
PUBLISHED IN: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION, INTELLIGENCE, SYSTEMS AND APPLICATIONS 2015 1

The MusiNet project: Addressing the challenges in
Networked Music Performance systems

D. Akoumianakis∗, C. Alexandraki†, V. Alexiou‡, C. Anagnostopoulou§, A. Eleftheriadis‡,
V. Lalioti§, Y. Mastorakis¶‖, A. Modas‡, A. Mouchtaris¶‖ , D. Pavlidi¶‖, G. C. Polyzos∗∗,

P. Tsakalides¶‖ , G. Xylomenos∗∗, P. Zervas†
∗ TEI of Crete, Dept. of Informatics Engineering, Heraklion 71500, Greece † TEI of Crete, Dept. of Music

Technology and Acoustics Engineering, Rethymnon 74100, Greece ‡ University of Athens, Dept. of Informatics
and Telecommunications, Athens 15784, Greece § University of Athens, Dept. of Music Studies, Athens 15784,
Greece ¶ University of Crete, Dept. of Computer Science, Heraklion 70013, Greece ‖ FORTH-ICS, Heraklion
70013, Greece ∗∗ Athens University of Economics and Business, Dept. of Informatics, Athens 10434, Greece

Abstract—This paper presents the progress in the MusiNet
research project, which aims to provide a comprehensive ar-
chitecture and a prototype implementation of a Networked
Music Performance (NMP) system. We describe the Musinet
client and server components, and the different approaches
followed in our research effort in order to culminate in the most
appropriate scheme in terms of delay and quality for the audio
and video streams involved. We also describe the MusiNet user
interface, which allows an integrated communication between the
participants and the proposed NMP system.

I. INTRODUCTION

Networked Music Performance (NMP) systems can have a
catalytic effect in music creation and social interaction, since
they allow collaboration between musicians in geographically
remote and disparate locations. Lowering the cost of collabo-
ration, such systems can promote music creativity, education
and cross-cultural interaction, enabling live performances,
rehearsals, improvisation or distant music learning.

The appearance of high speed research/educational com-
puter networks, such as Internet2 in the USA and GEANT
in Europe, triggered the appearance of NMP system
projects, such as Jacktrip [1], Distributed Immersive Per-
formance (DIP) [2], SoundJack [3] and DIAMOUSES [4].
However, these systems either pose significant limitations to
NMP interaction, or require excessive amounts of resources
and direct access to high speed networks.

In our previous work [5] we introduced the MusiNet project,
which aims at significantly reducing the resource requirements
of NMP and studying in depth the sociological and musico-
logical aspects of such systems. The central objective of the
MusiNet project is to address the main challenges of NMP
systems. The most crucial one is the elimination of latencies
during the capturing, transmission, reception and reproduction
of the audiovisual information. The maximum delay between
any two endpoints must be kept below 25 msec [6] in order
not to hinder musicians participating in an NMP session.
Other challenges include the elimination of network bandwidth
bottlenecks, the synchronization of the exchanged information,
and handling the high sensitivity of NMP to network data

Correspondence should be addressed to e-mail: mouchtar@csd.uoc.gr.

loss. In this work we present the progress accomplished
towards unraveling the full potentials of NMP systems, by
outlining implementation aspects of the primary components
of MusiNet, i.e., the client, server and user interface.

The remainder of this paper is structured as follows. Sec-
tion II-A presents the Musinet client, Section II-B presents the
different implementation approaches for the MusiNet server,
while Section II-C describes the user interface of the proposed
system and Section II-D describes a novel method for real-
time delay estimation of audio streams. We present evaluation
and comparative results for the proposed schemes in terms of
delay in Section III. We conclude and refer to future work in
Section IV.

II. ADVANCES IN THE MUSINET SYSTEM

In this section we describe our work on the primary com-
ponents of MusiNet, i.e., the MusiNet client and the MusiNet
server, shown in Fig. 1. We also describe in Section II-C
the user interface that we designed, which enables a natural
interaction between the system and the remote participants.

