
I-CAN: Information-Centric Access Networking*
Architecture and Experiments

Vasilios A. Siris, Nikos Fotiou, Dimitrios Dimopoulos, George C. Polyzos

Mobile Multimedia Laboratory

Department of Informatics, School of Information Sciences and Technology

Athens University of Economics and Business, Patision 76, 104 34, Athens, Greece

{vsiris, fotiou, dimdimopoulos, polyzos}@aueb.gr

Abstract—We present the Information-Centric Access

Network (I-CAN) architecture, which is based on the publish-

subscribe Information-Centric Networking (ICN) paradigm,

identifying how it accounts for specific characteristics of mobile

and wireless access networks. We also present initial results

from the testbed implementation of two application scenarios

that exploit key features of the I-CAN architecture: secure

publication proxy and multi-source mobile video streaming.

Keywords—Information-Centric Networks; security; mobile

video streaming; multi-source data transfer

I. INTRODUCTION

Mobile traffic in 2014 grew by 69%, becoming nearly 30-
times the global Internet traffic in 2000, and is expected to
grow 10-fold from 2014 until 2019

1
. A promising solution to

address the strain from the exponential growth of mobile traffic
is to move a portion of it to Wi-Fi networks, exploiting the
existence of multiple wireless interfaces in smartphones (i.e.,
both 3G/4G and Wi-Fi) and the significantly lower cost of Wi-
Fi technology. At the same time, the Internet's current
dominant usage model involves end-users exchanging
information or accessing services, independently of the device
that provides them. Moreover, not only the consumption but
also the production of content is becoming user-centric,
requiring a network infrastructure that facilitates the efficient
delivery of user-generated content and considering the
connectivity and energy constraints of mobile sources.

The goal of the I-CAN project is to develop and evaluate
architectures and procedures for future access networks based
on Information-Centric Networking (ICN) in order to radically
advance the integration of cellular (licensed spectrum) and
wireless (license-exempt) access technologies. ICN decouples
the data from the actual devices storing it through the location-
independent naming of content. This decoupling presents a
fundamental departure from the Internet's host-centric
communication model towards an architecture that matches the
Internet's current dominant usage identified above.

1
 Cisco Visual Networking Index: Global Mobile Data Traffic

Forecast Update, 2014-2019, Feb. 5, 2015.
* This work was co-financed by the EU (European Social Fund–ESF)
and Greek national funds through the Operational Program “Education
and Lifelong Learning” of the National Strategic Reference
Framework (NSRF)–Research Funding Program: Aristeia II/I-CAN.

Content-awareness along with the decoupling of content
creation, advertisement, and transfer, offers opportunities for
enhancing both receiver and content mobility. For user-
generated content, mobile sources can announce the
availability of content, deferring its actual transfer until it is
requested; such an approach can have benefits in terms of cost,
energy efficiency, and improved privacy and access control.

The possibility of ubiquitous in-network caching, which is
inherent to ICN due to its explicit naming of content rather than
communication endpoints, opens up many opportunities for
exploiting content-awareness in order to place information
closer to the user. Moreover, by naming the content itself, ICN
allows the receiver to obtain different parts of the content from
different sources and through different paths. Optimizations in
some of the above directions through overlay solutions to the
current Internet are possible, but such solutions can be costly
and are necessarily application-dependent. A key direction of
ICN is to create a networking substrate that provides
application-independent communication primitives that satisfy
emerging information transfer and communication
requirements, thus facilitating a more efficient and timely
development of distributed data sharing applications, which is
crucial for future innovations in the mobile space.

The contribution of this paper is to present the I-CAN
architecture, which is based on the Publish-Subscribe Internet
(PSI) architecture developed in the PURSUIT project [1],
identifying how it accounts for specific characteristics of
mobile and wireless access networks, and discuss initial results
from the testbed implementation of two application scenarios
that exploit key features of the I-CAN architecture: secure
publication proxy and multi-source mobile video streaming.

II. THE PUBLISH-SUBSCRIBE INTERNET ARCHITECTURE

The PSI [1] architecture is based on the publish/subscribe
paradigm where users interested in receiving some content
subscribe for it through their network device, referred to as the
subscriber, and content owners store their content on a network
device which advertises it and if requested publishes it (hence
these devices are referred to as the publishers).

Every content item is identified by a flat identifier known
as the Rendezvous Identifier (RId). Moreover, every content
item belongs to at least one scope. The purpose of a scope is to
give a hint about content location and to group content items
with the sane dissemination level. Scopes are hierarchically

organized and identified by a Scope Identifier (SId). Scopes are
managed by specialized Rendezvous Nodes (RNs), which form
an overlay Rendezvous Network. The rendezvous network
provides a lookup service, which routes a subscription to a RN
that “knows” (at least) one publisher for the requested item.

