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Abstract—We study a multihop wireless network with a tree
topology where selfish nodes compete for channel access. Firstly,
we discuss how this is relevant to future multihop networks
focusing on the concept of Device-to-Device communication. We
then model this framework as a graphical game, which is a special
case of a non-cooperative game in which the payoff of a node
is influenced only by a subset of its neighbors. We discuss two
payoff models that may be used depending on the application:
The first focuses only on transmitters and assigns by default a zero
payoff to the receivers and the second models a non-zero payoff
to both transmitters and receivers. We then present a distributed
scheme that finds an efficient Nash Equilibrium (NE) under both
payoff models. We evaluate its performance through extensive
simulations showing that the algorithm converges fast to a NE,
in a number of rounds that is proportional to the logarithm of the
number of nodes. Finally, we find that the number of successful
transmissions is almost equal at any NE. This indicates that,
under this metric, any NE is practically equally preferable.

I. INTRODUCTION

Mobile data traffic, especially mobile video traffic, has
dramatically increased in recent years with the emergence of
smart phones and tablets. A major issue in future cellular
systems is to make high bit rates available to a larger portion
of the cell, especially to users in exposed positions in between
several base stations. Also, regardless of their position, the
nodes that transmit data should share efficiently the limited
radio spectrum. When a node transmits, other nodes are
affected. Therefore, it is critical to define rules on how the
nodes should share the radio channels.

There have been various multiple access methods proposed
that allow multiple nodes to share a common channel when
they transmit. Such multiple access schemes can be classified
as either contention-free channel access (e.g., Frequency Di-
vision Multiple Access) or contention-based random access
methods (e.g., Aloha). In a multiple access scheme, nodes
can either compete or cooperate so that either an individual
or a group objective can be achieved. For this reason, the
framework of game theory has recently become a very useful
mathematical tool for modeling and analyzing multiple access
schemes in wireless networks [1].

In this paper, we study contention-based channel access in
the context of multihop wireless networks. Our work is general
enough to be applied to any type of multihop wireless network.
However, our emphasis is on future multihop networks. For
example, our work is relevant to the Device-to-Device (D2D)

communication [2], which is expected to be a key technology
in 5G systems for providing seamless, high quality wireless
access. D2D are expected to extend internet access services and
support a number of emerging applications (disaster recovery
scenarios, applications of vehicular ad hoc networks and
wireless sensor networks). The D2D concept is built around
the idea of allowing wireless devices to communicate with
one another via direct D2D links over both the licensed and
unlicensed spectrum. Therefore, traffic can be offloaded from
the core networks, better service is provided to users, and both
cellular coverage and energy efficiency are improved. Efficient
schemes for channel access are a prerequisite for a successful
deployment of D2D communication systems.

In this setting, solving the problem of multiple access
through a centralized scheme imposes a significant communi-
cation and computation overhead that increases significantly
with the network size. In contrast, efficient distributed al-
gorithms can be designed based on non-cooperative game
theory that are neither computationally expensive, nor increase
network overhead. In this case, each node chooses its strategy
selfishly, without any a priori coordination with the other
nodes, aiming at maximizing its individual payoff. We model
this multihop wireless network as a graph, focusing on tree
topologies. We assume that nodes want to transmit their
packets only to other nodes that are 1 hop away, i.e., their
immediate neighbors. Many interesting scenarios fall into this
category. For example, all the devices that a person carries with
him and his cell phone, which can be considered one layer up
when it can be connected to an access point or another type
of relay on the same channel. Moreover, the devices may be
far from each other or tune their power to connect only to the
cell phone, making direct transmission and loops impossible.
Finally, the access point might be connected to other cell
phones in a similar way, leading to a 2-level tree topology.
If the access point is not fixed, but a mobile device, it could
be part of an ad hoc network, possibly with a tree topology,
leading to deeper trees.

Our contributions are three-fold: (i) We model this setup
as a special case of a non-cooperative game called graphi-
cal game. Contrary to a typical non-cooperative game, in a
graphical game the payoff of the nodes depends only on the
strategies of (some of) their neighbors, in this case those that
are up to 2 hops away. (ii) We analyze the game under two
payoff models (with and without modeling a non-zero payoff
for the receiver) using the well-known solution concept of the
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Fig. 1: A wireless network that consists of 7 nodes. Each node
can send a packet to one of its 1 hop neighbors.

