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Abstract—We present the Information-Centric Access 

Network (I-CAN) architecture, which is based on the publish-

subscribe Information-Centric Networking (ICN) paradigm, 

identifying how it accounts for specific characteristics of mobile 

and wireless access networks.  We also present initial results 

from the testbed implementation of two application scenarios 

that exploit key features of the I-CAN architecture: secure 

publication proxy and multi-source mobile video streaming. 
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I.  INTRODUCTION 

Mobile traffic in 2014 grew by 69%, becoming nearly 30-
times the global Internet traffic in 2000, and is expected to 
grow 10-fold from 2014 until 2019

1
. A promising solution to 

address the strain from the exponential growth of mobile traffic 
is to move a portion of it to Wi-Fi networks, exploiting the 
existence of multiple wireless interfaces in smartphones (i.e., 
both 3G/4G and Wi-Fi) and the significantly lower cost of Wi-
Fi technology. At the same time, the Internet's current 
dominant usage model involves end-users exchanging 
information or accessing services, independently of the device 
that provides them. Moreover, not only the consumption but 
also the production of content is becoming user-centric, 
requiring a network infrastructure that facilitates the efficient 
delivery of user-generated content and considering the 
connectivity and energy constraints of mobile sources. 

The goal of the I-CAN project is to develop and evaluate 
architectures and procedures for future access networks based 
on Information-Centric Networking (ICN) in order to radically 
advance the integration of cellular (licensed spectrum) and 
wireless (license-exempt) access technologies. ICN decouples 
the data from the actual devices storing it through the location-
independent naming of content. This decoupling presents a 
fundamental departure from the Internet's host-centric 
communication model towards an architecture that matches the 
Internet's current dominant usage identified above. 
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Content-awareness along with the decoupling of content 
creation, advertisement, and transfer, offers opportunities for 
enhancing both receiver and content mobility. For user-
generated content, mobile sources can announce the 
availability of content, deferring its actual transfer until it is 
requested; such an approach can have benefits in terms of cost, 
energy efficiency, and improved privacy and access control. 

The possibility of ubiquitous in-network caching, which is 
inherent to ICN due to its explicit naming of content rather than 
communication endpoints, opens up many opportunities for 
exploiting content-awareness in order to place information 
closer to the user. Moreover, by naming the content itself, ICN 
allows the receiver to obtain different parts of the content from 
different sources and through different paths. Optimizations in 
some of the above directions through overlay solutions to the 
current Internet are possible, but such solutions can be costly 
and are necessarily application-dependent. A key direction of 
ICN is to create a networking substrate that provides 
application-independent communication primitives that satisfy 
emerging information transfer and communication 
requirements, thus facilitating a more efficient and timely 
development of distributed data sharing applications, which is 
crucial for future innovations in the mobile space. 

The contribution of this paper is to present the I-CAN 
architecture, which is based on the Publish-Subscribe Internet 
(PSI) architecture developed in the PURSUIT project [1], 
identifying how it accounts for specific characteristics of 
mobile and wireless access networks, and discuss initial results 
from the testbed implementation of two application scenarios 
that exploit key features of the I-CAN architecture: secure 
publication proxy and multi-source mobile video streaming. 

II. THE PUBLISH-SUBSCRIBE INTERNET ARCHITECTURE 

The PSI [1] architecture is based on the publish/subscribe 
paradigm where users interested in receiving some content 
subscribe for it through their network device, referred to as the 
subscriber, and content owners store their content on a network 
device which advertises it and if requested publishes it (hence 
these devices are referred to as the publishers).   

Every content item is identified by a flat identifier known 
as the Rendezvous Identifier (RId). Moreover, every content 
item belongs to at least one scope. The purpose of a scope is to 
give a hint about content location and to group content items 
with the sane dissemination level. Scopes are hierarchically 



organized and identified by a Scope Identifier (SId). Scopes are 
managed by specialized Rendezvous Nodes (RNs), which form 
an overlay Rendezvous Network. The rendezvous network 
provides a lookup service, which routes a subscription to a RN 
that “knows” (at least) one publisher for the requested item.  

