
PUBLISHED IN: PROCEEDINGS OF THE IEEE ISCC 2015 1

Evaluating the Impact of Network I/O on Ultra-Low
Delay Packet Switching

George Baltas and George Xylomenos
Mobile Multimedia Laboratory, Department of Informatics

Athens University of Economics and Business
Athens 10434, Greece

gbaltas@aueb.gr, xgeorge@aueb.gr

Abstract—Low latency is a crucial requirement for demanding
conferencing applications, such as Networked Music Performance
(NMP), the collaboration of musicians in real time. Modern
conferencing systems employ a Selective Forwarding Unit (SFU)
to transparently duplicate and forward media streams between
participants. Since an SFU does not process the media streams,
so as to reduce delay, its latency is mainly determined by the un-
derlying network I/O mechanism that moves packets to/from the
network hardware and user space. Such mechanisms are usually
based on POSIX sockets, which were not designed for high per-
formance networking. We designed and implemented pktswitch,
a minimal, socket-based SFU and measured its performance. We
then modified pktswitch to employ netmap, a framework for fast
packet I/O, to overcome the performance bottlenecks imposed by
the socket-based design. The modified implementation handles
packets in user space, with minimal kernel interaction. We
describe and contrast the two implementations and then compare
their performance in terms of packet processing overhead and
delay. Our results show that the netmap-based implementation
reduces packet processing overhead by 76% and delay by 89%
compared to the socket-based implementation, thus allowing an
SFU to host much higher loads (e.g. more users with more media
streams and higher bit rates) without introducing delays.

Index Terms—Networked music performance, selective for-
warding unit, latency.

I. INTRODUCTION

In recent years, high performance network I/O has been
a popular research topic [1]. When evaluating results, the
vast majority of this research focuses on measuring isolated
workloads, thus failing to relate high performance I/O re-
search to real-world applications. As part of the MusiNet
project [2], [3], we have instead focused on investigating
the impact of such mechanisms to the performance of a
Networked Music Performance (NMP) [4] system, that is, a
system allowing the collaboration of musicians in real time.
NMP systems are in essence ultra-low delay conferencing
systems, where audio/video streams of varying quality have
to be relayed between participants in-order and with minimal
latency. In modern conferencing systems, a high performance
machine, known in the literature as a Selective Forwarding
Unit (SFU) [5], handles incoming streams and relays them to
the participants with minimal processing. Unlike legacy sys-
tems, which performed audio mixing and video transcoding to
produce a single outgoing stream for all participants, an SFU
simply replicates and transmits incoming streams according
to client preferences. Hence, SFUs are I/O intensive, making

them a potential candidate for deploying high-performance
network I/O mechanisms.

Due to the critical role of SFUs in NMP latency, we have
previously proposed replacing the traditional POSIX socket-
based SFU implementations with alternatives based on high-
performance I/O schemes [6], such as the Click modular
router [7], the netFPGA boards [8] and the netmap scheme [9].
We have focused on netmap, designing a netmap-based SFU
that offers the same functionality as a simple socket-based
SFU [10]. In this paper we present two implementations of
that minimal SFU, pktswitch, using either POSIX sockets
or netmap, and examine their performance in terms of packet
processing overhead and delay in a real Linux-based network
testbed. Our results indicate that the netmap-based implemen-
tation reduces packet processing overhead by 76% and delay
by 89%, thus allowing an SFU to host much higher loads
without introducing delays.

The remainder of this paper is structured as follows. In
Section II we provide a high-level description of network hard-
ware and its driver interface, and contrast how network I/O is
implemented when using sockets and netmap. In Section III we
describe the basic functionality of pktswitch and describe
our implementation of a baseline SFU implementation based
on POSIX sockets. Then, we describe our netmap-based SFU
implementation. We discuss the performance bottlenecks of
the socket-based SFU and show how netmap can help over-
come its limitations. In section IV we experimentally evaluate
and compare the performance of the two implementations in
terms of packet processing overhead and delay and examine
how the system scales with increasing packet rates and clients.
We conclude and discuss future work in Section V.