Fig. 1. The general architecture of MusiNet.

A. The MusiNet Client

For the MusiNet client, we based our implementation on
BareSIP [7], an open-source portable and modular Session
Initiation Protocol (SIP) User Agent with audio and video
support. Although BareSIP is a minimalistic VoIP client, it
supports the vast majority of state-of-the-art audio and video



2 PUBLISHED IN: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION, INTELLIGENCE, SYSTEMS AND APPLICATIONS 2015

codecs (including the ultra-low delay OPUS audio codec [5],
[8]) and numerous networking and communication protocols.
Despite its large list of supported features, BareSIP is robust
and fast with a low memory footprint. BareSIP depends on
two libraries: Libre, a generic library for real-time com-
munications with asynchronous I/O support, and Librem,
a portable library for real-time audio and video processing.
BareSIP, along with its dependencies, is an open source project
compliant with the C89/C99 language standards. It employs a
well-designed, object-oriented, highly-modular structure, that
makes it suitable for extensions or modifications.

BareSIP in its pure form is restricted to Peer-to-Peer (P2P)
communication. For example, say that a user has established a
P2P call with a second user, and wants to start another P2P call
with a third user. For each new call, a new instance of BareSIP
is generated and a new session is established, independently
from existing sessions; in order for a user to connect to N
other users, N instances of BareSIP should be instantiated,
N sessions should be set up, and N encoding and decoding
processes should be executed at his/her terminal. To adapt
BareSIP to the mode of operation required by MusiNet, which
involves the connection of multiple users to a conference
room, we have to modify BareSIP’s architecture. Specifically,
a single BareSIP instance should be used, with a single session
established between the user and the server. Depending on the
architecture of the server (discussed in Section II-B), either a
single encoding and decoding process should be performed
at each user’s terminal, or one encoding and N decoding
processes, for a conference room with a N + 1 participants.

In a typical conferencing application, the server mixes the
multiple audio and video streams in a single stream which is
transmitted to the clients. However, in a NMP system it is
better for the participants to be able to create their own local
downmix. For this reason, the system architecture of MusiNet
includes a Selective Forwarding Unit (SFU) [9], [10], which
simply relays each incoming stream to all other participants.
This avoids the delays due to transcoding, but burdens clients
with the downmix process of numerous streams. For a con-
ference room with N + 1 participants, the server receives at
least N + 1 streams (e.g., when only audio is involved) and
retransmits each of these streams N times. Similarly, each user
receives at least N streams, one from each other participant.

We have considered two ways of multiplexing the individual
streams to be transmitted to each participant: (a) Real Time
Protocol (RTP) session multiplexing, and (b) SSRC multi-
plexing.1 The first technique uses a separate RTP session for
each stream, ending up in a different port at the receiver.
The second technique uses a single session for all streams
of the same media type, hence all, say, audio packets end up
in the same port of each client, distinguished only by their
SSRC. Our current practice is to use the second technique,
since by using fewer sessions and ports it simplifies network
address translator (NAT) traversal. However, in this scheme,
upon reception of an audio or video packet the client has
to associate it with a participant, based on side information

1SSRC, which stands for synchronization source identifier, is an integer
number that uniquely identifies a stream in an RTP session [11].

provided by the server. For this reason, we also considered
adding user IDs to separate media streams. These IDs are
injected to the audio and video packets at the server, before
the packets are relayed to all participants. This allows uniquely
identifying the audio and video packets of each user with a
single ID (for more details on this solution see Section II-B2).

Another structural characteristic of BareSIP is that, by
default, a single thread per port is created. In our case,
however, with SSRC multiplexing each client receives N
individual streams at the same port. As the number of partic-
ipants increases, system performance is expected to decrease,
increasing the average packet processing delay. A key MusiNet
requirement is to minimize the total end-to-end delay, thus it
is important to eliminate delays in all system components. To
address this issue, we developed a multi-threaded approach for
the receiving part of each terminal, which is further described
below. The transmitting part remains identical.