A typical transaction in PSI involves the following steps 
(see Fig. 1). An owner of a content item assigns it a RId and 
stores a copy of it in at least one publisher that advertises its 
availability in one or more scopes (message 1). With this 
advertisement, the RId is stored in the RNs that manage these 
scopes. Subscribers send subscriptions for specific (SId,RId) 
pairs (message 2), which are routed by the rendezvous network 
to an appropriate RN. Upon receiving a subscription message 
and provided that at least one publisher exists, the RN instructs 
a Topology Manager to create a forwarding path from a 
publisher to the subscriber, which is included in the notification 
message to the publisher (message 3). Finally, the content item 
is transferred from the publisher to the subscriber (message 4).  

 

Fig. 1. The Publish-Subscribe Internet architecture 

III. THE I-CAN ARCHITECTURE 

The I-CAN architecture adapts PSI to an access network. In 
this section we discuss the main features of the I-CAN 
architecture, identifying how it accounts for specific 
characteristics of mobile and wireless access networks. 

A. Content types and content naming 

I-CAN supports two types of content: channel and 
document. On the other hand, the PSI architecture supports 
only channel types of content. Channel content items are 
tolerant of packet losses, hence are delivered using unreliable 
transport protocols over unidirectional paths. Live media 
streaming is an example of a channel content item. Document 
content items, on the other hand, are delivered using reliable 
transport protocols over bidirectional paths. A publisher must 
include the content type in the advertisement messages, since 
this can be required by the network to decide whether to create 
unidirectional or bidirectional forwarding paths. Content items 
with global significance require a unique association between 
the (SId, RId) pair and the content item. On the other hand, 
content items with local significance (e.g., local weather 
notifications) can be identified using a local scope identifier 
and are not globally unique. Finally, the granularity of a (SId, 
Rid) pair is application specific, and can range from a file 

chunk to a whole file. Similarly, the temporal dependency (or 
independency) of the SId, RId mapping is application specific. 

B. Publication proxies and mobile publishers 

The I-CAN architecture considers “proxy” publishers that 
store and advertise content on behalf of actual owners. A proxy 
publisher is usually a server appointed by the owner, but can 
also be any device that “happens” to have a piece of content 
(“opportunistic” proxy) e.g., a (mobile) device that just 
received the content.  The advantage of publication proxies is 
that the content remains available even when an owner’s 
device is offline and content transfer is not affected by the 
owner device’s mobility (publisher mobility). Alternatively, 
owners can store content on their own (mobile) device. In this 
case owners can initially advertise the availability of their 
content, deferring its actual transfer until more cost and energy 
efficient connectivity options are available. An additional 
benefit of this approach is that retaining content on the owner’s 
device allows for improved privacy and access control.   

C. Subscription proxies and proactive caching 

The I-CAN architecture introduces “proxy” subscribers, 
which can send subscriptions on behalf of actual receiver 
devices. This can be beneficial in cases where receivers are 
mobile and experience periods of disconnection. Moreover, by 
proactively fetching content, proxies can make content 
immediately available in local access networks where the 
requesting device will connect to, such as small cells and 
hotspots, overcoming the limited capacity of the backhaul links 
which is typical for such access networks. Finally, proxy 
subscribers can significantly reduce the overhead of signaling 
messages, e.g., in the case of mobile applications requesting 
frequent updates from application servers, which can be 
significant in cellular networks and lead to signaling storms. 

D.  Subscriptions to future content & persistent subscriptions 

A subscription may concern both content that exists prior to 
the subscription, e.g., video files, and content that is produced 
(or changes) at some time after the subscription, e.g., news or 
twitter updates and alarm notifications. Also, subscriptions 
may concern content for which, at the time of the subscription, 
there is no available publisher. For example, a user may 
subscribe to a piece of content originally hosted in a mobile 
device which is currently offline; when the device becomes 
available it will be notified about the pending subscriptions. 
Moreover, subscriptions can have a persistent nature, i.e., a 
single subscription can declare a node’s interest in receiving all 
future instantiations of the requested content, e.g., all future 
notifications corresponding to a particular identifier; this allows 
push-based content dissemination, in addition to ICN’s native 
pull-based model. A significant benefit of persistent 
subscriptions is the reduction of the signaling overhead in 
cellular networks and contention in shared access wireless 
networks. The persistence of a subscription can be related to 
the RId, SId semantics and is application specific. 

