
PUBLISHED IN: JOURNAL OF INTERNET SERVICES AND APPLICATIONS, VOL. 6, NO.1, 2015 1

Access control as a service for the Cloud
Nikos Fotiou, Apostolis Machas, George Xylomenos, George C. Polyzos

Mobile Multimedia Laboratory, Department of Informatics
School of Information Sciences and Technology
Athens University of Economics and Business

Athens 10434, Greece
fotiou@aueb.gr, a.machas@dias.aueb.gr, xgeorge@aueb.gr, polyzos@aueb.gr

Abstract—Cloud computing has become the focus of atten-
tion in the computing industry. However, security concerns
still impede the widespread adoption of this technology. Most
enterprises are particularly worried about the lack of control over
their outsourced data, since the authentication and authorization
systems of Cloud providers are generic and they cannot be easily
adapted to the requirements of each individual enterprise. An
adaptation process requires the creation of complex protocols,
often leading to security problems and “lock-in” conditions. In
this paper we present the design of a lightweight access control
solution that overcomes these problems. With our solution access
control is offered as a service by a third trusted party, the Access
Control Provider. Access control as a service enhances end-user
privacy, eliminates the need for developing complex adaptation
protocols, and offers data owners flexibility to switch among
Cloud providers, or to use multiple, different Cloud providers
concurrently. As a proof of concept, we have implemented and
incorporated our solution in the popular open-source Cloud stack
OpenStack. Moreover, we have designed and implemented a Web
application that enables the incorporation of our solution into
Google Drive.

Index Terms—Aauthorization; authentication; delegation; se-
curity; policies; IEEEkeywords

I. INTRODUCTION

Cloud computing is a technology that offers a cost-effective
way for outsourcing data storage and computation. Neverthe-
less, despite its intriguing properties, enterprises are reluctant
to fully adopt it, since they are concerned–among other things–
about losing the governance of their outsourced assets, i.e.,
losing the ability to enforce their own, enterprise-specific,
security policies. According to PwC’s Global State of Infor-
mation Security Survey 2012 [1], the largest perceived Cloud
security risk is the “uncertain ability to enforce provider secu-
rity policies,” whereas according to the survey of Subashini
and Kavitha [2] one of the biggest security challenges for
providing Cloud-based services is the “adherence of the Cloud
provider to the security policies of its clients,” as well as “the
administration of user authorization systems”. This mismatch
between provider-enterprise security policies severely impedes
Cloud adoption and further research on effective solutions
for this problem is required. Indeed, “effective models for
managing and enforcing data access policies, regardless of
whether the data is stored in the Cloud or cached locally on
client devices” was identified back in 2010 as a top research
priority, by the European Network and Information Security
Agency (ENISA) [3].

One question that may arise is how likely loss of governance
of the outsourced data is, and what is its impact. Accord-
ing to ENISA’s Cloud Computing Security Risk Assessment
report [4], the loss of governance is a risk with very high
probability and very high impact. The same report states that
two of the vulnerabilities that may expose an enterprise to
that risk are “unclear roles and responsibilities” and “poor
enforcement of role definition.” This outcome comes as no
surprise, since the organizational structure and the security
policies of an individual enterprise cannot be easily captured
by a Cloud provider. Moreover, the interoperability between
an enterprise and a Cloud provider requires the development
of complex communication protocols; this, however, increases
the chances of a security breach due to implementation errors,
according to the Cloud Security Alliance [5]. Armando et
al. [6] exploited such implementation errors in order to bypass
the SAML-based1 single sign-on system of Google apps.
Similarly, Somorovsky et al. [7] gained access to multiple
SAML-based systems by exploiting implementation bugs.
Nevertheless, even if the developed protocol is implemented
correctly, it will be Cloud provider specific, thus hindering
the migration of an enterprise to another Cloud provider; this
condition is known as lock-in, and has been identified as a
high probability risk by ENISA [4].

In this paper, we propose a novel solution that enables a
trusted entity to store enterprise-specific security policies and
take access control decisions on behalf of a Cloud provider:
the Cloud provider then has only to respect the access control
decision. This trusted entity, which is referred to as the Access
Control Provider (ACP), may as well be provided by the en-
terprise itself, for example, by leveraging its user management
system, or by a third party. Compared to existing systems, our
solution offers better end-user privacy and requires a much
simpler communication protocol.

This paper extends our previous work presented in [8], with
a more detailed system description, an additional proof of
concept implementation, more extensive overhead evaluation,
and further comparison with existing systems. The paper is
organized as follows. In Section II we discuss related work in
this area. In Section III we detail our scheme. In Section IV
we present our prototype that implements a secure private
Cloud file storage service using OpenStack, an open source

1SAML is a generic XML language used for security assessments between
different entities.

2 PUBLISHED IN: JOURNAL OF INTERNET SERVICES AND APPLICATIONS, VOL. 6, NO.1, 2015

Cloud stack, as well as a Web application that enables the
incorporation of our solution in Google Drive. In Section V
we evaluate the security properties of our solution and analyze
its performance. Finally, in Section VI we discuss further
extensions to our solution and we conclude in Section VII.

II. RELATED WORK

Single Sign-On (SSO) systems–such as Kerberos and, more
recently, OpenID 2.0 [9] and OAuth 2.0 [10]–have similar
goals with our scheme. Kerberos has been widely used for
controlling access to network resources. In a Kerberos system
a Ticket Granting Service (TGS) provides a “ticket” to an
authenticated user that enables her to use a resource. The
TGS and the resource, however, have to belong to the same
administration domain or they should be pre-configured with
a shared secret. Our system requires neither common admin-
istrative domains nor pre-shared secrets.