II. DEMYSTIFYING NETWORK I/O

In this section, we briefly discuss the process of sending
and receiving packets in a modern Operating System (OS),
using Linux as a reference. Rather than explain specific
implementation details, our goal is to understand the basic
costs that dominate network I/O, that is, the process of moving
packets from user space to the Network Interface Card (NIC),
and vice-versa. From a high level perspective, this process can
be broken down into three parts:

1) Moving packets between the application and the net-
working stack.



2 PUBLISHED IN: PROCEEDINGS OF THE IEEE ISCC 2015

2) Processing within the networking stack.
3) Moving packets between the networking stack and the

NIC.
We will begin by discussing the POSIX socket interface (1,2)
and then we will discuss interfacing with NICs (3). Finally,
we will discuss netmap, a high-performance network I/O
framework, that streamlines this process.

A. POSIX Sockets

The default mechanism for network I/O provided by most
systems is the POSIX socket interface. Using sockets, a
system call is required for each packet received or sent by an
application. Each system call triggers a kernel control path that
handles the actual reception/transmission. We examine below
each direction, focusing on UDP packets.

In order to send a UDP packet, the user application must
issue a sendto system call. At that point, execution control
is passed to the kernel and, among other things, the user
arguments are validated. Next, an OS-specific packet buffer is
allocated in kernel memory and the packet payload is copied
into the packet buffer. Then, the packet buffer is passed to the
OS networking stack and processed by the relevant protocols
in all layers of the networking stack (UDP, IP, Ethernet). In
case of a UDP packet, the UDP header is added to the packet
and, optionally, a UDP checksum is computed. Next, the IP
layer adds the IP header, performs IP routing to select an
outgoing interface and computes the IP header checksum.
Finally, the Ethernet layer performs ARP to determine the
Ethernet destination address and adds the Ethernet header.

On the receive path, the user application must issue a
recvfrom system call, passing again execution control to
the kernel. Once the NIC driver moves the packet into host
memory, it passes the packet to the OS networking stack. From
there, the Ethernet layer checks the header and demultiplexes
the packet based on its protocol, in our case IP. Next, the IP
layer checks the IP header, performs IP routing and demulti-
plexes the packet to the UDP protocol handler. Then, the UDP
layer checks the UDP header and copies the UDP payload to
a user buffer destined for the appropriate application.

We can group these overheads into the following categories:
• Kernel Crossings: Switching from user to kernel mode,

validating user arguments, and returning to user mode.
• Memory Allocations: Dynamically allocating a packet

buffer upon packet reception/transmission.
• Network Processing: Copying, routing, checksuming,

de-multiplexing packets, etc.
• Packet Conversion: Converting packets from their de-

vice specific format (see Section II-B) to the OS packet
buffer format (sk_buff in Linux) and vice-versa.

B. Interfacing with NICs

In order for any packet to be transmitted over the physical
link, it must be first moved from the host to the NIC. NICs
communicate with the host computer over a bus, such as
PCI. Data transfer is performed using a DMA engine in the
hardware. Internally, NICs provide a fixed-size memory block

that is used to allocate receive (RX) and transmit (TX) FIFO
circular queues (or rings), to temporarily store packets. On
the host side, the NIC driver maintains RX/TX packet buffers
and associated buffer descriptors containing various control
information. Buffer descriptors are also organized as circular
queues, forming RX/TX rings. The ownership of the descriptor
rings (and thus their associated buffers) is split between the
NIC and the driver, using head and tail ring indices. The driver
owns all descriptors in the range [tail . . . head − 1], while
the NIC owns all descriptors in the range [head . . . tail − 1].
NICs use on-chip memory to fetch and write back RX/TX
descriptors from the driver’s RX/TX ring in host memory.
Furthermore, a set of programmable registers is exported for
each ring, storing the address of the ring in host memory,
the length of the ring and the head and tail indices. On the
receive path, the DMA engine fetches RX descriptors, transfers
packets from the NIC RX ring to the host RX ring and updates
the corresponding descriptors. On the transmit path, the DMA
engine fetches TX descriptors, transfers packets from the host
TX ring to the NIC TX ring and updates the TX descriptors.