Nash Equilibrium (NE), i.e., a strategy vector where no node
has incentive in unilaterally deviating from its strategy. We
discuss that a NE exists under any tree topology. We also
show that, at a NE, an efficient scheduling of the transmissions
is achieved, as there are no collisions, i.e., a node either
transmits successfully, or stays quiet. Moreover, we explain
why finding a NE is different than simply aiming at finding a
maximal transmission schedule, which is the standard goal of
transmission scheduling algorithms [3] [4]. (iii) We present a
distributed scheme that iteratively converges to a NE. We show
that each NE is Pareto optimal. We study its efficiency, in the
sense of speed of convergence to the NE and the number of
successful transmissions at a NE through extensive simulations
in different topologies.

II. SYSTEM MODEL

We consider a single channel wireless network that consists
of N ≥ 2 wireless nodes, indexed by {1, 2, . . . , N}. These
nodes form an undirected graph G = (V,E), where a vertex
v ∈ V corresponds to a wireless node and an edge e ∈ E
corresponds to a communication link that connects a pair of
nodes (u, v). We consider tree topologies such as the one in
Fig. 1. We denote the set of nodes that are 1 hop away from
i with Di and the number of nodes of this set with |Di|.

We assume that time is divided in slots, nodes are synchro-
nized in the sense that a transmission can happen only at the
beginning of a slot, and that each packet needs exactly one
slot to be transmitted. In addition, all queues are always full.
As the proposed scheme converges fast enough, mobility does
not need to be considered in this time-scale. We consider the
unicast case, where a node i wants to send a packet to exactly
one of its neighbors. Each node i has |Di|+1 options at each
time slot: (i) To send a packet to a neighbor di ∈ Di. We
denote that option with Tdi. (ii) To not transmit a packet (i.e.,
to wait). We denote that option with W . We mention at this
point that, when i transmits to di, all other 1 hop neighbors of
i also receive the packet, but this packet is ‘noise’ for them,
as it is not intended to them.

As a collision model, we assume that a collision occurs
under the following circumstances (similar to the collision
models typically assumed in the study of slotted Aloha [5]):(i)
When a node receives packets simultaneously from at least
two nodes, in which case all such packets collide. (ii) When
node i transmits a packet to node j and node j also transmits.
In this case, the transmission of i fails.

TABLE I: Payoff Models. Tx corresponds to transmission, Rx
corresponds to reception.

Model #1 Model #2

Status Payoff Status Payoff

Successful Tx 1-c Wait and Successful Rx 1-e

Wait 0 Successful Tx 1-c

Failed Tx -c Wait and No Rx 0

Wait and Failed Rx -e

Failed Tx -c

III. GRAPHICAL GAME MODEL

To model the given graph setting as a non-cooperative
game, we need to specify 3 elements: The players of the game
and, for each player, his strategy, as well as his utility (payoff)
function. Concerning the players, these are the N nodes of the
graph that correspond to the wireless nodes. The strategy of a
player i is one of the following: Either to transmit to one of
his |Di| 1 hop neighbors, or to wait.

Concerning the payoff function of each player i, we should
take into account the collision model of Section II. We study
two payoff models that are summarized in Table I (the strate-
gies are presented in decreasing order of payoff): Under Model
#1, a receiver gets zero payoff no matter whether he receives
successfully a packet or not. If a transmission is successful,
a node receives a payoff 1 − c, where 1 corresponds to the
throughput from the transmission of the packet and c ∈ (0, 1)
is a constant that corresponds to the cost of transmission. If
a transmission collides with another transmission, the payoff
is just 0 − c = −c. If a node chooses to wait, his payoff is
0−0 = 0, as his throughput is zero and his cost of transmission
is also zero. As a general rule, a successful transmission is
preferable to waiting, which is also preferable to a failed
transmission.

Under Model #2, the receiver can get a non-zero payoff
too. We explicitly make the standard assumption that a node
that transmits cannot receive, so we examine 3 cases for a
node that waits: If he has a successful reception, he receives
a payoff 1 − e, where 1 corresponds to the net benefit from
the reception of the packet and e ∈ (0, c) is a constant that
corresponds to the cost of decoding the packet. We point out
that we assume that the decoding cost e is smaller than the cost
of transmission c. If he cannot receive successfully a packet
that is addressed to him, his payoff is 0−e = −e. If no packet
is addressed to him, his payoff is 0− 0 = 0.