Initially, when a user joins a conference room through
our server, all transmission operations of the User Agent are
initialized. When that user receives the session configuration
information from the server (i.e., the number and properties
of the other participants) a list of nodes is locally created.
Each node represents a remote user and stores all relevant
information. A new thread per media stream is created for
each user, with the IDs of these threads being stored in the
list of nodes. Each such thread is responsible for handling the
received packets associated with a particular transmitter and
SSRC. The single thread normally created per port by BareSIP
when a session is established, simply acts as a demultiplexer,
with the task of identifying the media type of a received packet
and its sender (based on the SSRC), and delivering that packet
to the appropriate media processing thread. Finally, when a
user hangs up a call, the other participants are informed, hence
the dedicated processing threads and the resources that keep
his/her relevant information are released at each terminal.

B. The MusiNet Server
For the MusiNet server we have pursued three parallel lines

of development: (a) modifying FreeSwitch [12], an existing
SIP server that offers audio Multipoint Control Unit (MCU)
functionality, (b) developing pktswitch [13], an ultra-low
delay Selective Forwarding Unit (SFU) and (c) modifying
the BareSIP client so as to operate as a transparent server
with minimal operations; we will refer to this server-oriented
BareSIP modification as BareServer.

On the FreeSwitch front, our work has focused on replacing
the existing audio mixing functionality with a straightfor-
ward packet relaying functionality for both audio and video
streams. While FreeSwitch has the advantage of supporting
SIP functionality required for the MusiNet system, such as
user presence notifications, its basic design as an audio mixer
makes it hard to optimize for delay. For example, rather than
immediately relaying received packets, FreeSwitch tries to
align multiple packet streams in order to synchronize their
mixing, a redundant and costly (in terms of delay) operation.

Therefore, our research has focused on pktswitch, which
follows the latest research developments in high perfor-
mance network I/O systemsbut lacks SIP support, and on



PUBLISHED IN: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION, INTELLIGENCE, SYSTEMS AND APPLICATIONS 2015 3

BareServer, which complies with the project’s strict la-
tency constraints, according to our preliminary experimental
results, and also supports SIP functionality.

1) The pktswitch SFU: The basic concept behind
pktswitch is to exploit the netmap [14] packet handling
framework in order to minimize packet processing delay [15].
In order to assess the validity of our approach, we first imple-
mented a baseline, socket-based, SFU which handles a single
type of control packet, indicating new client registrations, and
three types of media packets, audio, video base layer and video
enhancement layer. A pre-configured table in the SFU shows
which media packet types each client wishes to receive. The
SFU consults that table for each incoming packet and sends
a copy of the packet to each interested client. A final copy
is sent back to the originating client as an “echo” packet. A
test client periodically transmits packets of each type to the
SFU, tracking the time until each “echo” packet arrives. Note
that the test client and server do not support SIP but rely on
a custom protocol and pre-configured settings.

The disadvantage of the socket-based SFU is that each
socket call can only pass a single packet from the Network
Interface Card (NIC) to the SFU and vice versa, requiring
a context switch between kernel and user space; one call is
needed to receive the packet and one call is needed to send the
packet to each recipient. This overhead grows with the number
of clients. Since the SFU barely modifies the media packets,
we have resorted to the netmap framework to minimize this
overhead. With netmap, the SFU waits for packets from either
the netmap RX (NRX) ring, connected to the NIC, or the host
RX (HRX) ring, connected to the host networking stack. The
SFU issues a poll system call to wait for new packets. When
this call returns, if there are new packets in the NRX ring, they
are all moved to user space, without further kernel mediation.

Kernel

SFU

Network Interface

Lookup table

NTXNRX

HRX HTX

Fig. 2. The netmap-based pktswitch.