C. An alternative solution: Netmap

Netmap is a framework for high performance I/O that moves
packets from the NIC to user space and vice-versa, aiming to
achieve very high throughput [9]. The idea behind netmap
(and similar frameworks), is to move packet processing code
from the kernel to user space, using OS primitives only for
synchronization. From a high level perspective, netmap works
by disconnecting the host networking stack from the packet
data path; instead of delivering packets to the host networking
stack, packets are delivered to the client application. For this
purpose, a pair of RX/TX rings are exposed directly to user
space. For cases where communication with the OS is needed,
netmap exports an additional pair of RX/TX rings that can be
used to pass packets to/from the host networking stack.

Netmap rings are similar to the driver RX/TX rings de-
scribed a. Among other metadata, they include ring indices
and pointers to packet buffers. The client application owns
all buffers in the range [head . . . tail−1], while netmap owns
buffers in the range [tail . . . head−1]. To protect itself against
misbehaving clients, the kernel is responsible for maintaining
the integrity of the rings. For that purpose, the kernel maintains
shadow rings and uses them to validate user requests.

Performance-wise, there are three distinct advantages to
using netmap:

• Netmap does not use a sk_buff representation to store
packets and their associated metadata, but rather a simple
and NIC-friendly netmap_ring representation. This
makes converting packets from their device specific rep-
resentation to the netmap_ring format very efficient.

• Memory buffers are pre-allocated in linear memory, so
no memory allocation/deallocation is needed when per-
forming I/O.

• The direct exposure of RX/TX rings to client applications
allows batch processing with minimum kernel mediation
and the development of high performance specialized
network stacks entirely in user space.



PUBLISHED IN: PROCEEDINGS OF IEEE ISCC 2015 3

Using the netmap API is straightforward. The netmap client
must first put the NIC in netmap mode and map the netmap
device /dev/netmap into the process address space. The
client can then start receiving/sending packets. Synchroniza-
tion between the client and the NIC is implemented by using
the standard poll/select system calls. The client and
kernel rings can also be synchronized by using ioctl.

III. IMPLEMENTING A NETWORKED MUSIC
PERFORMANCE PLATFORM

In order to test our approach, we implemented a very simple
conferencing platform, based on the needs of NMP. First,
we developed a client application which is used by NMP
participants to enter a conferencing session and stream/receive
media. The client is split into three threads of execution.
The main thread controls and configures client parameters
(e.g. number of streams to send, packet transmission intervals,
packet payload sizes) and outputs logging information (e.g.
in/out Mbps, packet counters, packet loss). The generator
thread is responsible for filling the output buffers with data
and notifying the application when new data is ready for
transmission. Finally, the engine thread does all the network
I/O. Since our platform was created for testing purposes only,
incoming packets are logged and immediately dropped, while
outgoing packets have dummy media payload contents.

Second, we developed a SFU that handles incoming client
streams. Much like the client, the SFU application is divided
into two threads; the main thread is responsible for controlling
and configuring the SFU parameters, while the engine thread
is responsible for handling client packets and invoking the
underlying network I/O mechanism as needed. In particular,
upon receiving a media packet, the SFU must decide based
on its origin, type and pre-configured client preferences, the
subset of clients that the packet should be forwarded to. This
allows NMP participants to select which media streams they
want to receive. For example, they can omit video streams
from some participants or, when layered coding is used, they
can omit the video enhancement layer if they lack bandwidth.
Finally, the SFU must replicate the packet as needed, and
transmit it to the selected subset of clients.

The clients and SFU communicate by using control pack-
ets. Client identification is done by using a Stream Source
ID (SSID). In order to route incoming media packets, the SFU
is responsible for associating SSIDs with valid (IP address,
port) pairs. The first step in participating in a media-streaming
session, is to register with the SFU; that is, to receive a
SSID. Once registration is complete, the client starts receiving
other streams and can start transmitting. Each media packet
is characterized by its payload type, which can be Audio
Standard Quality (ASQ), Video Standard Quality (VSQ) and
Video High Quality (VHQ). As its name implies, in scalable
video coding, the VHQ stream acts as an enhancement layer
for the VSQ layer. Our clients send all three packet types one
after the other at user-configured, fixed intervals.