OpenID is an identity management system that allows
identity management delegation to a third trusted party, known
as the Identity Provider (IdP). IdPs authenticate users and
provide them with an “authentication token”, which they can
use to access a resource. OpenID has been studied in the
context of Cloud computing. Nunez et al. [11] used OpenID
in conjunction with proxy re-encryption in order to provide
Cloud based identity management services. Smilarly, Khan et
al. [12] have implemented OpenID based authentication mech-
anisms for the OpenStack platform. OpenID provides only user
authentication, therefore, in an OpenID-based access control
system, the Cloud provider is responsible for evaluating the
access control policies. Moreover, the authentication token is
unique per user, therefore user activity can be tracked. In our
system access control policies are evaluated by ACPs and not
by the Cloud providers. In addition, in our system tokens are
ephemeral, therefore they can not be used to track the long
term activity of a specific user.

OAuth 2.0 is an IETF standard for authorizing access to
resources over HTTP. OAuth 2.0 requires the resource owner
to be online during the user authorization procedure (Section
1.2 of [10]), and requires implicitly the development of a
communication protocol between the resource server and the
authorization server in order to be able to exchange an access
token whose form–as mentioned in Section 1.4 of [10]–
is not specified. This vagueness impedes implementations of
systems where the resource server and the authorization server
belong to different administrative domains. An approach for
implementing access control using OAuth 2.0 is the following:
an access control policy based on attributes that can be
provided by an authorization server (e.g., user age, as provided
by a social network) is defined and stored in the Cloud, the
Cloud provider accesses the required attributes using OAuth
2.0 and uses them to evaluate the access control policy. In this
scenario, the Cloud provider not only learns some information
about the user (in this example his age), but it is also able to
interpret them. In our system, Cloud providers neither learn
anything about users nor do they have to understand any
enterprise-specific semantics.

Policy Based Admission Control [13] is a framework that
allows a Policy Enforcement Point (PEP) to delegate access

control policy decisions to a Policy Decision Point (PDP).
Each Cloud provider can operate a PEP, whereas PDPs can be
implemented by third trusted parties, or even the enterprises
themselves. A PEP is responsible for collecting all the infor-
mation required by a PDP, which includes information about
the user that requests access. Moreover, a PEP and a PDP
should agree on a, usually complex, communication protocol
(e.g., COPS [14]). With our solution, Cloud providers are
completely oblivious about access control policies. Moreover,
Cloud providers neither collect nor learn any information about
users. Finally, our communication protocol is much simpler,
therefore less prone to implementation errors.

The Security Assertion Markup Language (SAML) is an
XML-based security assertion language [15], used for ex-
changing authentication and authorization statements about
subjects. Being a language and not a system, SAML is
orthogonal to our work. As a matter of fact, messages in our
scheme can be exchanged via SAML, using the Authentication
Request Protocol (Section 3.4 of [15]).

III. SYSTEM DESIGN

A. Overview

Our scheme is composed of the following entities: the data
owner (owner), the data consumer (consumer), the Cloud
provider (CP), and the access control provider (ACP). The
goal of an owner is to store some data in a CP and allow
authorized consumers to perform operations over this data.
Each operation is protected by an access control policy. An
access control policy is stored in an ACP and maps the identity
of a consumer to a boolean output (true, false). When the
output of an access control policy is true, the consumer that
provided the identification data is considered authorized.

In our scheme, the following trust relationships are consid-
ered: owners trust ACPs to authorize consumers, and owners
and consumers trust CPs to respect the decisions of ACPs. The
first type of trust relationship can be trivially established if the
ACP is implemented by the owner (e.g., the ACP leverages
the enterprise’s user management system). The second type
of trust relationship is a relaxed form of the trust relationship
that currently exists between an owner and a Cloud provider:
in a contemporary Cloud system where access control is
implemented in the Cloud, an owner trusts a Cloud provider to
(i) securely store some enterprise-specific security policies (ii)
to use these policies correctly, i.e., understand their semantics,
and (iii) to enforce the outcome of the access control decision.

As illustrated in Figure 1 a typical transaction in our system
takes place as follows. Initially, an owner stores an access
control policy in an ACP (step 1) and obtains a URI for that
policy (step 2). As a next step, she implements an operation
over some data in a CP and stores the URI of the policy
that protects this operation (step 3). When a consumer tries to
perform a protected operation for the first time (step 4), she
receives in response the URI of the access control policy that
protects the operation and a unique token (step 5). Then, the
consumer authenticates herself to a suitable ACP by providing
some form of identification data and requests authorization for
the access control policy specified in the obtained URI (step

PUBLISHED IN: JOURNAL OF INTERNET SERVICES AND APPLICATIONS, VOL. 6, NO. 1, 2015 3

Data Owner
Consumer

Access Control Provider

Cloud Provider

Fig. 1. Scheme overview.

6). If the consumer “satisfies” the access control policy, the
ACP signs the token and sends it back to the consumer (step
7). The consumer repeats her request to the CP including this
time the signed token (step 8). The CP checks the validity
of the token and if the token is valid it executes the desired
operation and returns its output (step 9).

B. Goals

Our goal is to build a system in which the following
properties hold:

• The system is secure: Provided that all system entities
respect the trust relationships described previously, it
shall not be possible for an unauthorized user to perform
a protected operation.

• Consumer privacy is preserved: A CP shall gain minimal
information about the identity of a consumer. Ideally it
will only learn that a consumer can be authorized by a
specific ACP. Moreover an ACP should not be able to tell
the operation a consumer wants to perform or the data
she accesses.