Media packets are passed to a media handler, which inspects
the packet header and consults the SFU table to determine
which clients should receive it. The packet is copied as many
times as needed to the netmap TX (NTX) ring, connected to
the NIC, simply changing its destination address to that of
the desired client. The incoming packet is also moved to the
NTX ring, to be sent as an “echo” packet to the originating
client. Control packets are processed by a control handler,
updating its lookup table. Finally, packets destined to the
host OS are copied to the host TX (HTX) ring, i.e., the host
networking stack, for processing by other applications. As a
result, packets are always moved to/from user space in large
batches, eliminating redundant context switches. An overall
view of the application layer SFU is given in Fig. 2.

2) The BareServer: Since BareSIP already supports mul-
tiple concurrent peer-to-peer calls and has a modular design
which simplifies extensions, we have modified it to behave as
a server, the BareServer. The BareServer is a minimal SFU,
simply relaying packets, with no transcoding or mixing.

Each BareSIP client makes a peer-to-peer call to the Bare-
Server as it would normally do with another plain BareSIP
client. All necessary protocol negotiations needed in order to
establish the call are supported by default. When a connection
is established between a BareSIP client and the BareServer,
the client transmits its own local audio and video streams, but
BareServer’s default local audio and video transmit is disabled.
In Section II-A we referred to two possible ways for media
stream demultiplexing, one based on SSRCs and one based on
user IDs. In the first case, the BareServer simply retransmits
a received packet to all other clients. In the second one the
BareServer, after the RTP header is decoded, re-encodes it
including the user ID in the first CSRC slot of the RTP header,2

which is not used for any other purpose in our implementation,
and transmits the packet to all participants involved.

Using either approach, every client connection to the Bare-
Server will be handled as a different call, so it is important
to increase the maximum number of calls according to the
anticipated maximum number of participants, which by default
is set to four. The side information (e.g., the user ID) about
room participants is transmitted every 1 sec through Real Time
Control Protocol (RTCP) application-specific messages. For
each client, its user ID, its uniform resource identifier (URI)
and its alias name are included in the side information.

To achieve higher throughput for the BareServer, a threaded
implementation is applied. For each client, two threads are
created, one for audio and one for video. The task of each
thread is to relay its client’s packets to all other connected
clients. A producer-consumer model is used, i.e., when a new
audio or video packet from a client is received, it is appended
at its audio or video packet list respectively. The threads read
those lists and relay the packets sequentially, in the same order
they were received.

C. The MusiNet HCI design and media configuration

With respect to interaction design, the approach fol-
lowed rests on the “material turn” in human-computer inter-
faces (HCI) [16]–[18]. In terms of design commitments, the
material-turn in HCI signifies a redirection of attention from
digital artifacts or the application layer of interaction design
toward the materials from which digital products and services
are built in the first place. For our purposes, a material turn
entails configuring different genres of digital technologies im-
plicated in computer-mediated collaborative music making and
performance in such a way that they operate interdependently,
as the need arises. Thus, a prominent issue is treating tech-
nologies such as BareSIP, file sharing services, an augmented
graphical toolkit for music composition and 2D visualization,
as digital materials from which virtual experiences are built.

2CSRC, which stands for contributing source identifier, is an integer number
that uniquely identifies one of the sources contributing to a translated stream,
identified by the SSRC of the translating entity.



4 PUBLISHED IN: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION, INTELLIGENCE, SYSTEMS AND APPLICATIONS 2015

(a) (b) (c)

Fig. 3. (a) The UI and the underlying digital materials. (b) Structure of the container object. (c) Configuration of parameters, contacts and accounts.

At the core of this effort has been the appropriation (or crafting
of new) Application Programming Interfaces (APIs) to ensure
that these technologies act interdependently and constitute
a coherent whole. As Fig. 3(a) indicates, this layering of
different digital materials enables loose coupling of distinct
functionalities that may be invoked as needed either prior,
during or after network music performance sessions.