A. A socket-based approach
The POSIX socket interface provides a high level of ab-

straction and hides many details involved in receiving/sending

Kernel

SFU

Network Interface

Lookup table

Receive socket Send socket

Fig. 1. A socket-based SFU.

packets. As a result, implementing a socket-based SFU is
rather straightforward. When idle, we wait for incoming pack-
ets; since data can arrive at both the control and media ports
we use poll to multiplex these inputs. When packets arrive,
we move them into user space using recvfrom. Note that we
can only move one packet at a time with each kernel crossing.
Once the packet has been moved into user space, we must
perform a lookup based on its SSRC and type to determine to
which clients it should be sent to. We send the packet to every
destination using repeated sendto calls. Again, note that we
cannot send multiple packets at once. When the packet has
been sent to all destinations, we can start processing the next
packet; if none is available, we return to idle state. An overall
view of the socket-based SFU is given in Fig. 1.

Kernel

SFU

Network Interface

Lookup table

NTXNRX

HRX HTX

Fig. 2. A netmap-based SFU.

B. A netmap-based approach

Using netmap to implement the SFU is slightly more
complicated: we must handle packets from multiple queues
and route them to the appropriate destination. For the sake of
simplicity, in this section we will assume that there is only
one hardware queue, i.e., a single RX/TX ring pair per NIC.
When idle, the SFU waits for packets from either the netmap
RX (NRX) ring, which is connected to the NIC, or the host
RX (HRX) ring, which is connected to the host networking
stack. Assume that a media packet arrives; the SFU will
return from poll and will determine the packet source, which
in this case is the NRX ring. With netmap, when returning
from a poll one or more packets can be moved to user
space, without needing further kernel mediation. There are
three possible destinations for packets coming from the NRX
ring: the host OS (i.e., the HTX ring), the SFU control packet
handler or the SFU media packet handler. Routing is done in



4 PUBLISHED IN: PROCEEDINGS OF THE IEEE ISCC 2015

Socket-based SFU Netmap-based SFU
Kernel Crossings n 1

Memory Allocations n Buffers are pre-allocated during startup
Network Processing n host networking stack iterations minimal user space routing
Packet Conversion complex sk_buff structure simple NIC-friendly netmap_ring structure

TABLE I
SOCKET-BASED AND NETMAP-BASED SFU COSTS WHEN FORWARDING A MEDIA PACKET TO n DESTINATIONS.

user space by inspecting the packet headers and requires a few
lookups in a table.

In the case of media packets, the packet is passed to the SFU
media packet handler. From there, the handler will attempt
to send the packet to all its destinations in one pass. First,
the packet is copied n times, where n is the number of
destinations, filling buffers in the NTX ring. Instead of routing
each copy, one lookup is sufficient to update the packet’s
headers with the destination address. At the end of this process,
the incoming packet buffer is also moved to the NTX ring and
updated in order to be sent back to the origin client; this allows
each client to estimate the end-to-end delay of its packets. If
there are not enough NTX buffers to complete the process in
one pass, control information is saved and netmap returns to
polling, this time waiting for NTX buffers to become available.

Control packets are processed by the SFU control handler,
updating its lookup table. Finally, packets destined to the host
OS are copied to the HTX ring, i.e., the host networking stack,
for processing by other applications. An overall view of the
netmap-based SFU is given in Fig. 2.

C. Performance Analysis

For most applications, the socket interface provides suffi-
cient performance, as well as robustness and high portability.
In some cases however, where packets arrive at a very high
rate and little (or no) packet payload processing is required,
sockets may become a performance bottleneck. In sections
II-A and II-C we explained how the netmap scheme can avoid
some of the overheads induced by sockets. This is particularly
relevant for the SFU used in NMP applications, where no
packet payload processing takes place, each received packet
is copied multiple times and the media streams involved can
have high bit rates, especially when video is involved.