• Data can be easily migrated among different Cloud
providers: The only entities that should be aware of an
access control policy and its implementation details are
the ACP and the owner. CPs shall be oblivious about the
access control policy implementation details. Therefore,
if two CPs implement our solution, moving data from one

CP to another shall be almost as trivial as copy-pasting
it.

• An access control policy does not reveal anything about
the data and the operations it protects: Access control
policies should be decoupled from the data and the
operations they protect. An access control policy should
be defined taking into account solely consumer attributes.

• Access control policies are re-usable: An access control
policy should not be bound to a particular operation. It
should be possible to protect many and diverse data items,
stored in multiple CPs.

• An access control policy can be easily modified: The
modification of an access control policy shall not involve
CPs: the only entity involved in the modification of an
access control policy should be the ACP where the policy
is stored.

C. Detailed system description

We now detail our system design (Figure 2). We have made
the following assumptions: (i) ACPs and CPs have a public-
private key pair, (ii) ACP’s and CP’s public keys are known
to the consumers and (iii) all messages are exchanged over a
secure channel. Throughout this section the notation of Table I
is used.

Our system consists of the following procedures:
Access control policy creation and data storage: With this

procedure an owner creates and stores an access control policy

4 PUBLISHED IN: JOURNAL OF INTERNET SERVICES AND APPLICATIONS, VOL. 6, NO.1, 2015

Consumer

Cloud Provider ACP

Access Control Policy

URIap

Data, URIap

Operation

URIap, Token

Identification Data, PubCP, URIap,Token

Token, Lifetime, PubCP, URIap, SignACP(Token, Lifetime, PubCP, URIap)

Operation, Token, Lifetime,

SignACP(Token, Lifetime, PubCP, URIap)

Reponse

Data Owner

Access control policy

creation and data storage

Unauthorized request

Consumer authentication and

authorization request

Authorized request

Fig. 2. System procedures.

TABLE I
NOTATION.

PubCP The public key of a CP
PubACP The public key of an ACP
URIap The URI of an access control pol-

icy
SignACP (Y) The digital signature of plaintext Y

generated using the private key of
an ACP

in an ACP. The ACP in return provides a URIap. For each
protected operation implemented in a CP, the owner defines
the URIap of the policy that protects it and the PubACP of the
ACP where the policy is stored. This information is maintained
in the CP’s Access Table that contains tuples of the form:

[operation, URIap, PubACP]

A URIap is re-usable, i.e., it can be used for protecting
multiple operations stored in various CPs. The mechanisms for
creating an access control policy and for updating an Access
Table are ACP specific and CP specific, respectively.

Unauthorized request: This procedure is executed by a
consumer in order to perform an operation for the first time.

The consumer sends an operation request message to the
CP. Upon receiving the request the CP creates a unique
token (i.e., an adequately large random number) and sends it
back to the consumer, along with the corresponding URIap.
Therefore, the following exchange of messages takes place:

(1) : Consumer → CP : operation request
(2) : CP → Consumer : URIap, T oken

In order to keep track of the generated tokens, a CP
maintains a Token Table that contains entries of the form:

[Token, authenticated, expires, URIap]

When a new token is generated, a new entry is added to this
table. The value of the authenticated field of this entry is set
to false and the value of the expires field to the generation
time plus a very small amount of time, sufficient to obtain an
authorization.

Consumer authentication and authorization request:
This procedure is executed by a consumer upon receiving a
response to an unauthorized request. Firstly, the consumer
sends her identification data, PubCP , URIap and the token

PUBLISHED IN: JOURNAL OF INTERNET SERVICES AND APPLICATIONS, VOL. 6, NO. 1, 2015 5

to an ACP responsible for evaluating the access control
policy identified by URIap. If the consumer satisfies URIap,
the ACP creates an authorization message that contains the
token, the amount of time that the token should be valid (i.e.,
its lifetime), URIap, and PubCP . Then it signs this message
and sends it back to the consumer. Therefore, the following
messages are exchanged:

(3) : Consumer → ACP : ID, PubCP , URIap, T oken
(4) : ACP → Consumer : auth, SignACP (auth)

where:
auth = Token, Lifetime, URIap, PubCP

Authorized request: This procedure is executed by an
ACP authorized consumer in order to perform an operation.
The consumer sends a message that includes the operation
request, the token, the token’s lifetime and the signature of
the authorization message (i.e., message (4)). Therefore the
following message is sent:

(5) : Consumer → CP : operation request,
Token, Lifetime, SignACP (Auth)

Upon receiving this message, a CP should decide if the
consumer is allowed to perform the requested operation.
Therefore, it executes the following algorithm. (Figure 3):

1) Retrieve the entry of the Token Table that contains the
token and check if the token has expired. If it has
expired, return an error

2) If the authenticated field of the corresponding record
in the Token Table is false then

a) Retrieve the PubACP that corresponds to the op-
eration from the Access Table

b) Retrieve the URIap that corresponds to the token
from the Token Table

c) Reconstruct the authorization message
d) Verify SignACP (auth), using PubACP

e) If the signature verification succeeds, update the
Token Table entry as follows: set the expires field
equal to the LifeT ime field of the authorization
message and set the authenticated field to true.
Proceed to Step 3a below.

f) If the signature verification fails, return an error

3) If the authenticated field of the corresponding record
in the Token Table is true then

a) Find the URIap that corresponds to the token from
the Token Table

b) Find the URIap of the requested operation from
the Access Table

c) Check if the retrieved values match. If they match
return, else return an error

If this procedure is successful then any subsequent authorized
request may include only the token. Moreover, the same
token can be used multiple times, even for invoking different
operations protected by the same URIap.