To address the challenges, several lines of technical devel-
opments have been undertaken. Firstly, dedicated container
objects were implemented (see Fig. 3(b)) to host media types
from BareSIP. In addition, a multithreaded dialogue manager
was designed on top of the window manager to handle the
users’ entry to and exit from the workspace, as well as the
in-coming events to be delegated to appropriate container
objects for rendering multimedia content. Thirdly, a custom
component was used to bridge the gap between the Java User
Interface API and the BareSIP core API. Finally, several native
modules were implemented to allow configuration of BareSIP
parameters and user contact lists. An instance depicting pa-
rameter configuration is presented in Fig.3(c).

D. Real-Time Delay Estimation of Audio Streams

Since audio signal delay is the most significant parameter in
enabling music collaboration [19], [20], we need a method to
accurately quantify the end-to-end delay of audio streams. In
order to measure one-way delay in real-time audio communi-
cation between distant endpoints, we have resorted to the use
of pilot signals. Taking into consideration the general proper-
ties of music and the human auditory system, we designed the
pilot signal so as to minimize its audible effects, considering
that there is a trade-off between the system’s delay estimation
accuracy and the pilot signal’s audibility. We provide the key
quantities that can be modified correspondingly, with respect
to the targeted/desirable application mode.

At the transmitter, we split the audio signal in time intervals
equal to the duration of an audio packet. Then, we perform a
spectral analysis and properly adjust the pilot signal, avoiding
any undesirable additive noise. We also designed an algorithm
to estimate the one-way delay based on the receiver’s local
clock, given an initial time reference of the first pilot signal’s
injection at the transmitter. The proposed system operates in
real-time, adding a negligible delay to the total end-to-end
latency of the audio stream due to the pilot signal’s adaptation

processing. Additionally, the structure of the pilot provides
multiple access capability [19]. Initial simulations verify the
effectiveness of the adopted techniques. As a next step, we
will embed this technique to the MusiNet system in order to
allow each user to get informed about the delay of each audio
stream received while the system is actually being used.

III. EVALUATION OF THE MUSINET SYSTEM

In this section we evaluate our proposed system through real
experimental setups. In the first set of experiments we measure
the delay induced by the pktswitch SFU (Section II-B1).
In the second set we compare the default implementation of
the BareSIP client with the modified version described in
Section II-A, using the BareServer SFU (Section II-B2).

A. Server-induced delay estimation

To assess the delay induced by the SFU (see Section II-B1),
we measured the difference between the time a media packet
was picked for processing and the time its final “echo” packet
was scheduled to be sent. We used a set of identical machines
using the Realtek RTL8111/8168B Gigabit Ethernet controller
and running Linux kernel 3.2.63, connected via an isolated
Gigabit LAN, with one machine acting as the SFU. Each
experiment consisted of a warmup period, followed by a
60 s period of measurements. For efficient and high-resolution
delay measurements, we counted CPU cycles. To ensure re-
peatability, we ran each experiment multiple times and verified
that results had very low variance. Figure 4 shows the packet
processing delay measured for sessions with 6 and 8 clients.
The media payload sizes are set to 80, 160 and 320 bytes
for the audio, video base and video enhancement streams,
respectively, and a new packet per stream is transmitted every
4 ms, leading to or 750 packets per second (pps), or a
combined data rate of 1.12 Mbps per client. The netmap-
based SFU shows significant improvements, with a delay that
is on average only 11.3% of the delay of the socket-based
SFU. Further experiments show that the netmap-based SFU
requires only 25% of the packet processing overhead of the
socket-based SFU, which means that it can handle four times
the load of the socket-based SFU before packet queuing is
needed to handle the increased load [13].



PUBLISHED IN: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION, INTELLIGENCE, SYSTEMS AND APPLICATIONS 2015 5

6 cli
en

ts

8 cli
en

ts

10
cli

en
ts

0

10

20

30

40

Ti
m

e
Sp

en
t

(%
)

11

17

3
4

24

5

socket/kernel
socket/user

netmap/kernel
netmap/user

Fig. 1. CPU utilization with each client streaming at 750 pps (1.12 Mbps).