A typical transaction in PSI involves the following steps
(see Fig. 1). An owner of a content item assigns it a RId and
stores a copy of it in at least one publisher that advertises its
availability in one or more scopes (message 1). With this
advertisement, the RId is stored in the RNs that manage these
scopes. Subscribers send subscriptions for specific (SId,RId)
pairs (message 2), which are routed by the rendezvous network
to an appropriate RN. Upon receiving a subscription message
and provided that at least one publisher exists, the RN instructs
a Topology Manager to create a forwarding path from a
publisher to the subscriber, which is included in the notification
message to the publisher (message 3). Finally, the content item
is transferred from the publisher to the subscriber (message 4).

Fig. 1. The Publish-Subscribe Internet architecture

III. THE I-CAN ARCHITECTURE

The I-CAN architecture adapts PSI to an access network. In
this section we discuss the main features of the I-CAN
architecture, identifying how it accounts for specific
characteristics of mobile and wireless access networks.

A. Content types and content naming

I-CAN supports two types of content: channel and
document. On the other hand, the PSI architecture supports
only channel types of content. Channel content items are
tolerant of packet losses, hence are delivered using unreliable
transport protocols over unidirectional paths. Live media
streaming is an example of a channel content item. Document
content items, on the other hand, are delivered using reliable
transport protocols over bidirectional paths. A publisher must
include the content type in the advertisement messages, since
this can be required by the network to decide whether to create
unidirectional or bidirectional forwarding paths. Content items
with global significance require a unique association between
the (SId, RId) pair and the content item. On the other hand,
content items with local significance (e.g., local weather
notifications) can be identified using a local scope identifier
and are not globally unique. Finally, the granularity of a (SId,
Rid) pair is application specific, and can range from a file

chunk to a whole file. Similarly, the temporal dependency (or
independency) of the SId, RId mapping is application specific.

B. Publication proxies and mobile publishers

The I-CAN architecture considers “proxy” publishers that
store and advertise content on behalf of actual owners. A proxy
publisher is usually a server appointed by the owner, but can
also be any device that “happens” to have a piece of content
(“opportunistic” proxy) e.g., a (mobile) device that just
received the content. The advantage of publication proxies is
that the content remains available even when an owner’s
device is offline and content transfer is not affected by the
owner device’s mobility (publisher mobility). Alternatively,
owners can store content on their own (mobile) device. In this
case owners can initially advertise the availability of their
content, deferring its actual transfer until more cost and energy
efficient connectivity options are available. An additional
benefit of this approach is that retaining content on the owner’s
device allows for improved privacy and access control.

C. Subscription proxies and proactive caching

The I-CAN architecture introduces “proxy” subscribers,
which can send subscriptions on behalf of actual receiver
devices. This can be beneficial in cases where receivers are
mobile and experience periods of disconnection. Moreover, by
proactively fetching content, proxies can make content
immediately available in local access networks where the
requesting device will connect to, such as small cells and
hotspots, overcoming the limited capacity of the backhaul links
which is typical for such access networks. Finally, proxy
subscribers can significantly reduce the overhead of signaling
messages, e.g., in the case of mobile applications requesting
frequent updates from application servers, which can be
significant in cellular networks and lead to signaling storms.

D. Subscriptions to future content & persistent subscriptions

A subscription may concern both content that exists prior to
the subscription, e.g., video files, and content that is produced
(or changes) at some time after the subscription, e.g., news or
twitter updates and alarm notifications. Also, subscriptions
may concern content for which, at the time of the subscription,
there is no available publisher. For example, a user may
subscribe to a piece of content originally hosted in a mobile
device which is currently offline; when the device becomes
available it will be notified about the pending subscriptions.
Moreover, subscriptions can have a persistent nature, i.e., a
single subscription can declare a node’s interest in receiving all
future instantiations of the requested content, e.g., all future
notifications corresponding to a particular identifier; this allows
push-based content dissemination, in addition to ICN’s native
pull-based model. A significant benefit of persistent
subscriptions is the reduction of the signaling overhead in
cellular networks and contention in shared access wireless
networks. The persistence of a subscription can be related to
the RId, SId semantics and is application specific.