E. Centralized, decentralized, and fast rendezvous 

I-CAN considers two approaches for implementing 
rendezvous: centralized and decentralized. Centralized 



rendezvous is implemented using a few nodes (or even a single 
node within a local domain). These nodes are considered to be 
well-known and are used by subscribers for content 
subscriptions and publishers for content advertisements. 
Centralized rendezvous is the only option supported in the 
current PSI implementation. With decentralized rendezvous, 
every network node, including mobile devices, can perform 
subscription resolution. In this case the content advertisements 
and/or subscriptions can be broadcasted inside the local 
network, exploiting the inherent broadcasting support in 
wireless networks. Also, such an approach can take advantage 
of emerging device-to-device communication, such as Wi-Fi 
direct, which do not require infrastructure support. Centralized 
and decentralized rendezvous are not mutually exclusive; both 
can be used simultaneously to support multi-source content 
transfer, as discussed in the next subsection and Section IV.B. 

After resolution of the initial subscription, through which 
receivers obtain the identity of the publishers for the content 
they requested, the receivers can send subsequent subscriptions 
directly to publishers. Advantages of such a fast rendezvous 
include reducing the load on the rendezvous network (in the 
case of centralized rendezvous), reducing the rendezvous 
broadcasting overhead and the contention in shared access 
wireless networks (in the case of decentralized rendezvous), 
and reducing the latency for obtaining the requested content. 

F. Multi-source and multi-interface content transfer 

A key feature of ICN architectures is that they allow 
content transfer from multiple publishers. In I-CAN this is 
supported by the rendezvous network, which may either select 
a single publisher or send a list of all (or some) of the available 
publishers to the subscriber, which then selects the particular 
publishers to obtain the requested content. Alternatively, the 
rendezvous network may directly notify the publisher (or a 
subset of the available publishers) to send the requested content 
to the subscriber. The above flexibility enables two types of 
multi-source transfers. First, a subscriber can obtain different 
parts of a content item from different sources. Second, a 
subscriber can obtain content simultaneously from multiple 
sources; for example, a monitoring node can request a 
particular measurement from a group of sensor nodes.  Hence, 
I-CAN can support one-to-many/any, many/any-to-one, and 
many/any-to-many/any connectivity.   

The I-CAN architecture allows subscribers to efficiently 
use multiple heterogeneous interfaces and connectivity options, 
which include 3/4G, infrastructure Wi-Fi, and device-to-device 
communication such as Wi-Fi direct; the selection and load 
balancing of content transfer across multiple interfaces should 
consider their current state (e.g., delay, loss, and throughput), 
in conjunction with the user/application requirements. Benefits 
of multi-source and multi-interface transfer include improved 
resilience against publisher and network failures, efficient 
utilization of heterogeneous mobile and wireless resources, and 
improved QoE (Quality of Experience). 

G. Security 

The I-CAN architecture adopts a content-oriented security 
model, i.e., it employs security mechanisms for securing 
content, rather than securing communication channels. A 

content name in I-CAN may include direct “security bindings” 
that ensure content integrity and authenticity. Such a direct 
security binding could be the usage of RIds of the form “owner 
public key | content hash”. Nevertheless, since direct bindings 
result in content names that are not human readable, indirect 
bindings are also considered: pre-trusted rendezvous points can 
be used to map human readable content names to security 
primitives. I-CAN uses Identity Based Encryption (IBE) [2]. 
An IBE scheme is a public key scheme where an arbitrary 
string (including a human readable name) can be used as the 
public key. A constrain of IBE is that all entities should know 
some publicly available “system parameters.” In an access 
network system parameters can be easily disseminated, e.g., 
using a DHCP-like mechanism, or simply by periodically 
broadcasting them. As discussed in subsections III.B and III.C, 
proxies are an essential component of the architecture. 
Nevertheless, proxies introduce security and privacy risks. 
Traditional end-to-end encryption poses hurdles to proxy-based 
communication. Consider for example the case of a publisher 
proxy: if end-to-end encryption is used the content owner has 
either to share the same encryption key will all subscribers or 
to generate as many encrypted versions of the content as the 
number of subscribers. In order to remedy this problem, I-CAN 
adopts proxy re-encryption (PRE) [3]. PRE allows third-parties 
(proxies), to re-encrypt a ciphertext, encrypted with the public 
key of a user A (usually the publisher), in a way that another 
user B (usually the subscriber) can decrypt it with his own 
secret private key. The re-encryption process leaks no 
information to the proxy. 