Operation request

Token

Table

Has token

expired?

entry
ErrorTrue

Is token

Authenticated?

token

False

Verify

SingACP(auth)

True

Update Token Table

False

False

Tables contain

the same URIap?

Access

Table

operation

Error
False

True

True

Success

 entry

entry

entry

Fig. 3. Authorized request decision process.

D. Use case

Let us now illustrate our scheme through a use case.
Enterprise A has outsourced sales records storage and analysis
to Cloud provider CPA. The operations implemented in CPA

are: update sales records, calculate statistics, and view statis-
tics. Enterprise A has the following access control policies:

• Policy 1: All sales department employees can update sales
records

• Policy 2: Only the sales department director can calculate
statistics

• Policy 3: All shareholders can view the statistics
Enterprise A implements the above access control poli-

cies in an ACP owned by itself. The public key of this
ACP is denoted by PubACP . For each policy the ACP
generates a URI, i.e., entA.com/Policy1, entA.com/Policy2 and
entA.com/Policy3. CPA’s Access Table is updated with the
following entries:

TABLE II
CPA ACCESS TABLE NEW ENTRIES.

Operation URIap ACP public key
Update records entA.com/Policy1 PubACP

Calculate statistics entA.com/Policy2 PubACP

View statistics entA.com/Policy3 PubACP

The sales department director issues an unauthorized request
for the calculate statistics operation. CPA generates a token,
namely Token1, and responds by sending the following mes-
sage (entA.com/Policy2, Token1). CP’s Token Table is then
updated with the following entry:

As a next step, the sales department director authenti-
cates himself to the ACP, which responds with the follow-

6 PUBLISHED IN: JOURNAL OF INTERNET SERVICES AND APPLICATIONS, VOL. 6, NO.1, 2015

TABLE III
CPA TOKEN TABLE NEW ENTRIES.

Token authenticated expires URIap
Token1 false timestamp1 entA.com/Policy2

ing, digitally signed, authorization message: (Token1, times-
tamp2, entA.com/Policy2, PubCPA

). Then, the sales depart-
ment director issues the following authorized request: (“calcu-
late statistics”, Token1, timestamp2, SignACP (auth)). CPA

checks if Token1 has expired. Then, it reconstructs the
authorization message by retrieving the URIap associated with
the calculate statistics operation (i.e., entA.com/Policy2) from
the Access Table and verifies SignACP (auth) using PubACP

(also found in the Access Table). Finally, CPA checks if the
URIap found in the Access Table matches the URIap included
in the entry for Token1 in the Token Table. If all these steps
are successful, CPA executes the calculate statistics operation
and modifies the entry for Token1 in the Token Table as
follows:

TABLE IV
CPA TOKEN TABLE MODIFIED ENTRY.

Token authenticated expires URIap
Token1 true timestamp2 entA.com/Policy2

Since Token1 is now marked as authenticated, the sales
department director can use it in all subsequent requests,
until it expires. Moreover, as long as Token1 remains valid,
SignACP (auth) does not have to be included in subsequent
requests.

E. The “level” extension

In the above use case, it can be observed that if the sales
department director wishes to invoke the update records oper-
ation, he has to re-authenticate himself, since this operation is
protected by a different URIap. The level extension mitigates
this shortcoming by adding a new field to an Access Table: the
consumer level. The consumer level is a number that denotes
the minimum level that a consumer should have in order to
invoke an operation. Using this extension, the Access Table of
the Cloud provider considered in the use case of Section III-D
can be modified as follows:

TABLE V
CPA ACCESS TABLE USING LEVEL EXTENSION. THE ACP PUBLIC KEY

COLUMN IS NOT SHOWN.

Operation URIap level
Update records entA.com/Policy2 100

Calculate statistics entA.com/Policy2 200
View statistics entA.com/Policy3 100

With this extension, an ACP has to include the consumer
level in the authorization messages. Moreover, a CP now takes
part in the access control decision, since it has to check if the
level included in the authorization message is greater or equal
to the level included in the Access Table. Finally, if the level
extension is used, Token Tables should, additionally, include
the level that corresponds to a token.

Suppose that the level of the sales department director
in the previous use case is 200. Then, he would be able
to successfully invoke the update records operation, using
Token1, without re-authenticating himself.

IV. IMPLEMENTATION

As a proof of concept we implemented a secure file stor-
age service using a popular open source Cloud stack, the
OpenStack2, as well as a Web application that allows the
incorporation of our solution in Google Drive3. The ACP
and the consumer software used in both implementations are
the same. Our implementation supports the level extension.
As a public-key encryption system we use RSA. Public keys
are encoded in JSON format using the keyCzar4 python
library. The keyCzar library is also used for generating digital
signatures.

A. ACP and consumer software

The ACP of our proof of concept is implemented as a
PHP application hosted in an Apache web server. An SQLite
database is used for storing username-password pairs, as
well as username to URIap-level mappings. Usernames are
unique and a username can be mapped to many URIap-
level pairs (e.g., Table 6). The consumer software implements
the authentication and authorization request, by encoding the
username, the password and the request parameters in a JSON
object and by POSTing this object to a particular URL, using
HTTPS. The response to this request is again encoded in a
JSON object. The consumer software has been pre-configured
with the public keys of the CP and the ACP components

TABLE VI
AN INSTANCE OF THE USER MANAGEMENTS SYSTEM.