E. Centralized, decentralized, and fast rendezvous

I-CAN considers two approaches for implementing
rendezvous: centralized and decentralized. Centralized

rendezvous is implemented using a few nodes (or even a single
node within a local domain). These nodes are considered to be
well-known and are used by subscribers for content
subscriptions and publishers for content advertisements.
Centralized rendezvous is the only option supported in the
current PSI implementation. With decentralized rendezvous,
every network node, including mobile devices, can perform
subscription resolution. In this case the content advertisements
and/or subscriptions can be broadcasted inside the local
network, exploiting the inherent broadcasting support in
wireless networks. Also, such an approach can take advantage
of emerging device-to-device communication, such as Wi-Fi
direct, which do not require infrastructure support. Centralized
and decentralized rendezvous are not mutually exclusive; both
can be used simultaneously to support multi-source content
transfer, as discussed in the next subsection and Section IV.B.

After resolution of the initial subscription, through which
receivers obtain the identity of the publishers for the content
they requested, the receivers can send subsequent subscriptions
directly to publishers. Advantages of such a fast rendezvous
include reducing the load on the rendezvous network (in the
case of centralized rendezvous), reducing the rendezvous
broadcasting overhead and the contention in shared access
wireless networks (in the case of decentralized rendezvous),
and reducing the latency for obtaining the requested content.

F. Multi-source and multi-interface content transfer

A key feature of ICN architectures is that they allow
content transfer from multiple publishers. In I-CAN this is
supported by the rendezvous network, which may either select
a single publisher or send a list of all (or some) of the available
publishers to the subscriber, which then selects the particular
publishers to obtain the requested content. Alternatively, the
rendezvous network may directly notify the publisher (or a
subset of the available publishers) to send the requested content
to the subscriber. The above flexibility enables two types of
multi-source transfers. First, a subscriber can obtain different
parts of a content item from different sources. Second, a
subscriber can obtain content simultaneously from multiple
sources; for example, a monitoring node can request a
particular measurement from a group of sensor nodes. Hence,
I-CAN can support one-to-many/any, many/any-to-one, and
many/any-to-many/any connectivity.

The I-CAN architecture allows subscribers to efficiently
use multiple heterogeneous interfaces and connectivity options,
which include 3/4G, infrastructure Wi-Fi, and device-to-device
communication such as Wi-Fi direct; the selection and load
balancing of content transfer across multiple interfaces should
consider their current state (e.g., delay, loss, and throughput),
in conjunction with the user/application requirements. Benefits
of multi-source and multi-interface transfer include improved
resilience against publisher and network failures, efficient
utilization of heterogeneous mobile and wireless resources, and
improved QoE (Quality of Experience).

G. Security

The I-CAN architecture adopts a content-oriented security
model, i.e., it employs security mechanisms for securing
content, rather than securing communication channels. A

content name in I-CAN may include direct “security bindings”
that ensure content integrity and authenticity. Such a direct
security binding could be the usage of RIds of the form “owner
public key | content hash”. Nevertheless, since direct bindings
result in content names that are not human readable, indirect
bindings are also considered: pre-trusted rendezvous points can
be used to map human readable content names to security
primitives. I-CAN uses Identity Based Encryption (IBE) [2].
An IBE scheme is a public key scheme where an arbitrary
string (including a human readable name) can be used as the
public key. A constrain of IBE is that all entities should know
some publicly available “system parameters.” In an access
network system parameters can be easily disseminated, e.g.,
using a DHCP-like mechanism, or simply by periodically
broadcasting them. As discussed in subsections III.B and III.C,
proxies are an essential component of the architecture.
Nevertheless, proxies introduce security and privacy risks.
Traditional end-to-end encryption poses hurdles to proxy-based
communication. Consider for example the case of a publisher
proxy: if end-to-end encryption is used the content owner has
either to share the same encryption key will all subscribers or
to generate as many encrypted versions of the content as the
number of subscribers. In order to remedy this problem, I-CAN
adopts proxy re-encryption (PRE) [3]. PRE allows third-parties
(proxies), to re-encrypt a ciphertext, encrypted with the public
key of a user A (usually the publisher), in a way that another
user B (usually the subscriber) can decrypt it with his own
secret private key. The re-encryption process leaks no
information to the proxy.

IV. EVALUATION

A. Secure publisher proxy

In this section we present the design and implementation of
a secure publisher proxy that combines Identity Based
Encryption (IBE) and proxy re-encryption (PRE). This solution
is based on the Identity-based PRE scheme proposed in [3] and
is composed of the following functions:

 Setup(): This function is executed by a Private Key
Generator (PKG) and outputs public System Parameters
(SP) and a private Master Secret Key (MSK).

 KeyGen(): This function is executed by a PKG, takes as
input the MSK and an identity ID, and outputs the
secret key SKID that corresponds to the identity ID.

 Encrypt(): This function takes as input SP, an identity
ID and a message MSG and outputs the encryption CID
of MSG using ID as public key.

