC and
host memory. On the receive path, the DMA engine transfers
packets from the receive FIFO to the host buffers and updates
the host receive descriptors. On the transmit path, the DMA
engine transfers packets from host buffers to the NIC transmit
FIFO and updates the host transmit descriptors.

B. How netmap works

Netmap is a framework that enables user space applications
to perform high-rate packet I/O and potentially handle millions
of packets per second [6]. Netmap focuses on reducing the
time required to receive or send a packet from/to the wire
and offers an efficient, well-integrated and device-independent
framework geared towards packet-intensive applications, such
as network monitors, firewalls and traffic generators. Many
similar frameworks exist, each with different characteristics.
Some run completely in the kernel, a constrained environment
for developing user space code. Others run completely in user
space, taking the role of the device driver, thus exposing
critical kernel data structures and device registers to user
space, which impairs system security and reliability. Netmap
uses a hybrid approach; the kernel space is used for providing
synchronization and the user space is employed to run the
packet processing code.

To provide low-level packet access, netmap transparently
disconnects the host networking stack from the packet dat-
apath. Clients cannot crash the kernel, because critical data
structures and device registers are not exposed to clients.
Furthermore, clients cannot inject malicious or invalid memory
buffer addresses into netmap, because all client requests are
validated by the kernel. As far as portability is concerned,
netmap does not depend on device-specific features, supports
the standard select() and poll() system calls for event
notification and requires minimal driver modifications.

Netmap offers significant speedups over traditional APIs.
To achieve this, several ideas from previous works are used.
First, netmap removes the need for managing packet buffers
by using a NIC-friendly but device-independent metadata
representation. Second, memory buffers are allocated only
once in linear memory, eliminating the need for dynamic
memory management. Third, all data-copy costs are eliminated
by allowing direct and safe access to packets.

Netmap uses three main structures: netmap_if,
netmap_ring and packet buffers. A netmap_if
represents a network interface and holds the number of
rings the interface has and an array of relative offsets to the
corresponding netmap_ring structures. A netmap_ring
structure represents a RX or TX ring that operates similarly to
the NIC rings described above. Each ring holds information
tracking its state, such as the size of the ring, the number of
available slots, the current slot and so on, and an array of ring
slots that hold packet buffer information. Each slot contains
a payload length field, a flag field and a index used to access
the corresponding packet buffer memory. Packet buffers have
a fixed size and are preallocated when the interface is put into

netmap mode, thus saving the cost of per-packet allocation.
All netmap structures are allocated in linear memory, allowing
packet forwarding between interfaces without packet copying.

Using netmap is straightforward. The netmap client first
puts the NIC in netmap mode and mapping the netmap device
memory to the process address space. The client can then start
sending or receiving packets. We can synchronize the client
and kernel rings by issuing ioctl() calls. Synchronization
between the NIC and the client is implemented by using the
standard select() and poll() system calls. When using
netmap, the client application must also handle packets coming
from or going to the host stack, otherwise other applications
cannot send or receive packets. To facilitate this, netmap
provides an additional host RX/TX ring pair. Packets sent by
other applications are passed to the host RX ring and from
there it is the netmap client’s responsibility to send them to
the network. In the same manner, incoming packets are first
passed to the netmap client, which, if needed, passes them to
the host TX ring to be received by other applications.

Kernel

SFU

Network Interface

Routing table

TX RingRX Ring

Host RX Host TX

Fig. 2. A netmap-based SFU.

IV. A NETMAP-BASED IMPLEMENTATION

While techniques to improve the performance of our pro-
totype socket-based SFU do exist, a fundamentally different
approach is needed to achieve the ultra-low latency required by
NMP. Our approach is to exploit the netmap I/O mechanism
for low-level packet access, so as to avoid the performance
bottlenecks due to per-packet overheads. For this reason,
we have implemented a prototype netmap-based SFU, which
operates as shown in Figure 2 [7]. This is bound to achieve
significant speedups, because netmap offers direct access to
low-level implementation details, creating the opportunity for
ad-hoc fine-tuning. Of course, the design and implementation
of the SFU is more complex than a standard socket-based
implementation. Furthermore, since the host networking stack
is partially disconnected, the SFU has to deal with raw packets
without kernel support and must act as a bridge between the
host networking stack and the network.

When in idle state, the SFU waits for incoming packets in
the (device) RX and host RX rings. Waiting is implemented via
the standard poll() function, which in turn calls a netmap-
specific poll implementation. Packets available in the host RX
ring, i.e. sent by other applications, are moved to the TX ring
with zero-copy forwarding by simply swapping the netmap
buffer indexes between the receive and transmit slots. Packets
arriving at the RX ring, i.e. from the network, must be handled



PUBLISHED IN: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION, INTELLIGENCE, SYSTEMS AND APPLICATIONS 2014 5

by the netmap client in the case of a packet destined for
the SFU, or delivered to the host networking stack in any
other case. In the latter case, the packet is moved to the host
TX ring, again by using zero-copy forwarding between rings.
If the packet is destined for the SFU, the packet processing
functions of the SFU are invoked. Checking for the packet (in
fact frame) destination, requires accessing the packet headers,
which roughly translates to one main memory lookup.