Username Password
fotiou 12345

machas 12345
polyzos 12345

xylomenos 12345
Username URIap level

fotiou mmlab/Policy1 100
fotiou mmlab/Policy2 200

machas mmlab/Policy1 200
machas mmlab/Policy3 300
polyzos mmlab/Policy3 100
polyzos mmlab/Policy4 200

xylomenos mmlab/Policy3 100
xylomenos mmlab/Policy4 200

B. OpenStack-based implementation

For our OpenStack-based CP (Figure 4), we leveraged the
functionality of the OpenStack component Swift, which is
used for building object storage systems. A Swift-based object
storage system is composed of two networks: the internal
(private) network that consists of storage nodes, and the
external (public) network that consists of a proxy server and

2http://www.openstack.org/
3https://drive.google.com/
4https://code.google.com/p/keyczar/

PUBLISHED IN: JOURNAL OF INTERNET SERVICES AND APPLICATIONS, VOL. 6, NO. 1, 2015 7

Proxy

Server

Account

Container 1 Container 2

Object 1 Object 2

Add-on

Token

gen.

SQLite

Access

Table

Token

Table

Storage Node

HTTPS Request

CP part of our

implementation

External network

Internal network

Fig. 4. OpenStack-based implementation.

(optionally) an authentication server. The proxy server accepts
HTTP(S) requests and processes them using a Web Server
Gateway Interface. The parameters used in each request are
encoded in HTTP headers. Each request is pipelined through
a number of add-ons, each of which may transform it, forward
it, or respond on behalf of the system to the user.

Objects stored in a Swift-based system are organized in a
three level hierarchy. The topmost level of this hierarchy is
the accounts level, followed by the containers level (second
level) and the objects level (third level). The accounts level
contains user accounts. Each user account is associated with
many containers from the containers level. A container is
used for organizing objects, therefore a container is associated
with many objects from the objects level. An object may
be a file or a folder (that contains other objects). Every
object within a container is identified by a container-unique
name. Each request for an operation over an object contains
a URI that denotes the account, the container and the name
of the object in question, i.e., it is of the form “https://CP
HostName/account name/container name/object name”.

We implemented our system as a Swift add-on added in the
pipeline of the add-ons that process incoming requests. Our
implementation allows file storage and retrieval, as well as
the following operations over the stored files: organizing files
in containers, listing the files of a container, copying a file,
moving a file and deleting a file. Token and Access Tables are
implemented as SQLite tables. An owner hard codes in the Ac-
cess Table records of the form: [path,URIap,level,PubACP].
A path may be account-wide, container-wide, or object-wide.

Initially, the consumer software sends an unauthorized re-
quest over HTTPS. The desired operation is specified in a
HTTP header and the URL of the request denotes the object
(or the container, or the account) that will be used as input
to the operation. When an unauthorized request is pipelined
through our add-on, the add-on checks if a URIap exists
in the Access Table for the URL specified in the request:
if such a URIap exists, the add-on generates a new token,
using the token generation mechanism provided by Swift, and
creates a response (as described in Section III-C); each part of
the response is encoded in a HTTP header. The add-on then
creates a new entry in the Token Table. The initial expiration

Secret account

Object 1 Object 2

Web App

Datastore

Access

Table

Token

Table

HTTPS Request

Google App

Engine

Google Drive

Google Drive API

Fig. 5. Google Drive-based Web application.

time of a token is set equal to the current time plus 10 sec.
Upon receiving the response, the consumer software initiates
the authentication and the authorization process described in
Section IV-A. As a next step, the consumer software sends an
authorized request, encoding all request parameters in HTTP
headers. The add-on executes the authorized request decision
algorithm and produces the appropriate output.

C. Google Drive-based Web application

Google Drive is a popular Cloud based storage service.
Google Drive provides a rich API that can be used for building
applications that interact with the service over HTTPS. In our
implementation we used this API and built a Web application
that extends (part of) the Google Drive API, thus providing
support for our protocol (Figure 5). Our application is built
using the Google App Engine5 and the Python language.
Access Tables and Token Tables have been implemented using
the Google App Engine Datastore. Currently, our application
supports operations for uploading and downloading files. Each
operation can be invoked by making an HTTPS call to the
operation-specific URL. All call parameters are encoded in
HTTP headers.

Our application has been configured with a Google Drive
account which is kept secret. Instead of interacting with the
“drive” directly, the consumer software interacts with the
application, which acts as a middleware, ensuring that only an
authorized consumer can perform the implemented operations.
The consumer learns no information about the Google Drive
account.

The owner hard codes in the web application a URIap that
controls who can invoke the upload file operation. A consumer
initially performs an unauthorized request for uploading a file
(the file is not included in this request). The web application
generates a token using the UUID Python function, it responds
to the consumer by encoding the token in an HTTP header
and updates the Token Table. The consumer software initiates
the authentication and the authorization process described
in Section IV-A. Then, it issues an authorized request, by

5https://developers.google.com/appengine/

8 PUBLISHED IN: JOURNAL OF INTERNET SERVICES AND APPLICATIONS, VOL. 6, NO.1, 2015

encoding the request parameters in HTTP headers and the
file as raw POST data. The web application executes the
authorized request decision algorithm and if the consumer is
allowed to upload the file, it stores it in the Google Drive.
When uploading files, consumers are able to specify a URIap
that controls who can invoke the download file operation for
that specific file.

V. EVALUATION

A. Security evaluation

It can be easily observed that our system enhances con-
sumer privacy. The only information that a CP learns about a
consumer is his trust relationship with a particular ACP; if the
level extension is used, the CP also learns his level. Of course,
the latter can be encoded in a way that reveals no meaningful
information. Any other sensitive information is stored in a
(trusted) ACP. Moreover, regardless of the lifetime of a token,
a consumer may drop it and request a new one in order to avoid
CP profiling. Finally, an ACP gains no information about the
operations a consumer invokes and the data he accesses: the
only information that an ACP learns is the public key of the
CP with which the consumer interacts.