6 cli
en

ts

8 cli
en

ts

10
cli

en
ts

0

10

20

30

40

50

60

Ti
m

e
Sp

en
t

(%
)

20

32

5
8

40

10

socket/kernel
socket/user

netmap/kernel
netmap/user

Fig. 2. CPU utilization with each client streaming at 1500 pps (2.24 Mbps).

6 cli
en

ts

8 cli
en

ts
0

5

10

15

20

25

30

35

D
el

ay
(µ
s) 20

24

2
3

socket
netmap

Fig. 3. Packet processing delay each client streaming at 750 pps (1.12 Mbps).Fig. 4. Packet processing delay: clients streaming at 750 pps (1.12 Mbps).

B. Delay estimation experiments of the MusiNet System

In this experimental set we compare the default imple-
mentation of the BareSIP client with the modified version
described in Section II-A, considering sessions with two to
five participants. With two users we can directly compare two
different but equivalent systems, while with more than two
users we can evaluate the performance of the multi-threading
receiver developed to support conferencing. We also estimate
the time delay of the server processing per received packet.

The total time for media transmission at each client is
the sum of the individual time delays for capturing me-
dia, encoding media and transmitting the corresponding RTP
packets. Media capture is performed by an external module,
using appropriate APIs. Thus, a video or audio handler is
responsible for transferring captured data to the main BareSIP
code to be encoded, packetized and transmitted. For audio
transmission, the recording buffer used to store the samples
from the audio source is of size equal to the packet duration,
i.e., (ptime); when filled, the specified handler is called. The
captured data correspond to a single packet, and thus, the
encoding, packetization and transmission of a single packet is
performed directly by BareSIP’s main code. For video, when a
frame is captured, the corresponding handler is called. BareSIP
undertakes the encoding, packetization and transmission of
video packets, as well, but in this case, the video encoder
receives an entire frame and returns the encoded data that
may be included in one or more fixed size (pktsize) RTP
packets. In both cases, using the system call gettimeofday,
we estimate the time needed for the transmission of a single
packet, excluding the functions responsible for audio and video
capturing. Therefore, these numbers reflect the performance of
BareSIP’s main code.

Another parameter affecting delay is the packet size. A
larger buffer means that bigger intervals of the audio source
are captured, increasing the end-to-end delay, since we have
to wait more for the buffer to fill. As mentioned above, in our
performance evaluation we ignored capture delay. Increasing
the packet size, however, also means handling larger packets,
which leads to increased processing delay per packet, although
there are fewer packets transmitted per stream.

The experiments were conducted on a LAN, where we
made a set of calls with nearly identical video/audio content
lasting ≈ 60 sec; all results refer to average values. The
measurements were performed on an Apple Mac mini, running
a single instance of BareSIP, with additional participants
hosted on a second one that ran one instance of BareSIP for
each participant. The client computer configuration involved
an Intel Core i5 processor at 2.5 GHz running MacOS X
version 10.9.5. The Opus codec was used for audio coding and
H.263 for the video coding, CoreAudio for audio capture and
playback, AVCapture API for video capture, and OpenGL for
video display. The server was built on a MacBook Pro with an
Intel Core i7 processor at 2.7 GHz running MacOS X 10.9.5.

In Table I we present the processing delay per packet in
microseconds (µsec), for audio and video. “P2P” indicates the
use of the default, peer-to-peer version of BareSIP, without
an intermediate server. The abbreviation “VC” stands for our
video conferencing mode, with the integer next to it denoting
the number of participants. In this configuration all streams
are routed through a media server.