Depending on the application, payoff model #1 may be
more preferable than payoff model #2 and vice versa. For
example, if nodes are also interested in forwarding the packets
that they receive, then payoff model #2 should be adopted.

For a general game with N players, in which each player
has m possible strategies, the size of a normal form repre-
sentation of the game would be O(mN ), since the payoff
of a player that chooses a particular strategy depends on his
strategy and the strategy of the remaining N−1 players. Such a
large representation would be needed if our network was fully
connected. However, in multihop topologies the payoff of a
player depends only on his strategy and the strategy of some
of his neighbors. These games are called graphical games [6]
and our model is an example of this type of game.



Fig. 2: Indicative NE for the network of Fig.1. The full arrows
indicate the active transmissions at a NE under payoff model
#1. The dashed arrows indicate the active transmissions at a
NE under payoff model #2.

To identify the subset of neighbors that influence the payoff
of a player i, we need to produce the square G2 of the graph
G, which is a graph that has the same set of nodes, but in
which nodes i and j are neighbors when their distance in the
graph G is at most 2 edges. In G2, we compute the maximal
degree d. If G is a tree and node i wants to transmit to node
j, the payoff that he will receive depends on the strategy of
j, as well as the strategy of all 1 hop neighbors of j, denoted
by |Dj |. Consequently, the payoff is a function of |Dj | + 1
nodes, i.e., the number of the 1 hop neighbors of i in G2.
Therefore, the size of a graphical form representation would
be O(m|Dmax|+1), where |Dmax| is the maximal degree. If
|Dmax| << N (which is the typical case), the size of the
graphical representation of the game is much smaller than the
one in a normal form game.

IV. NASH EQUILIBRIA

Having transformed this setup into an equivalent graphical
game, we should address the fundamental question of the
existence of a Nash Equilibrium (NE) in this game. As a
first remark, we mention that, at any NE, the corresponding
strategy vector s = (s1, s2, . . . , sN ) should be collision-free.
This is true since if a NE included collisions, then the nodes
whose transmissions collided could improve their payoffs by
simply deciding to wait. We then explain the difference of a NE
under payoff model #1 from the notion of the maximal strategy
(transmission) vector that plays a central role in transmission
scheduling [3] [4]. Using similar terminology with [7], we
call a strategy vector feasible if all nodes in the strategy
vector either wait or have a successful transmission. A strategy
vector is called a maximal strategy vector if adding an extra
transmission will result in an infeasible strategy vector. All
subsets of a maximal strategy vector are also feasible strategy
vectors.

Though a NE under payoff model #1 fulfills the def-
inition of a maximal strategy vector, a maximal strategy
vector is not necessarily a NE under payoff model #1.
To show that, consider Fig. 2. The strategy vector s =
(s1, s2, s3, s4, s5, s6, s7) = (T2,W, T7,W,W,W,W ) is a
maximal strategy vector since none of the nodes 2, 4, 5, 6
and 7 can have a successful transmission without interfering
at least one active transmission. However, it is not a NE under
payoff model #1 since node 2, being selfish, will transmit to
either node 4 or node 5.

Under payoff model #2, it is easy to check that the above

strategy vector is a NE. In general, the following properties
hold (the proof is omitted): (i) All maximal strategy vectors
are NE under payoff model #2 and (ii) Every NE under payoff
model #1 is a NE under payoff model #2.

We now argue that, in this game, there is at least one
NE, regardless of the payoff model used. Indeed, it is
straightforward to construct a NE for each possible topol-
ogy. For example, in Fig. 2 we have sketched a NE for
a tree topology of 7 nodes under both payoff models. The
corresponding strategy vector under payoff model #1 is s =
(s1, s2, s3, s4, s5, s6, s7) = (W,T4, T6,W,W,W,W ) and the
corresponding payoff vector is u = (0, 1− c, 1− c, 0, 0, 0, 0).
We can check that, after reaching this strategy vector, no
node can improve his utility on his own. The strategy vector
under payoff model #2 is s = (s1, s2, s3, s4, s5, s6, s7) =
(T2,W, T7,W,W,W,W ) and the corresponding payoff vector
is u = (1 − c, 1 − e, 1 − c, 0, 0, 0, 1 − e). We can check that,
after reaching this strategy vector, no node can improve his
utility by simply changing his strategy on his own.