Another security feature of our system is that access control
policies can be easily modified. Access control policies are
stored in a single point (i.e., the ACP) and all CPs have
pointers to policies. Therefore, the modification of an access
control policy does not involve communication with any CP.
When an access control policy is modified, all new consumers
will be authorized using the new policy, whereas all already
authorized consumers will be re-authorized with the new
policy when their token expires.

We now proceed to the security analysis of our system
using the threat model proposed by Wang at al. [16], adapted
to our system. In our analysis we consider three different
attack scenarios. In all scenarios we assume that messages
are exchanged over a secure channel and communication
endpoints cannot lie about their identity. We do not consider
the case in which a malicious entity acts as an ACP and steals
the credentials of a consumer, since this attack is out of the
scope of our system.

1) Malicious entity acting as a consumer: In this at-
tack scenario a malicious entity, ConM , tries to perform
an operation protected by an access control policy URIleg
stored in ACPA. ConM can only be authorized for the
access control policy URImal, also stored in ACPA. ConM ’s
goal is to obtain an authorization message of the form
(Token, Level, Lifetime,URIleg, PubCP). By following
our protocol ConM will receive an authorization message of
the form (Token, Level, Lifetime,URImal,
PubCP). If ConM includes the signature of this message
in his authenticated request, the authorized request decision
algorithm will result in an error, since the CP will generate
a different authorization message for which this signature is
not valid (Figure 6). The only way for ConM to obtain a
valid signature is to include URIleg in the authentication and
authorization request, i.e., ConM should send to ACPA an
authentication and authorization request of the following form:

ConM

Cloud Provider ACPA

[…]

URIleg, Token

Identification Data, PubCP, URImal,Token

Token, Lifetime, PubCP, URImal, SignA(Token, Lifetime, PubCP, URImal)

Generated authorization message:

(Token, Lifetime, PubCP, URIleg)

Signature verification

failed

Operation, Token, Lifetime,

SignA(Token, Lifetime, PubCP, URImal)

Fig. 6. Malicious entity acting as a consumer.

ConL

CPmal CPA

[…]

URIA, TokenA

Operation

URIA, TokenA

[…]

Operation, TokenA , Lifetime,

SignACP(TokenA, Lifetime, PubCPmal, URIA)

Operation, TokenA , Lifetime,

SignACP(TokenA, Lifetime, PubCPmal, URIA)

Generated authorization message:

(TokenA, Lifetime, PubCPA, URIA)

Signature verification

failed

Fig. 7. Malicious entity acting as a CP.

(ID, PubCP , URIleg, T oken). However, since ConM does
not abide by URIleg this message will result in an error.

2) Malicious entity acting as a CP: In this attack scenario
the attacker’s goal is to perform an operation in CPA, pro-
tected by an access control policy URIA stored in ACPA.
The attacker is able to pretend to be a Cloud provider, CPmal,
as well as to lure a consumer ConL that can be authorized for
URIA, to perform this operation. Therefore, this is a man-in-
the-middle type of attack.

The attacker initially sends an unauthorized request to CPA

and receives TokenA and URIA. In order for this attack to be
successful the attacker has to obtain an authorization message
of the form (TokenA, Level, Lifetime, URIA,PubCPA

).
ConL is lured to send an unauthorized request to CPmal

(i.e., to the attacker), which responds with a message of
the form: (URIA,TokenA). Subsequently, ConL sends

PUBLISHED IN: JOURNAL OF INTERNET SERVICES AND APPLICATIONS, VOL. 6, NO. 1, 2015 9

Attacker

Cloud Provider

[…]

URIap, TokenAttacker

This Token has not been generated for

this user

Error

OPA, TokenAttacker, Lifetime,

SignACP(TokenAttacker, Lifetime, PubCP, URIap)

ConL

OPA

Packet Injection

Fig. 8. Malicious entity co-located with a consumer.

an authentication and authorization request to ACPA of
the following form: (ID, PubCPmal

, URIA,TokenA),
and receives the following authorization message
(TokenA, Level, Lifetime, URIA,PubCPmal

). If the
attacker sends an authorized request using the signature
of the previous message the authorized request decision
algorithm will result in an error, since CPA will generate
an authorization message that includes PubCPA

and not
PubCPmal

(Figure 7).
3) Malicious entity co-located with a consumer: This attack

scenario is applicable when a CP maintains a user management
system and associates operations over protected data with
particular users (e.g., for charging reasons). In tis scenario
a CP also maintains in its Token Table the identifier of the
(CP) user for whom the token has been generated. The goal
of an attacker in this scenario is to make a CP believe that
a consumer ConL wants to perform a protected operation. In
this scenario the attacker is a valid CP user and he is eligible to
perform the same operations as ConL. Moreover, the attacker
is able to inject messages on behalf of ConL.

In this attack scenario, the attacker requests to perform an
operation OPA and proceeds through all steps until he receives
the authorization message. At this point, instead of sending an
authorized request on behalf of himself, he sends it on behalf
of ConL. It can be easily observed that this attack is trivially
mitigated since the CP also maintains the identifiers of the
users that correspond to each token, therefore this message will
be rejected (Figure 8). It should be noted, however, that this is
possible due to our design choice to have the CP generating the
tokens, which is not always the case in other similar systems.
This attack, for example, was successfully exploited by Wang
at al. [16] against three popular websites that were using
Facebook Connect and Twitter OAuth for associating their
user accounts with their corresponding Facebook and Twitter
profiles.