TABLE I
Delay of audio transmission per packet (µsec)

ptime P2P VC 2 VC 3 VC 4 VC 5
20 166.54 170.08 173.11 174.6 173.24
10 115.39 120.31 120.92 120.92 120.9
5 72.6 76.36 76.19 76.4 79.74

Delay of video transmission per packet (µsec)
pktsize P2P VC 2 VC 3 VC 4 VC 5
1024 1663.98 1778.97 1804.79 1797.44 1821.24

For both audio and video transmission, we observe that as
the number of participants and the packet size are increased,
the processing delay generally increases. In the case of audio,
by decreasing the packet duration at each tested mode we
notice a significant delay reduction of up to 57%. For both
audio and video, by increasing the number of users and
keeping the packet size fixed, we observe a delay increase
of up to 10% in terms of µsec, which does not depend on the
number of clients, making the difference negligible.

At each client, the total time for media reception is the sum
of time for receiving RTP packets, jitter buffer processing, de-
coding and rendering the media. Media rendering is performed
by an external module. After the decoding operation, specific
handlers are called to either store the decoded audio samples
to the playout buffer, or to display the video frame. In the case
of video, a single packet may include a whole, or a part of a
frame. In both cases, using the system call gettimeofday,
we estimate the time needed for the reception of a single
packet, excluding the system functions responsible for audio
and video reproduction. Besides the media content and the
packet duration, another parameter that significantly affects the
receiving operation is the size of the jitter buffer, which is set
in terms of frames/packets. In Table II we present the process-
ing delay per packet in msec for audio and video, respectively,
including the jitter buffer size as an extra parameter.

For audio reception (the most critical issue for MusiNet),
keeping the packet duration and the jitter buffer size fixed,
the estimated delay time is almost identical for each tested
mode. Specifically, the estimated delay is approximately equal



6 PUBLISHED IN: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION, INTELLIGENCE, SYSTEMS AND APPLICATIONS 2015

TABLE II
Delay of audio reception per packet (msec)

jbuf ptime P2P VC 2 VC 3 VC 4 VC 5
10 20 199.658 200.087 200.069 199.914 200.083
10 10 99.834 100.065 100.064 100.034 100.025
10 5 49.989 50.045 50.025 50.028 50.014
5 20 99.773 100.099 100.099 100.078 100.048
5 10 49.959 50.059 49.956 50.049 50.031
5 5 25.011 25.047 25.046 25.044 25.037
1 20 20.003 20.097 20.122 20.098 20.056
1 10 10.029 10.073 10.057 10.065 10.061
1 5 5.031 5.056 5.062 5.059 5.060

Delay of video reception per packet (msec)
jbuf pktsize P2P VC 2 VC 3 VC 4 VC 5
10 1024 206.363 274.162 285.208 275.401 283.088
5 1024 105.546 129.341 140.409 137.017 139.058
1 1024 20.652 21.865 23.623 23.001 23.778

to the product of the packet duration multiplied by the size of
the jitter buffer. For video reception, keeping the jitter buffer
size constant, we notice that as the number of the participants
is increased, the processing delay increases by up to 38%.
Furthermore, at each tested mode, decreasing the size of the
buffer we observe that the estimated delays are reduced almost
by the same percentage.

Regarding the performance of the BareServer, we demon-
strate the per packet relaying delay in Table III. We observe
that, as the number of the participants and the packet time are
increasing, the system is stressed and its processing delay is
increased up to 260%. Note, however, that these measurements
are in microseconds.

TABLE III
Server measurements for audio (µsec)

ptime VC 2 VC 3 VC 4 VC 5
20 96.75 147.22 249.12 217.79
10 87.94 114.93 152.49 134.31
5 68.45 91.68 114.79 139.98

Aiming at achieving the lowest delay possible, we would
naturally choose the lowest value for the ptime parameter
as well as the jitter buffer size. However there is a trade
off between the delay and the perceived audio quality which
should be taken into account.