IV. EVALUATION 

A. Secure publisher proxy 

In this section we present the design and implementation of 
a secure publisher proxy that combines Identity Based 
Encryption (IBE) and proxy re-encryption (PRE). This solution 
is based on the Identity-based PRE scheme proposed in [3] and 
is composed of the following functions: 

 Setup(): This function is executed by a Private Key 
Generator (PKG) and outputs public System Parameters 
(SP) and a private Master Secret Key (MSK). 

 KeyGen(): This function is executed by a PKG, takes as 
input the MSK and an identity ID, and outputs the 
secret key SKID that corresponds to the identity ID. 

 Encrypt(): This function takes as input SP, an identity 
ID and a message MSG and outputs the encryption CID 
of MSG using ID as public key. 

 RKGen(): This function takes as input SP, a secret key 
SKID1 and an identity ID2 and generates a (public) re-
encryption key RKID1->ID2. 

 Reencrypt(): This function takes as input SP, a (public) 
re-encryption key RKID1->ID2, and a ciphertext CID1 and 
outputs a new ciphertext CID2. 

 Decrypt():  This function takes as input SP, a secret key 
SKID and a ciphertext CID and outputs the decryption of 
the ciphertext. 



A secure publisher proxy is implemented as follows 
(Fig. 2). A content owner encrypts content items using a 
symmetric encryption key (different for each item). Each 
symmetric key is then encrypted using IBE and the identity of 
the owner. The encrypted content items and the encrypted 
symmetric keys are stored in a proxy. To access the encrypted 
content, a subscriber needs to decrypt the symmetric 
encryption key. This can be achieved by having the proxy re-
encrypt the symmetric key and derive CSubscriber from COwner. 
The re-encryption key for this process can only be generated by 
the content owner. In our solution we consider two approaches: 
(i) the owner generates all possible re-encryption keys, stores 
them in the proxy and then goes off-line, or (ii) the owner is 
online and generates the appropriate re-encryption key for 
every request. An interesting property of this solution is that an 
owner can generate a re-encryption key for an identity that 
does not yet exist, but will be created in the future.  

 

Fig. 2. Secure publisher proxy scenario 

Our prototype is implemented using the Charm Crypto 
library [4]. In order to achieve a security level equivalent to 
RSA with key size 1024 bits, the size of the public system 
parameters is 1024 bits, the size of an encrypted symmetric key 
is 2288 bits and the size of a re-encryption key is 832 bits. 
Consider now the case in which the owner stores all re-
encryption keys in the proxy. Suppose that RSA public key 
cryptography was used. The secure publisher proxy could have 
been implemented by having the owner encrypt every 
symmetric encryption key with the public keys of all 
subscribers. Therefore, if 10 items had to be shared with 10 
subscribers, the owner would have to generate 100 different 
ciphertexts, whereas our solution requires 10 re-encryption 
keys and 10 IBE ciphertexts. We now examine the case where 
an owner is online and does not store re-encryption keys in the 
proxy. Suppose a subscriber wants to access 10 files from the 
same owner. Following the RSA approach, the proxy would 
have to communicate 10 times with the owner in order to 
obtain the encryptions of the symmetric keys. With our 
solution, the proxy has to communicate only once, since the 
same re-encryption key can be used for all subsequent requests.   

B. Multi-source and multi-interface video streaming  

In this section we consider a mobile video streaming 
application and show how subscription proxies and the multi-

source/interface features of the I-CAN architecture can be used 
to offload cellular traffic to Wi-Fi, offering equal or better QoE 
to end-users.  This section is based on our previous work in [5]; 
the main enhancement of the current design is to exploit 
device-to-device communication with Wi-Fi direct, utilizing 
the decentralized and fast rendezvous mechanisms discussed in 
Section III.E. In related work, [6] investigates cooperation 
between mobile devices to exploit device-to-device 
communication for video streaming, [7] investigates adaptive 
video streaming over Content-Centric Networks (CNN), and 
[8] investigates multi-source video streaming. Our work differs 
in that we consider multi-source video streaming that utilizes 
proactive caching based on mobility and throughput prediction. 