B. Overhead

In our implementation, HTTP methods are used for invoking
the desired operation. As a public-key encryption system we
use RSA. The size of an RSA public key is 2048 bits, whereas
the size of a JSON encoded public key is 400 bytes. Tokens are
encoded in 32 byte hex-strings, digital signatures in 512 byte
hex-strings and token lifetimes in 8 byte hex-strings. Finally,
a single byte is used for representing access levels. When a
consumer wants to invoke an operation in a CP , protected by
a URIap, a number of messages has to be exchanged. If an
ACP has already generated for the consumer an authorization
message for URIap and the corresponding token has not
expired, then a single message from the consumer to the CP
has to be sent. In any other case five messages have to be
exchanged: three between the consumer and the CP, and two
between the consumer and the ACP.

It can therefore be observed that an ACP and a consumer
have a strong motive to use long-lasting tokens6: the longer the
duration of a token, the less the communication overhead for
an ACP and a consumer. On the other hand, long-lasting tokens
increase the state that a CP has to maintain in its Token Table.
In order to illustrate this tradeoff, we simulate the following
scenario: we consider a CP that hosts files of 100 different
enterprises. Each enterprise has defined a single protected
operation. Moreover, each enterprise has 100 employees who
invoke the operation stored in the CP following a Poisson pro-
cess with rate 0.1/min. We simulate a usage period of 8 hours
and every 5 min we measure the average network load of each
enterprise (caused by the messages exchanged with the ACP),
as well as the size of the CP’s Token Table (the measured
size is the average value of all the sizes the Token Table had
within the 5 min measurement period). We consider two types
of tokens: a token with short lifetime (20 min) and a token
with long lifetime (2 hours). Figure 9 illustrates the average
Token Table size of the CP throughout the simulation period,
whereas Figure 10 illustrates the average number of messages
transmitted inside each enterprise’s network, throughout the
simulation period.

C. Comparison with existing systems

We now compare our solution with two popular related
systems: Google Drive and Amazon S3.

1) Google Drive: The Google Drive Cloud-based storage
service, enables users to access, share, and organize their files
in the Cloud. The Google Drive API provides a limited set of
policies, namely, “full access”, “read only access”, “metadata
only access”, and “specific file access”. These policies are
not applied per stored item, instead they are granted in the
form of “permissions” to applications that want to access a
specific drive. Before using a “drive”, an application requests
from the drive owner one of the aforementioned permission
types; the drive owner authenticates himself using a Google
account and grants permissions using OAuth2.0. In most cases,
the user that executes the application that requests permissions
and the owner of the drive are the same entity. Permissions are

6Provided that this does not jeopardize the security of the scheme.

10 PUBLISHED IN: JOURNAL OF INTERNET SERVICES AND APPLICATIONS, VOL. 6, NO.1, 2015

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6 7

N
u

m
b

e
r

o
f

re
c

o
rd

s

Time (h)

20min

2h

Fig. 9. Average number of Token Table entries as a function of token lifetime,
using 5 minute sampling periods.

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7

N
u

m
b

e
r

o
f

m
e

s
s

a
g

e
s

Time (h)

20min

2h

Fig. 10. Number of messages exchanged between a consumer and an ACP
as a function of token lifetime, using 5 minute sampling periods. During the
lifetime of a token, no messages are exchanged.

granted in the form of a token that never expires: in order for
a drive owner to remove permissions for a specific application,
she has to revoke the token manually. Google Drive does not
support integration with enterprise specific authentication and
authorization systems7.

In order for an application to perform an operation the
following messages have to be exchanged (here we consider
that the user executing the application is the drive owner,
referred to as the consumer):

1) Consumer → Google Auth: Request permission
2) Consumer → Google Auth: Authenticate
3) Consumer → Google Auth: Grant permission
4) Google Auth → Consumer: Token
5) Consumer → Google Drive: Operation, Token

Compared to our system the same number of messages is
required. Nevertheless, messages 1 to 4 are usually sent once,
since tokens never expire. It should be also noted that the entity
that performs the authorization is the drive owner herself (the

7Google provides a SAML based SSO system that can be used to integrate
enterprise specific authentication systems, but only in Web applications.

consumer), therefore authorization is a manual process.
2) Amazon S3: Amazon Simple Storage Service, or S3 for

short, is a well-known Cloud-based file storage service. S3
provides Web services that allow users to store and organize
their files in the Cloud. Files are organized in “buckets”. A
user may set Access Control Lists (ACLs) that define the
permissions that a user or a group of users have over a specific
bucket, or over a specific file. ACLs are encoded in XML
and the permissions that can be granted are “read”, “write”,
“read ACL”, “modify ACL”, “full control”. For more fine
grained access control, S3 provides an “access control policy
language”, that allows users to create bucket-specific policies.
These policies can control the access to a bucket, and its
objects, based on user identities, source IP addresses, time
and date, and some other parameters.

S3 provides an API that allows users (consumers) to be
authenticated using their own (enterprise specific) identity
provider. In order for an operation to be performed the
following messages have to be exchanged:

1) Consumer → Identity Provider: Authenticate
2) Identity Provider → Amazon Token Service:

Request Token
3) Amazon Token Service → Identity Provider:

Token
4) Identity Provider → Consumer: Token
5) Consumer → Amazon S3: Operation, Token

It can be seen that the same number of messages is required, as
in our system. Nevertheless, in the S3 system the authorization
is performed by Amazon and not by the identity provider,
therefore access control policies have to be stored in an
Amazon server. This, combined with the fact that policies are
defined using Amazon’s specific policy definition language,
creates a “lock-in” risk. Moreover, all the users who are
identified by their own identity provider are considered to have
the same role (i.e., “federated users”), limiting the flexibility
of the access control policies. Finally, a secret has to be shared
between the identity provider of the user and Amazon’s token
service, in order for steps 2 and 3 to take place successfully.