Moreover, a desired property of any NE of this game is
that it is Pareto optimal. This is due to the fact that, under
both payoff models, no node can improve his payoff at a NE
without deteriorating the payoff of at least one node.

As a NE always exists, the question is how we can find it
using a distributed scheme. A standard approach to find a NE
is by applying the best response scheme [6]. In this scheme,
each node chooses the strategy that, given the strategies of
all other nodes, maximizes his payoff. Unfortunately, the best
response scheme does not necessarily converge to a NE for
this particular game as it may lead to oscillations. As a
counterexample, let us consider a topology consisting of 2
nodes: {1-2}. It is straightforward to check that, at a NE,
either node 1 will transmit to node 2 or vice versa. If both
nodes choose as their initial strategy to wait, the best response
strategy for each node is to transmit, which will lead to a
collision. Then, the best response strategy for both of them
will be to wait, afterwards the best response strategy for both
of them will be to transmit, and so on. Therefore, the algorithm
will never converge to one of the two NE of this game.

Next, we discuss a distributed iterative algorithm that aims
at finding a NE under payoff model #1. The high level
description of the algorithm is the following: Initially, each
node has |Di|+ 1 strategies, where Di is the set of his 1 hop
neighboring nodes. Each strategy is selected with a probability
equal to 1

|Di|+1
. Each strategy has the same probability since,

under our model, a node is not interested in transmitting
at a particular node, he simply wants to transmit a packet
to any of his 1 hop neighboring nodes. Nodes select their
strategies simultaneously. Then, assuming the existence of a
collision-free feedback mechanism, di informs i whether his
transmission is successful or not. Then, i computes his payoff
on this round.

Each node i that has a successful transmission to node di
transmits at the next round to the same node. This imposes
some limitations on the strategies of the 1 hop neighbors of
i and di for the next round. More specifically, (i) None of
the 1 hop neighbors of i should transmit to i in the following
round as no successful transmission can arise and (ii) None
of the 1 hop neighbors of di (except, of course, i), that are
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Fig. 3: Performance evaluation: Average number of rounds for convergence to a NE as a function of (i) parameter k and depth
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also 2 hops neighbors of i, can transmit to di in the following
round as no successful transmission can arise. The above piece
of information is passed through the exchange of local 1 hop
multicast messages that are sent by i and di correspondingly.

Each node that does not have a successful transmission
takes into account these limitations to decide his strategy in
the next round. Let Vi be the set of inactive neighboring nodes
for node i, meaning that i cannot transmit successfully to any
of them in the next round and Di−Vi be the set of active nodes.
If Di − Vi = ⊘, then node i should wait in the next round.

Else, he chooses to wait with a probability equal to
|Vi|+1

|Di|+1
and

to transmit to one of the active nodes with probability equal

to 1− |Vi|+1

|Di|+1
= |Di|−|Vi|

|Di|+1
. The motivation under this choice is

that, as a node cannot transmit to nodes in |Vi|, the probability
of nodes in Vi is transferred to the probability of waiting.
As in the initialization phase, the probability to transmit to a
particular node remains 1

|Di|+1
. The algorithm ends when each

node either has a successful transmission or waits and cannot
have a successful transmission.

Under payoff model #2, there are only two differences
in the algorithm: (i) Not only each node i that transmits
successfully but also each node di that receives successfully
will not change his strategy in the next round. This is because
a successful reception leads to the biggest payoff under this
payoff model as shown in Table 1. (ii) The algorithm ends
when each node either has a successful transmission/reception
or waits with no packet addressed to him and cannot have a
successful transmission.

Due to the fact that the stopping condition of the algorithm
corresponds to a strategy vector that is a NE, it is certain
that, if the algorithm ends at a particular round, a NE will be
reached under both payoff models. The other possibility is that
the maximum number of iterations will be reached without a
NE. However, as we show in the next section, the algorithm
converges to a NE after a very modest number of iterations.