IV. CONCLUSION

The goal of the MusiNet project is to integrate ultra low
delay audio coding, scalable video coding, low delay relaying
and musician collaboration techniques into a unified prototype
towards a full potential NMP system for the average user.
In this work we have presented the progress accomplished
towards this goal in terms of implementation of the pri-
mary units of the system. In future work we will present
complementary delay measurements as well as objective and
subjective evaluation results in real conditions.

ACKNOWLEDGEMENTS

This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds
through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: THALIS–MusiNet.

REFERENCES

[1] J.-P. Cáceres and C. Chafe, “JackTrip: Under the hood of an engine
for network audio,” in Proceedings of International Computer Music
Conference, 2009, p. 509–512.

[2] A. A. Sawchuk, E. Chew, R. Zimmermann, C. Papadopoulos, and
C. Kyriakakis, “From remote media immersion to distributed immersive
performance,” in ACM SIGMM Workshop on Experiential Telepresence
(ETP), 2003, pp. 110–120.

[3] A. Carôt, A. Renaud, and V. B., “Network music performance (NMP)
with Soundjack,” in NIME Conference, 2006.

[4] C. Alexandraki et al, “Towards the Implementation of a Generic Platform
for Networked Music Performance: The DIAMOUSES approach,” in
ICMC, 2008, pp. 251–258.

[5] D. Akoumianakis et al, “The MusiNet project: Towards unraveling
the full potential of Networked Music Performance systems,” in The
5th International Conference on Information, Intelligence, Systems and
Applications, (IISA), July 2014, pp. 1–6.

[6] C. Chafe et al, “Effect of time delay on ensemble accuracy,” in
International Symposium on Musical Acoustics, 2004.

[7] Creytiv software. [Online]. Available: http://creytiv.com
[8] J.-M. Valin, G. Maxwell, T. B. Terriberry, and K. Vos, “High-quality,

low-delay music coding in the OPUS codec,” in Audio Engineering
Society Convention 135, Oct. 2013.

[9] A. Eleftheriadis, R. Civanlar, and O. Shapiro, “Multipoint videocon-
ferencing with scalable video coding,” Journal of Zhejiang University
SCIENCE A, vol. 7, no. 5, pp. 696–705, April 2006.

[10] M. Westerlund and S. Wenger, “RTP topologies,” RFC Editor, RFC
5117, April 2015.

[11] H. Schulzrinne et al, “RTP: A transport protocol for real-time applica-
tions,” RFC Editor, RFC 3550, July 2003.

[12] FreeSwitch home page. [Online]. Available: https://freeswitch.org/
[13] G. Baltas and G. Xylomenos, “Evaluating the impact of network I/O on

ultra-low delay packet switching,” in Proc. of the IEEE International
Symposium on Computer and Communications (ISCC), 2015.

[14] L. Rizzo, “Netmap: a novel framework for fast packet I/O,” in USENIX
Advanced Technology Conference, 2012.

[15] G. Baltas and G. Xylomenos, “Ultra low delay switching for networked
music performance,” in Proc. of the International Conference on Infor-
mation, Intelligence, Systems and Applications (IISA), 2014.

[16] D. Akoumianakis, “Socio-materiality of online music ensembles: An
analysis based on cultural artifacts & affordances,” in Science and
Information Conference (SAI), Oct 2013, pp. 304–314.

[17] D. Akoumianakis et al, “Collaborative music making as “remediated”
practice,” in 18th International Conference on Digital Signal Processing
(DSP), July 2013, pp. 1–8.

[18] M. Wiberg, “Methodology for materiality: interaction design research
through a material lens,” Personal and Ubiquitous Computing, vol. 18,
no. 3, pp. 625–636, 2014.

[19] V. Alexiou and A. Eleftheriadis, “Real-time high-resolution delay es-
timation in audio communication using inaudible pilot signals,” in
Submitted to the International Symposium on Communications, Control
and Signal Processing (ISCCSP), 16 December 2014.

[20] ——, “Real time delay estimation in audio communications using
inaudible pilot signals,” in Preparation for submission, 2015.