Table I summarizes the basic differences between the two
implementations, in the context of forwarding an incoming
media packet in a scenario with n participants, using the over-
head categories explained in section II-A. First, with sockets
we need one system call per recipient, while with netmap
we can make all outgoing packets available to the underlying
NIC driver with a single system call. Second, with sockets we
need to allocate one buffer per outgoing packet, while with
netmap all buffers are pre-allocated during startup. Third, with
sockets we need to pass each outgoing packet through the
host networking stack, while with netmap all routing takes
place at user space via a simple lookup operation. Fourth, with
sockets we need to convert each sk_buff structure used by
the host networking stack to the structure used by the NIC,
while netmap uses a netmap_ring structure that is much
more similar to the NIC structure.

PUBLISHED IN: PROCEEDINGS OF IEEE ISCC 2015 7

6 cli
en

ts

8 cli
en

ts

10
cli

en
ts

0

10

20

30

40

Ti
m

e
Sp

en
t

(%
)

11

17

3
4

24

5

socket/kernel
socket/user

netmap/kernel
netmap/user

Fig. 6. CPU utilization with each client streaming at 750 pps (1.12 Mbps).

6 cli
en

ts

8 cli
en

ts

10
cli

en
ts

0

10

20

30

40

50

60

Ti
m

e
Sp

en
t

(%
)

20

32

5
8

40

10

socket/kernel
socket/user

netmap/kernel
netmap/user

Fig. 7. CPU utilization with each client streaming at 1500 pps (2.24 Mbps).

6 cli
en

ts

8 cli
en

ts
0

5

10

15

20

25

30

35

D
el

ay
(µ
s) 20

24

2
3

socket
netmap

Fig. 8. Packet processing delay each client streaming at 750 pps (1.12 Mbps).
Fig. 3. CPU utilization with each client streaming at 750 pps (1.12 Mbps).

In order to understand how these overheads affect per-
formance, we define packet processing delay as the time
difference between receiving a packet and scheduling the last
“echo” packet for transmission. Using the socket interface, the
total processing delay for an incoming packet is dominated by
system call execution overheads. Hence a rough approximation
of the delay can be calculated by:

ds(n) = krcv + n ∗ ksnd

where krcv and ksnd are the respective system call delays
and n is the number of participants. For example, for a
conferencing session with 8 participants, given that the average
system call overheads were measured to be krcv = 0.7 µs
and ksnd = 2.3 µs, we expect a delay of at least 19.1 µs. In
contrast, with the netmap framewok the total processing delay
for an incoming packet is dominated by user space execution.
A rough approximation of the cost can be calculated by:

dn(n) = urx + n ∗ utx

where urx is the cost of processing an incoming packet and
utx is the cost of preparing an outgoing packet. For example,
for a conferencing session with 8 participants, given that the
average user space execution overheads where measure to be
urx = 0.3 µs and utx = 0.2 µs, we expect a delay of at least
1.9 µs.



PUBLISHED IN: PROCEEDINGS OF IEEE ISCC 2015 5

6 cli
en

ts

8 cli
en

ts

10
cli

en
ts

0

10

20

30

40

Ti
m

e
Sp

en
t

(%
)

11

17

3
4

24

5

socket/kernel
socket/user

netmap/kernel
netmap/user

Fig. 3. CPU utilization with each client streaming at 750 pps (1.12 Mbps).

6 cli
en

ts

8 cli
en

ts

10
cli

en
ts

0

10

20

30

40

50

60
Ti

m
e

Sp
en

t
(%

)

20

32

5
8

40

10

socket/kernel
socket/user

netmap/kernel
netmap/user

Fig. 4. CPU utilization with each client streaming at 1500 pps (2.24 Mbps).

were connected in an isolated Gigabit LAN. One machine
acted as the SFU while the rest acted as as the clients. In
our experiments we varied two factors: the number of clients
participating in each experiment and the bit rate of the media
transmitted by each client. Each experiment consisted of a
warmup period, followed by a 60 s period of measurements.