 RKGen(): This function takes as input SP, a secret key
SKID1 and an identity ID2 and generates a (public) re-
encryption key RKID1->ID2.

 Reencrypt(): This function takes as input SP, a (public)
re-encryption key RKID1->ID2, and a ciphertext CID1 and
outputs a new ciphertext CID2.

 Decrypt(): This function takes as input SP, a secret key
SKID and a ciphertext CID and outputs the decryption of
the ciphertext.

A secure publisher proxy is implemented as follows
(Fig. 2). A content owner encrypts content items using a
symmetric encryption key (different for each item). Each
symmetric key is then encrypted using IBE and the identity of
the owner. The encrypted content items and the encrypted
symmetric keys are stored in a proxy. To access the encrypted
content, a subscriber needs to decrypt the symmetric
encryption key. This can be achieved by having the proxy re-
encrypt the symmetric key and derive CSubscriber from COwner.
The re-encryption key for this process can only be generated by
the content owner. In our solution we consider two approaches:
(i) the owner generates all possible re-encryption keys, stores
them in the proxy and then goes off-line, or (ii) the owner is
online and generates the appropriate re-encryption key for
every request. An interesting property of this solution is that an
owner can generate a re-encryption key for an identity that
does not yet exist, but will be created in the future.

Fig. 2. Secure publisher proxy scenario

Our prototype is implemented using the Charm Crypto
library [4]. In order to achieve a security level equivalent to
RSA with key size 1024 bits, the size of the public system
parameters is 1024 bits, the size of an encrypted symmetric key
is 2288 bits and the size of a re-encryption key is 832 bits.
Consider now the case in which the owner stores all re-
encryption keys in the proxy. Suppose that RSA public key
cryptography was used. The secure publisher proxy could have
been implemented by having the owner encrypt every
symmetric encryption key with the public keys of all
subscribers. Therefore, if 10 items had to be shared with 10
subscribers, the owner would have to generate 100 different
ciphertexts, whereas our solution requires 10 re-encryption
keys and 10 IBE ciphertexts. We now examine the case where
an owner is online and does not store re-encryption keys in the
proxy. Suppose a subscriber wants to access 10 files from the
same owner. Following the RSA approach, the proxy would
have to communicate 10 times with the owner in order to
obtain the encryptions of the symmetric keys. With our
solution, the proxy has to communicate only once, since the
same re-encryption key can be used for all subsequent requests.

B. Multi-source and multi-interface video streaming

In this section we consider a mobile video streaming
application and show how subscription proxies and the multi-

source/interface features of the I-CAN architecture can be used
to offload cellular traffic to Wi-Fi, offering equal or better QoE
to end-users. This section is based on our previous work in [5];
the main enhancement of the current design is to exploit
device-to-device communication with Wi-Fi direct, utilizing
the decentralized and fast rendezvous mechanisms discussed in
Section III.E. In related work, [6] investigates cooperation
between mobile devices to exploit device-to-device
communication for video streaming, [7] investigates adaptive
video streaming over Content-Centric Networks (CNN), and
[8] investigates multi-source video streaming. Our work differs
in that we consider multi-source video streaming that utilizes
proactive caching based on mobility and throughput prediction.

1) Testbed implementation
Our testbed consists of mobile devices (subscribers) that

run a multi-source video streaming client. The client can utilize
both cellular and Wi-Fi interfaces and request different parts
(chunks) of a video from different sources, which can be
publishers, subscription proxies with caches, or neighboring
mobile devices. The streaming client implements the following
three procedures (see [5] for details):

 Load balancing: The client adjusts the number of
video chunks that it requests from each source based
on the measured throughput.

 Fault tolerance: The client can detect when a source or
the path from a source is down, and request video
chunks from another available source.

 Prefetching: The client exploits mobility and
throughput prediction to request that video chunks are
prefetched by proxies at hotspots it will encounter.

Fig. 3. Multi-source mobile video streaming client design

The high-level design of the mobile video streaming client
is shown in Fig. 3. The main components are the download
manager and the downloaders. The download manager uses
mobility and throughput prediction information to instruct
subscription proxies to prefetch and cache video chunks. The
download manager also controls and synchronizes the
downloaders. Each downloader transfers video chunks from a
different source. The video streaming client has been tested on
smartphones running Android 4.0.4 and 4.2.2.

Our testbed includes laptops with VirtualBox 4.3.6/18 and
Ubuntu 13.10/10.04 virtual machines, which run publisher and
subscription proxies. A device’s mobility, in terms of different
connectivity options and download rates for cellular, Wi-Fi,
and ADSL links, is emulated based on scenarios defined in an

XML file; the XML file is downloaded by the streaming client
in the beginning of each experiment; see [5] for details.