V. PERFORMANCE EVALUATION

We have simulated the proposed scheme to evaluate its
performance when the topology is a perfect k-ary tree. Pa-
rameter k corresponds to the maximum number of 1 hop next
level neighbors that each non-leaf node has. In our simulations,
each non-leaf node has exactly k 1 hop next level neighbors.
When this condition holds, all leaf nodes are on the same
depth d and the k-ary tree is called perfect. For example, the
tree in Fig. 1 is a perfect 2-ary tree. It is easy to show that a

perfect k-ary tree of depth d has kd+1−1

k−1
nodes. We simulated

k-ary trees from few nodes up to more than 10,000 nodes and,
for each k-ary tree, we have executed 1,000 simulations. The
maximum number of rounds per simulation was set to 50 and
the algorithm found a NE in all simulations for every setup.

The first set of simulations is used to evaluate the average
number of rounds so that the algorithm converges to a NE
versus the number of nodes/parameter k and depth d. Fig. 3a
presents these results for trees of depth 2, 3, 4. We can see
that the scheme converges fast to a NE demanding at most 16
iterations. The results are similar for both payoff models. We
notice that, for a given parameter k, the number of rounds to
converge to a NE is increasing with the depth d. This is natural
since more nodes compete for spectrum access. However,
the increase is quite slow. Moreover, for a given depth, the
number of rounds slightly increases with parameter k. This is
natural, since, again, more nodes compete for spectrum access.
However, the effect of parameter k is smaller than the effect
of parameter d, implying that the depth of the tree influences
more the convergence speed of the algorithm than the density
of the nodes in a particular level. We then present the average
number of rounds to converge to a NE as a function of the
number of nodes of trees with k=2, 3 and 10. In Fig. 3b the
curves do not start/end from/to the same number of nodes,
as we study trees of depth at least 2 (trees of depth 1 are
trivial to be resolved) that contain at most ≈10,000 nodes.
The average number of rounds to converge to a NE increases
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Fig. 4: Analysis of the average/maximum/minimum number of successful transmissions at a NE as a function of the number of
nodes in a k-ary tree.

almost linearly with the logarithm of the number of nodes and
this is the reason that the convergence is very fast. This is true
for both payoff models. NE under payoff model #1 demand
margninally more rounds to converge, which is rather expected
since more strategy vectors correspond to a NE under payoff
model #2. It is interesting that trees with k = 2 need more
rounds than trees with k = 10. This is justified as follows:
Consider a tree of around 100 nodes. It can be constructed
either as a 10-ary tree of depth 2 or as a 2-ary tree of depth
7. As we saw from Fig. 3a, the effect of the depth is bigger
than the effect of the number of nodes in a particular level
and this means that, for similar number of nodes, a longer tree
demands more rounds to converge to a NE.

We then examine the average number of successful trans-
missions at a NE as a function of the number of nodes. We
present these results in log-log scale in Fig. 4a. As expected,
the number of successful transmissions increases linearly with
the number of nodes. For both payoff models, the results
almost coincide. Again, for similar number of nodes, we
notice that the number of successful transmissions is bigger
for longer trees (i.e., nodes with smaller k). In Fig. 4b, we
plot the difference: The NE with the maximum number of
successful transmissions minus the NE with the minimum
number of successful transmissions. We plot the results only
under payoff model #2, as the results from payoff model #1 are
very similar. The motivation is to examine whether there are
NE that are (non-)preferable under this metric due to the fact
that significant fewer/more transmissions take place. Indeed, as
simulations show, any NE under a k-ary tree setup is almost
equally preferable. For example, consider a 2-ary tree of depth
12 that has on average 2487 successful transmissions. The
worst NE involves 2456 successful transmissions and the best
NE involves 2519. The (plotted) difference of 63 corresponds
to 2.5% fewer successful transmissions than the best possible
case, which is insignificant.

VI. RELATED WORK

Mackenzie et al. [8] were the first to propose the modeling
of Slotted Aloha as a non-cooperative game and analyze the
NE of the game. Payoff model #1 is inspired by this work.
In [9], the authors relax the assumption that each node has
a packet to send at each time slot. Moreover, they also con-
sider a team optimization approach (though without applying
coalitional game theory). In [10], the authors use pricing
in the payoff function to motivate the nodes to cooperate.
By enforcing cooperation through pricing mechanisms, the
throughput of the centralized slotted Aloha can be achieved
in a distributed network in which selfish users access the
network attempting to maximize their own utility. However,
in contrast to our work, these approaches consider a fully
connected wireless network, where all nodes interfere with
each other and consequently only one among the N nodes
of the topology is able to transmit successfully at each slot.