1)  Testbed implementation 
Our testbed consists of mobile devices (subscribers) that 

run a multi-source video streaming client. The client can utilize 
both cellular and Wi-Fi interfaces and request different parts 
(chunks) of a video from different sources, which can be 
publishers, subscription proxies with caches, or neighboring 
mobile devices. The streaming client implements the following 
three procedures (see [5] for details): 

 Load balancing: The client adjusts the number of 
video chunks that it requests from each source based 
on the measured throughput. 

 Fault tolerance: The client can detect when a source or 
the path from a source is down, and request video 
chunks from another available source. 

 Prefetching: The client exploits mobility and 
throughput prediction to request that video chunks are 
prefetched by proxies at hotspots it will encounter. 

 
Fig. 3. Multi-source mobile video streaming client design 

The high-level design of the mobile video streaming client 
is shown in Fig. 3. The main components are the download 
manager and the downloaders. The download manager uses 
mobility and throughput prediction information to instruct 
subscription proxies to prefetch and cache video chunks. The 
download manager also controls and synchronizes the 
downloaders. Each downloader transfers video chunks from a 
different source. The video streaming client has been tested on 
smartphones running Android 4.0.4 and 4.2.2. 

Our testbed includes laptops with VirtualBox 4.3.6/18 and 
Ubuntu 13.10/10.04 virtual machines, which run publisher and 
subscription proxies. A device’s mobility, in terms of different 
connectivity options and download rates for cellular, Wi-Fi, 
and ADSL links, is emulated based on scenarios defined in an 



XML file; the XML file is downloaded by the streaming client 
in the beginning of each experiment; see [5] for details. 

2) Experiments 

We consider the scenario in Fig. 4. The access points are 

connected to the publisher through an emulated ADSL 

connection with throughput 3 Mbps. The subscriber 

encounters a Wi-Fi hotspot at times 0,100,200,400,500 

seconds and at 300 seconds connects using Wi-Fi direct with 

another smartphone that has the requested video; it remains in 

the hotspot and smartphone range for 20 seconds. The 

mobility path is known to the subscriber, which instructs 

proxies to prefetch video chunks. The video stream has an 

average bit rate 1.65 Mbps and total size 120 MB. The results 

presented below are the average of 2-5 runs. Results for 

different scenarios and for the load balancing and fault 

tolerance mechanisms are contained in [5].  

 
Fig. 4. Multi-source mobile video streaming scenario 

Traffic offloading: In this experiment the maximum 

cellular rate is 2 Mbps.  Fig. 1 shows the percentage of video 

traffic offloaded as a function of the Wi-Fi throughput, for 

three schemes: 1) no prefetching with the cellular network 

used at maximum rate, 2) prefetching with the cellular 

network used at maximum rate, and 3) prefetching with the 

cellular throughput lower than the maximum, but enough to 

avoid frame pauses. The results show that the percentage of 

offloaded traffic with prefetching increases when the Wi-Fi 

throughput increases; on the other hand, without prefetching 

the percentage of offloading is independent of the Wi-Fi 

throughput, since the ADSL backhaul is the bottleneck.  

Video streaming QoE: The Wi-Fi throughput is set to 5 

Mbps and we reduce the cellular throughput so that the 

subscriber experiences frame pauses. Fig. 6 shows the number 

of pauses as a function of the cellular throughput. The gain 

with prefetching is higher when the cellular throughput is 

smaller, which is when the higher Wi-Fi throughput can be 

utilized with prefetching to download video chunks faster and 

avoid frame pauses.  

V. CONCLUSIONS 

We have described the Information-Centric Access Network 

(I-CAN) architecture, identifying how it accounts for specific 

characteristics of mobile and wireless access networks. We 

also presented experiments with two application scenarios 

involving secure publisher proxies and multi-source mobile 

video streaming, which highlight I-CAN’s key features. 

Ongoing work is extending the video client to perform 

adaptive streaming and conducting experiments with video 

sharing among devices using Wi-Fi direct. 

 

Fig. 5. Video traffic offloading  

 

 

Fig. 6. Video QoE  
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