2) Experiments

We consider the scenario in Fig. 4. The access points are

connected to the publisher through an emulated ADSL

connection with throughput 3 Mbps. The subscriber

encounters a Wi-Fi hotspot at times 0,100,200,400,500

seconds and at 300 seconds connects using Wi-Fi direct with

another smartphone that has the requested video; it remains in

the hotspot and smartphone range for 20 seconds. The

mobility path is known to the subscriber, which instructs

proxies to prefetch video chunks. The video stream has an

average bit rate 1.65 Mbps and total size 120 MB. The results

presented below are the average of 2-5 runs. Results for

different scenarios and for the load balancing and fault

tolerance mechanisms are contained in [5].

Fig. 4. Multi-source mobile video streaming scenario

Traffic offloading: In this experiment the maximum

cellular rate is 2 Mbps. Fig. 1 shows the percentage of video

traffic offloaded as a function of the Wi-Fi throughput, for

three schemes: 1) no prefetching with the cellular network

used at maximum rate, 2) prefetching with the cellular

network used at maximum rate, and 3) prefetching with the

cellular throughput lower than the maximum, but enough to

avoid frame pauses. The results show that the percentage of

offloaded traffic with prefetching increases when the Wi-Fi

throughput increases; on the other hand, without prefetching

the percentage of offloading is independent of the Wi-Fi

throughput, since the ADSL backhaul is the bottleneck.

Video streaming QoE: The Wi-Fi throughput is set to 5

Mbps and we reduce the cellular throughput so that the

subscriber experiences frame pauses. Fig. 6 shows the number

of pauses as a function of the cellular throughput. The gain

with prefetching is higher when the cellular throughput is

smaller, which is when the higher Wi-Fi throughput can be

utilized with prefetching to download video chunks faster and

avoid frame pauses.

V. CONCLUSIONS

We have described the Information-Centric Access Network

(I-CAN) architecture, identifying how it accounts for specific

characteristics of mobile and wireless access networks. We

also presented experiments with two application scenarios

involving secure publisher proxies and multi-source mobile

video streaming, which highlight I-CAN’s key features.

Ongoing work is extending the video client to perform

adaptive streaming and conducting experiments with video

sharing among devices using Wi-Fi direct.

Fig. 5. Video traffic offloading

Fig. 6. Video QoE

REFERENCES

[1] G. Xylomenos, X. Vasilakos, C. Tsilopoulos, V.A. Siris, and G.C.
Polyzos, “Caching and mobility support in a publish-subscribe internet
architecture,” IEEE Comm. Mag., vol. 50, no. 7, pp. 52-58, July 2012.

[2] X. Zhang, K. Chang, H. Xiong, Y. Wen, G. Shi, W. Guoqiang,
“Towards name-based trust and security for content-centric network,”
Proc. 19th IEEE Int’l Conference on Network Protocols (ICNP), 2011.

[3] M. Green, G. Ateniese, “Identity-Based Proxy Re-encryption,” In Katz,
J., Yung, M. (eds.) Applied Cryptography and Network Security,
Lecture Notes in Computer Science, vol. 4521, pp. 288-306, 2007.

[4] J. A. Akinyele, M. D. Green, and A. D. Rubin, “Charm: A framework
for rapidly prototyping cryptosystems,” Springer Journal of
Cryptographic Engineering, vol.3, no. 2, pp. 111-128, 2013.

[5] D. Dimopoulos, Ch. Boursinos, and V.A. Siris, “Multi-Source Mobile
Video Streaming: Load Balancing, Fault Tolerance, and O oading with
Prefetching,” Proc. 9th Int’l Conf. on Testbeds and Research
Infrastructures for the Development of Networks & Communities
(TRIDENTCOM), 2014.

[6] L. Keller, A. Le, B. Cici, H. Seferoglu, C. Fragouli, and A.
Markopoulou, “MicroCast: cooperative video streaming on
smartphones,” Proc. ACM MobiSys 2012.

[7] S. Lederer, C. Müller, B. Rainer, C. Timmerer, and H. Hellwagner,
“Adaptive Streaming over Content Centric Networks in Mobile
Networks using Multiple Links,” Proc. Immersive & Interactive
Multimedia Communications over the Future Internet, IEEE ICC, 2013.

[8] S.-B. Lee, A.F. Smeaton, and G.-M. Muntean, "Quality-Oriented
Multiple-Source Multimedia Delivery over Heterogeneous Wireless
Networks," IEEE Trans. Broadcasting, vol. 57, no. 2, pp. 216-230, 2011.