In [11], the authors consider a single-cell wireless LAN
providing a general game-theoretic framework for designing
contention based medium access control protocols. Various
utility functions are proposed and conditions for the existence
and the uniqueness of a NE are derived. Simulation results
show that the framework can achieve superior performance
over the standard IEEE 802.11 Distributed Coordination Func-
tion (DCF). Again, the assumption is that every wireless node
can hear every other node in the network.

Graphical games have already been applied a few times in
wireless networks. In [12], the authors study channel selection
for cognitive radio networks. Each secondary user chooses
a channel to transmit assuming that only his neighboring
nodes that have chosen the same channel cause non-negligible
interference to him. The target is the minimization of the
total regret. The no-regret approach is used in conjunction
with other learning techniques to find a NE of the game.



In [13], the authors study the same problem using graphical
games (even though they call them ‘local interaction games’)
and propose two approaches: a) the minimization of the
number of competing neighbors (aiming at network collision
minimization) and b) an altruistic payoff that includes also
the payoff of his neighbors (aiming at network throughput
maximization). Contrary to our work, these communication
targets correspond to nodes that belong to the same operator.

There is a substantial body of work on the topic of
transmission scheduling in multihop wireless ad hoc networks.
A work close to ours is the Five-Phase Reservation Protocol
(FPRP) [3] that is used for distributed scheduling. Similar to
our approach, the scheme is based on local interactions among
the neighboring nodes that examine whether they can have
a successful transmission (and inform their neighbors when
they achieve it). However, contrary to our scheme, FPRP is
used only for multicast transmissions and the target is simply
to schedule the transmissions to find a maximal transmission
vector and not to find a NE of the game. This is not necessarily
a NE, as we already showed. A maximal transmission vector
is not always a unanimously desirable outcome. Given the fact
that nodes are selfish (this assumption holds in FPRP even if
nodes do not follow a game-theoretic approach), FPRP may
produce a strategy vector where there will be at least one node
that could have a successful transmission and he is enforced to
stay quiet. Finally, in some corner cases, the FPRP algorithm
leads to a transmission vector where a node both transmits
successfully and receives packets that cannot decode. In our
approach, this will never happen at a NE. Another distributed
scheduling algorithm that aims at eliminating collisions is
presented in [4]. Each time slot is divided in six mini-slots
and the first five of them are used by neighboring nodes that
exchange control messages aiming at reserving the channel. If
the channel is guaranteed to be idle, a transmission occurs. The
approach considers both multicast and unicast transmissions.
Simulations show that the performance of this scheme is
similar to FPRP.

VII. DISCUSSION & WORK-IN-PROGRESS

We considered a multihop wireless network with a tree
topology where selfish nodes compete for channel access and
modeled it as a graphical game with two alternative payoff
models. We presented a distributed scheme that leads to an
efficient NE and evaluated its performance by simulation. We
showed that the algorithm converges fast to a NE and, at a
NE, the number of successful transmissions is almost equal.

One future direction is to study the multicast transmission
scheme, where each node aims at sending his packet to all
neighbors that are 1 hop away from him. Clearly, each node
can choose between two strategies: To transmit (T ) or to wait
(W ). Concerning the payoff, the transmission cost will be
equally divided to the number of nodes to whom the packet is
sent.

Another direction is to study this setup under repeated
games, where a given game is played multiple times by the
same set of players. The game that is repeated is called the
stage game. Consider a linear topology that consists of 4 nodes:
{A-B-C-D}. (W,T, T,W ) is a strategy vector that corresponds
to a NE for the multicast case of this stage game under

payoff model #1. However, if there were two repetitions of the
game, nodes B and C could make an agreement to transmit in
different rounds. For example, in round 1, the strategy vector
would be (W,T,W,W ), whereas in round 2 the strategy vector
would be (W, W, T, W). Clearly, in both rounds, neither node A
nor node D has motivation to change his strategy from W. Let
us compare the payoff of nodes B and C if they simply decide
to choose the strategy of the stage game in both rounds with
the above mentioned scheme. Repeatedly applying the strategy
of the stage game leads to a payoff of 2(1 − c) = 2 − 2c.
On the other hand, the proposed scheme leads to a payoff of
2− c+ 0 = 2− c, which is clearly preferable.
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