Since the absolute numbers we are measuring are at the
microsecond scale, we tried our best to ensure that perfor-
mance monitoring had a negligible (if any) effect on results.

For efficient and high-resolution delay measurements, we
counted CPU cycles, whereas for system-wide measurements
we utilized the /proc pseudo-file system exported by Linux.
To ensure repeatability, we ran each experiment multiple times,
collected data over multiple runs and verified that results had
very low variance.

A. Processing Overhead

We measured packet processing overhead as the fraction of
time (%) our CPU spent processing packets. Assuming that the
NIC is able to cope with traffic at the hardware level, the less
CPU time an SFU requires to operate, the more clients it can
support, as well as higher bit rates. To further highlight how the
two implementations differ, we present kernel time separately
from user time. Kernel time, the time spent processing packets
in kernel-mode, captures the costs of executing system calls.
In the socket-based SFU, that includes poll, recvfrom and
sendto, whereas in the case of the netmap-based SFU, it only
includes poll and ioctl. Conversely, user time measures
the time spent processing in user-mode. In the socket-based
SFU, user-time captures the cost of our SFU code, including
application-level routing. In the netmap-based SFU, user-time
also includes the cost of SFU packet routing (both RX and
TX) and packet copying.

Figure 3 shows CPU utilization with 6, 8 and 10 clients,
when clients send media packets at 4 ms intervals and the
media payload sizes are set to 80, 160 and 320 bytes for
the ASQ, VSQ and VHQ streams, respectively. This means
that each client sends 250 packets per second (pps) for each
stream, or 750 pps in total, for a combined data rate of
1.12 Mbps per client1. In all cases, the netmap-based SFU
requires significantly less CPU time to keep up with the traffic,
using on average only 23.4% of the CPU time that the socket-
based SFU requires. As expected, in the socket-based SFU,
most of the time is spent running kernel code inside system
calls, with only a fraction spent executing in user space. In
contrast, the netmap-based SFU spent most of its execution
time running user space code, where packet replication and
routing take place. Figure 4 shows the results of the same
experiment, but with clients sending media packes at 2 ms
intervals, effectively doubling the data rate to 1500 pps per
client, or 2.24 Mbps. The relative performance of the two
implementations is roughly the same, with the netmap-based
SFU using on average only 24.7% of the CPU time that the
socket-based SFU requires.

As these experiments clearly show, while CPU utilization
increases with the number of clients and their bit rate with
both implementations, the netmap-based SFU should be able
to handle around four times the load of the socket-based SFU,
whether in terms of clients or bit rates, before the CPU is
saturated, leading to CPU induced packet delays.

1This figure excludes header overheads, which, due to the small size of the
packets, are not negligible.

Fig. 4. CPU utilization with each client streaming at 1500 pps (2.24 Mbps).

IV. EXPERIMENTAL EVALUATION

Using our prototype implementations, we experimentally
evaluated their performance in terms of packet processing
overhead and delay. To assess processing overhead we mea-
sured the CPU utilization, broken down in its kernel and
user parts, in an otherwise idle system. This metric indicates
how much we can load the system before the CPU becomes
a bottleneck, at which point packets will have to wait to
be processed due to CPU limitations. To assess delay we
measured the difference between the time a media packet was
picked up to be processed and the time its final “echo” packet
was scheduled to be sent. This metric indicates how much
time the SFU itself takes to process the packets, ignoring the
NIC delays which are the same in both implementations.

Our testbed consisted of 11 identical machines using the
Realtek RTL8111/8168B PCI Express Gigabit Ethernet con-
troller and running Linux kernel 3.2.63. Our test machines
were connected in an isolated Gigabit LAN. One machine
acted as the SFU while the rest acted as as the clients. In
our experiments we varied two factors: the number of clients
participating in each experiment and the bit rate of the media
transmitted by each client. Each experiment consisted of a
warmup period, followed by a 60 s period of measurements.