Because of the high-rate of incoming packets, when
poll() returns, there are usually multiple packets waiting
in the RX ring. This allows for naturally implementing batch
processing. The number of packets in the RX ring made
available to the client by a single system call (RX-batch size)
is impacted by server load; under high load there are many
packets waiting to be processed, whereas when the load is
low the RX ring is almost empty. When poll() returns, the
SFU handles all packets that are available in the RX ring in
a FIFO manner. The first step of this process is moving the
packet from the RX to the TX ring using zero-copy packet
forwarding between rings. Once the packet is moved, it needs
to be sent to di destinations. We implemented this using the
most straightforward approach; fill the next di−1 buffers with
a copy of the original packet. Using in total di slots, we can
send the packet to all its destinations. This packet handling
process is repeated for each packet in the RX-batch. When all
packets are handled, we return to the idle state.

Packets are not actually scheduled for transfer to the NIC
until the kernel netmap ring is updated via an ioctl() call.
The number of packets that are made available to the NIC
driver via a single system call (TX-batch size) is critical for
SFU performance. If the batch size is too small, the overhead
costs, such as making the system call, setting up the DMA
transfer and so on, are not amortized and become excessive.
If the batch size is too big, the large packet bursts cause too
much idle time in the memory bus and the NIC. Our current
implementation schedules packets for transmission only when
a user-specified batch size is met, or when the TX ring is full.
In the future, we will expand on this idea and use a dynamic
TX-batch size based on the current NIC workload.

After replicating an incoming packet, the UDP, TCP and
Ethernet headers need to be updated for each outgoing packet
to be properly received at the client. At the UDP level we only
need to update the destination port. At the IP level, we need
to update the source (our own) and destination address, the
latter involving one lookup. The IP checksum is also updated
incrementally. Finally, at the Ethernet level, we need to update
the source (our own) and destination address. This processing
takes place as the packet is copied into a TX buffer.

By using netmap we can reduce or even eliminate packet
copying when receiving and transmitting packets. As described
above, in our implementation we do make additional packet
copies so as to implement batch transmission processing.
However, we can avoid all packet copying, if we choose to
send packets using a TX-batch size of 1 packet, modifying the
same packet for transmission in each new round. This can be
achieved with minor modifications in our implementation. This
strategy however could cause system performance degradation
due to the elimination of batch processing. There is an

obvious tradeoff between the number of copies and the number
of transmission rounds needed to reach a given number of
recipients, which we intend to explore in the future.

V. CONCLUSION AND FUTURE WORK

We presented an SFU implemented using a socket-based
scheme and discussed the performance bottlenecks arising out
of the limitations of the socket interface. We then explained
why netmap and related frameworks are a natural application
for network I/O in SFUs and pointed out the possible per-
formance gains. We finally presented an SFU implementation
based on netmap, which avoids socket calls in order to reduce
copying and context switching. We are currently performing
detailed experiments with the two implementations in order
to measure the latency gains of the netmap-based SFU under
different assumptions. Building on this work, in the future we
will focus on the SFU internals and how they can be optimized
to further improve system performance and scalability. One
such direction is allowing packet reordering in the SFU, so
as to allow packets to be transmitted without any copying,
by reusing the same buffer for all transmissions and mixing
packets from different streams to create large TX-batches.
Another direction is dynamically setting the RX and TX batch
sizes so as to optimize delay, depending on the traffic load and
the expected delays due to copying.

ACKNOWLEDGMENT

This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds
through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: THALES.

REFERENCES

[1] A. Renaud, A. Carôt, and P. Rebelo, “Networked music performance:
State of the art,” in Proc. of the AES International Conference, 2007.

[2] C. Stais, Y. Thomas, G. Xylomenos, and C. Tsilopoulos, “Networked
music performance over information-centric networks,” in Proc. of the
IEEE IIMC, 2013.

[3] A. Eleftheriadis, R. M. Civanlar, and O. Shapiro, “Multipoint videocon-
ferencing with scalable video coding,” Journal of Shejiang University
SCIENCE A, vol. 7, pp. 696–705, 2006.

[4] The MusiNet project. [Online]. Available: http://musinet.aueb.gr/
[5] VidyoRouter datasheet. [Online]. Available: http://www.vidyo.com/wp-

content/uploads/DS-VidyoRouter.pdf
[6] L. Rizzo, “Netmap: a novel framework for fast packet I/O,” in Proc. of

the USENIX ATC, 2012.
[7] G. Xylomenos, C. Tsilopoulos, Y. Thomas, and G. C. Polyzos, “Reduced

switching delay for networked music performance,” in Packet Video
Workshop (Poster Session), 2013.