VI. DISCUSSION

So far we have explored the possibilities that our solution
offers in a “traditional” usage model: an enterprise that uses
Cloud computing for outsourcing data storage and computa-
tions. However, the introduction of a new role, that of the
ACP, and the decoupling of the data storage and access control
assessment functions creates many new business opportunities.

One area that can benefit from our solution is that of B2B
applications. Suppose that enterprise A wants to offer access
to some of its (Cloud-based) services to a department of
enterprise B. Enterprise B can expose a URIap that authen-
ticates and authorizes the users of that particular department.
Enterprise A can use this URIap in order to protect the shared
services. With this, enterprise A can perform access control
without learning anything about the internal user management
system of enterprise B. Enterprise A may also offer services
for the customers of enterprise B using a similar approach.

Our solution also creates a new business opportunity. We
envision that a new market can arise due to our solution, that

PUBLISHED IN: JOURNAL OF INTERNET SERVICES AND APPLICATIONS, VOL. 6, NO. 1, 2015 11

of the access control providers. In addition to the enterprise
specific ACPs there can be independent ACPs that offer
security services to end-users. Existing security companies
can utilize their expertise to offer cutting edge access control
services without investing in the Cloud market. Moreover,
existing social networks may leverage their services and act
as ACPs. To this end, future work for our scheme includes
support for ACP federations and support for multiple URIACP

definitions per single data item.

VII. CONCLUSIONS

In this paper we proposed a solution to a thorny problem that
prevents Cloud technology adoption: that of access control.
The proposed solution enables data owners to outsource data
storage and computation, without losing governance of their
assets. In our solution access control is provided as a service
by a new entity, the Access Control Provider (ACP). Access
control as a service relieves Cloud providers from the burden
of implementing complex security solutions and enables enter-
prises to deploy their own specific access control mechanisms.
We demonstrated the feasibility of our scheme through proof
of concept implementations. In particular, we implemented
our system as an add-on for the open source Cloud stack
OpenStack and we developed a Web application that allows the
incorporation of our system in Google Drive. We show that
our scheme is secure and has significant privacy properties.
The proposed system adds minimal overhead, does not require
any particular Cloud implementation or ACP structure and,
therefore, it constitutes a realistic solution to the problem.
Finally, we believe that the proposed solution can open the
floor for new exciting applications and business opportunities.

ACKNOWLEDGMENT

This research was supported in part by a grant from the
Greek General Secretariat for Research and Technology, fi-
nancially managed by the Research Center of AUEB.

REFERENCES

[1] PwC, “Global state of information security survey,” 2012.
[2] S. Subashini and V. Kavitha, “A survey on security issues in service

delivery models of cloud computing,” Journal of Network and Computer
Applications, vol. 34, no. 1, pp. 1–11, 2011.

[3] S. Gorniak (ed.), “Priorities for research on current and emerging
network trends,” ENISA, 2010.

[4] D. Catteddu and G. Hogben (eds.), “Cloud Computing Benefits, risks
and recommendations for information security,” ENISA, 2009.

[5] Cloud Security Alliance, “The notorious nine cloud com-
puting top threats in 2013,” 2013. [Online]. Available:
https://cloudsecurityalliance.org/

[6] A. Armando, R. Carbone, L. Compagna, J. Cuellar, and L. Tobarra,
“Formal analysis of SAML 2.0 web browser single sign-on: breaking
the SAML-based single sign-on for google apps,” in Proc. of the 6th
ACM workshop on Formal Methods in Security Engineering, 2008, pp.
1–10.

[7] J. Somorovsky, A. Mayer, J. Schwenk, M. Kampmann, and M. Jensen,
“On breaking SAML: Be whoever you want to be,” in Proc. of the 21st
USENIX Security Symposium, vol. 12, 2012, pp. 21–21.

[8] N. Fotiou, A. Machas, G. Polyzos, and G. Xylomenos, “Access control
delegation for the cloud,” in Computer Communications Workshops
(INFOCOM WKSHPS), 2014 IEEE Conference on, April 2014, pp. 13–
18.

[9] D. Recordon and D. Reed, “OpenID 2.0: a platform for user-centric
identity management,” in Proc. of the 2nd ACM workshop on Digital
Identity Management, 2006, pp. 11–16.

[10] D. Hardt (ed.), “The OAuth 2.0 authorization framework,” RFC 6749,
October 2012.

[11] D. Nunez, I. Agudo, and J. Lopez, “Integrating OpenID with proxy
re-encryption to enhance privacy in cloud-based identity services,” in
Proc of the IEEE 4th International Conference on Cloud Computing
Technology and Science, 2012.

[12] R. Khan, J. Ylitalo, and A. Ahmed, “OpenID authentication as a
service in OpenStack,” in Proc. of the 7th International Conference on
Information Assurance and Security, 2011, pp. 372–377.

[13] R. Yavatkar, D. Pendarakis, and R. Guerin, “A framework for policy-
based admission control,” RFC 2753, January 2000.

[14] D. Durham (ed.), “ The COPS (Common Open Policy Service) Proto-
col,” RFC 2748, January 2000.

[15] S. Cantor, J. Kemp, R. Philpott, and E. Maler (eds.), “Assertions and
protocols for the OASIS Security Assertion Markup Language (SAML)
v2.0,” OASIS, 2005.

[16] R. Wang, S. Chen, and X. Wang, “Signing me onto your accounts
through facebook and google: A traffic-guided security study of com-
mercially deployed single-sign-on web services,” in Proc. of the IEEE
Symposium on Security and Privacy, 2012, pp. 365–379.