Since the absolute numbers we are measuring are at the
microsecond scale, we tried our best to ensure that perfor-
mance monitoring had a negligible (if any) effect on results.
For efficient and high-resolution delay measurements, we
counted CPU cycles, whereas for system-wide measurements
we utilized the /proc pseudo-file system exported by Linux.
To ensure repeatability, we ran each experiment multiple times,
collected data over multiple runs and verified that results had
very low variance.

A. Processing Overhead

We measured packet processing overhead as the fraction of
time (%) our CPU spent processing packets. Assuming that the
NIC is able to cope with traffic at the hardware level, the less
CPU time an SFU requires to operate, the more clients it can
support, as well as higher bit rates. To further highlight how the
two implementations differ, we present kernel time separately
from user time. Kernel time, the time spent processing packets
in kernel-mode, captures the costs of executing system calls.
In the socket-based SFU, that includes poll, recvfrom and
sendto, whereas in the case of the netmap-based SFU, it only
includes poll and ioctl. Conversely, user time measures
the time spent processing in user-mode. In the socket-based
SFU, user-time captures the cost of our SFU code, including
application-level routing. In the netmap-based SFU, user-time
also includes the cost of SFU packet routing (both RX and
TX) and packet copying.

Figure 3 shows CPU utilization with 6, 8 and 10 clients,
when clients send media packets at 4 ms intervals and the
media payload sizes are set to 80, 160 and 320 bytes for
the ASQ, VSQ and VHQ streams, respectively. This means
that each client sends 250 packets per second (pps) for each
stream, or 750 pps in total, for a combined data rate of
1.12 Mbps per client1. In all cases, the netmap-based SFU
requires significantly less CPU time to keep up with the traffic,
using on average only 23.4% of the CPU time that the socket-
based SFU requires. As expected, in the socket-based SFU,
most of the time is spent running kernel code inside system
calls, with only a fraction spent executing in user space. In
contrast, the netmap-based SFU spent most of its execution
time running user space code, where packet replication and
routing take place. Figure 4 shows the results of the same
experiment, but with clients sending media packes at 2 ms
intervals, effectively doubling the data rate to 1500 pps per
client, or 2.24 Mbps. The relative performance of the two
implementations is roughly the same, with the netmap-based
SFU using on average only 24.7% of the CPU time that the
socket-based SFU requires.

As these experiments clearly show, while CPU utilization
increases with the number of clients and their bit rate with
both implementations, the netmap-based SFU should be able
to handle around four times the load of the socket-based SFU,
whether in terms of clients or bit rates, before the CPU is
saturated, leading to CPU induced packet delays.

B. Delay

Packet processing delay measures the time needed for a
media packet to be forwarded to all its destinations. For
the socket-based SFU this means queuing the n sk_buff
structures to the OS networking stack for transmission. While
the number of sk_buffs the OS allocates for the SFU is
limited (after that, it may start dropping packets), it is more
than enough to provide temporary buffering when the NIC
TX ring is congested. Hence, the observed processing delay
of the socket-based SFU is not affected by such congestion

1This figure excludes header overheads, which, due to the small size of the
packets, are not negligible.



6 PUBLISHED IN: PROCEEDINGS OF THE IEEE ISCC 2015
PUBLISHED IN: PROCEEDINGS OF IEEE ISCC 2015 7

6 cli
en

ts

8 cli
en

ts

10
cli

en
ts

0

10

20

30

40

Ti
m

e
Sp

en
t

(%
)

11

17

3
4

24

5

socket/kernel
socket/user

netmap/kernel
netmap/user

Fig. 6. CPU utilization with each client streaming at 750 pps (1.12 Mbps).

6 cli
en

ts

8 cli
en

ts

10
cli

en
ts

0

10

20

30

40

50

60

Ti
m

e
Sp

en
t

(%
)

20

32

5
8

40

10

socket/kernel
socket/user

netmap/kernel
netmap/user

Fig. 7. CPU utilization with each client streaming at 1500 pps (2.24 Mbps).

6 cli
en

ts

8 cli
en

ts
0

5

10

15

20

25

30

35
D

el
ay

(µ
s) 20

24

2
3

socket
netmap

Fig. 8. Packet processing delay each client streaming at 750 pps (1.12 Mbps).Fig. 5. Packet processing delay each client streaming at 750 pps (1.12 Mbps).

events, although the delay does affect the actual packets. On
the other hand, when the NIC TX rings become congested,
netmap blocks transmission until TX ring buffers become
available. Hence, this cost is included in the observed delays
of the netmap-based SFU. For this reason, we restrained from
reporting latency results from experiments where the TX rings
were heavily congested, as the comparison was heavily biased
in favor of the socket-based SFU and our results, although still
showing improved performance with the netmap-based SFU,
exhibited high variance.

Figure 5 shows the packet processing delay measured for
sessions with 6 and 8 clients, transmitting media packets at
4 ms intervals, or 750 pps per client. Again, the netmap-based
SFU shows significant improvements, with a delay that is on
average only 11.3% of the delay of the socket-based SFU.
Based on our discussion at Section III-C we can expect similar
speedups as the number of clients increases. Furthermore,
although not presented in this paper, in our experiments we
found that as long as the NIC TX queues were not congested
and the CPU usage was reasonable, packet processing delays
were not affected.

V. CONCLUSIONS

We presented the design and implementation of a socket-
based SFU for NMP applications, as well as an alternative SFU
implementation using netmap, a high-performance network
I/O scheme. We highlighted the bottlenecks of using sockets
for the SFU and explained how low-level network I/O can
overcome them. We simulated a number of real-world confer-
encing sessions, and measured the packet processing overhead
and delay of both implementations against the number of
participating clients and the bit rates emmitted by the clients.
Our measurements show that the netmap-based implementa-
tion is significantly lighter and faster than its socket-based
counterpart, reducing packet processing overhead by 76% and
delay by 89%. These results indicate that high performance

I/O mechanisms have great potential for improving the per-
formance and scalability of SFUs built for NMP applications.

ACKNOWLEDGMENT

This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds
through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: THALIS - University
of Crete - MUSINET.

REFERENCES

[1] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe, “Arrakis: The operating system is the
control plane,” in Proc. of the USENIX Conference on Operating Systems
Design and Implementation (OSDI), 2014.

[2] The MusiNet project. [Online]. Available: http://musinet.aueb.gr/
[3] D. Akoumianakis, C. Alexandraki, V. Alexiou, C. Anagnostopoulou,

A. Eleftheriadis, V. Lalioti, A. Mouchtaris, D. Pavlidi, G. C. Polyzos,
P. Tsakalides, G. Xylomenos, and P. Zervas, “The MusiNet project:
Towards unraveling the full potential of networked music performance
systems,” in Proc. of the International Conference on Information,
Intelligence, Systems and Applications (IISA), 2014.

[4] A. Renaud, A. Carôt, and P. Rebelo, “Networked music performance:
State of the art,” in Proc. of the AES Conference on Intelligent Audio
Environments, 2007.

[5] A. Eleftheriadis, R. M. Civanlar, and O. Shapiro, “Multipoint videocon-
ferencing with scalable video coding,” Journal of Shejiang University
SCIENCE A, vol. 7, pp. 696–705, 2006.

[6] G. Xylomenos, C. Tsilopoulos, Y. Thomas, and G. C. Polyzos, “Reduced
switching delay for networked music performance,” in Packet Video
Workshop (Poster Session), 2013.

[7] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click modular router,” ACM Transactions on Computer Systems, vol. 18,
pp. 263–297, 2000.

[8] J. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and J. Luo, “NetFPGA–an open platform for gigabit-
rate network switching and routing,” in Proc. of the IEEE Microelec-
tronic Systems Education Conference (MSE), 2007.

[9] L. Rizzo, “Netmap: a novel framework for fast packet I/O,” in Proc. of
the USENIX Annual Technical Conference (ATC), 2012.

[10] G. Baltas and G. Xylomenos, “Ultra low delay switching for networked
music performance,” in Proc. of the International Conference on Infor-
mation, Intelligence, Systems and Applications (IISA), 2014.


