
PUBLISHED IN: PROCEEDINGS OF THE ICT4AWE 2016 1

Protecting medical data stored in public Clouds
Nikos Fotiou and George Xylomenos

Mobile Multimedia Laboratory, Department of Informatics
School of Information Sciences and Technology
Athens University of Economics and Business

Athens 10434, Greece
fotiou@aueb.gr, xgeorge@aueb.gr

Abstract—Public Clouds offer a convenient way for storing
and sharing large amounts of medical data. Nevertheless, using
a shared infrastructure raises significant security and privacy
concerns. Even if the data are encrypted, the data owner should
share some information with the Cloud provider, in order to
enable the latter to perform access control; given the high
sensitivity of medical data, even such limited information may
jeopardize end-user privacy. In this paper we employ an access
control delegation scheme to enable the users themselves to
perform access control on their data, which are stored in a
public Cloud. To selectively provide access to these data without
sacrificing their confidentiality we rely on encryption: our system
encrypts data before storing them in the Cloud and applies
proxy re-encryption so as to encrypt data separately for each
(authorized) user.

Index Terms—Access control, Identity-based encryption, Proxy
re-encryption.

I. INTRODUCTION

Nowadays, smart devices that collect users’ vital signals
have become a commodity. It is expected that soon the data
collected by these devices will be used for preventing and/or
diagnosing various health related problems, as well as for
promoting a healthier way of living and well-being. Storing
and sharing these data using a public Cloud infrastructure
appears to be an appealing option, as public Clouds offer
cost effective and reliable storage services. On the other hand,
security and privacy concerns are raised, as medical data are
highly sensitive and they should be protected, even against
the Cloud service provider. Encryption and access control
can be used as a countermeasure, but privacy threats remain.
For example, an access control policy of the form “these
(encrypted) data can only be accessed by psychiatrist A”
reveals to the entity that performs access control that the data
owner shares some data with a psychiatrist.

In this paper we propose a system that allows secure
and private storage of medical records in the Cloud. Our
system allows data owners to define access control policies
and to enforce them by themselves. The Cloud provider
is only responsible for storing data and for respecting the
access control decisions of the data owner. Even if the Cloud
provider misbehaves, the data remain protected since they are
encrypted in a way that only authorized users can access
them; unauthorized users – including the Cloud provider –
learn nothing about the data. In order to achieve our goal we
extend the system proposed by [1] by adding an additional

layer of data confidentiality protection. Our proposal encrypts
data before storing them in the Cloud and re-encrypts them
as necessary before sharing; data are encrypted only once by
an entity owned by the data owner, and then the Cloud is
responsible for re-encrypting the data in such a way that only
authorized clients can access them.

The remainder of the paper is organized as follows. Sec-
tion II briefly presents access control delegation and proxy
re-encryption. Section III presents our system design. In
Section IV we evaluate our solution and in Section V we
present related work in the area. Finally we conclude our paper
in Section VI

II. BACKGROUND

A. Access control delegation

The access control scheme proposed in [1] separates data
storage and access control functions: the former is imple-
mented in a public Cloud, whereas the latter is implemented
by a trusted entity named access control provider (ACP).
These entities interact with each other as follows (Figure 1)1:
Initially, a data owner creates an access control policy, stores
it in an ACP (step 1) and obtains a URI for that policy (step
2). Then, he stores some data in the Cloud, indicating at
the same time the URI of the policy that protects these data
(step 3). When a client tries to access these data (step 4),
the Cloud responds with the URI of the access control policy
and a unique token (step 5). Then, the client authenticates
herself to the ACP and requests authorization (step 6). If the
client “satisfies” the access control policy, the ACP generates
a signed authorization and sends it back (step 7). Finally, the
client repeats her request to the Cloud, this time including the
authorization (step 8). The Cloud checks the validity of the
authorization and if it is valid, it returns the desired data (step
9).

This scheme has many advantages. The Cloud provider
learns nothing about the client since all her personal data
(which are required to evaluate the access control policy) are
stored in the ACP. Moreover, Cloud providers do not have to
interpret any access control policies, therefore they do not need
to understand content owner specific semantics. Access control
policies are reusable i.e, in order to protect a new item using an
existing access control policy the same URI can be simply re-
used. Access control policies can be easily updated; updating

1The description has been modified to fit the purposes of the present paper.



2 PUBLISHED IN: PROCEEDINGS OF THE ICT4AWE 2016

Data Owner

(1) Access control policy

(2) URI to policy

(3) Data, URI to policy

(4) Request data

(5) Token, URI to policy

(6) Authenticate, Token, URI to policy

Cloud ClientACP

(9) Data

Fig. 1. Access control delegation

and access control policy does not involve any communication
with the Cloud provider. Finally, providing that many Cloud
providers support this scheme, it is trivial for a data owner to
migrate from one Cloud provider to another.

B. Proxy re-encryption

A Proxy re-encryption (PRE) scheme is a scheme in which
a third, semi-trusted party, the proxy, is allowed to alter a
ciphertext encrypted with the public key of a user A (the
delegator), in a way that another user B (the delegatee)
can decrypt it with her own appropriate key (in most cases,
her secret private key). During this process the proxy learns
nothing about the private keys of A and B, and does not gain
access to the encrypted data.

In this paper we employ the identity-based proxy re-
encryption (IB-PRE) scheme by Green and Ateniese [2]. In
particular we use a variant of that scheme in which the
delegatee uses an RSA public key instead of identity-based
encryption (section 5 of [2]). This scheme specifies the fol-
lowing algorithms (the description has been adapted to the
RSA variant):

• Setup: it is executed by a Private Key Generator (PKG).
It takes as input a security parameter k and returns
a master-secret key (MSK) and some system
parameters (SP ). The MSK is kept secret by the
PKG, whereas the SP are made publicly available.

• Extract: it is executed by a PKG. It takes as input the
SP , the MSK, and an arbitrary string ID, and returns
a secret key SKID.

• Encrypt: it can be executed by anyone. It takes as input
an arbitrary string ID, a message M , and the SP , and
returns a ciphertext CID.

• RKGen: it is executed by the owner of the identifier
ID1. It takes as input the SP , the secret key SKID1

and an RSA public key RSA2 and generates a (public)
re-encryption key RKID1→RSA2.

• Reencrypt: it is executed by a proxy. It takes as
input the SP , a re-encryption key RKID1→RSA2, and
a ciphertext CID1 and outputs a new ciphertext CRSA2.

• Decrypt: is is executed by the owner of the key RSA2.
It takes as input the SP , CRSA2, the corresponding RSA
private decryption key SKRSA2, and returns the message
M .

Figure 2 gives an example of a complete IBE-PRE trans-
action. In this figure, initially the PKG generates the MSK
and the SP , and makes the SP publicly available (step 1).
Then it extracts SKID1 and distributes it to the corresponding
user ID1 (step 2). Another user creates a ciphertext using as
a public key the string ID1 and stores it in a proxy (step
3). This can only be decrypted by the user that owns ID1,
(and therefore knows the corresponding SKID1). To allow
a user ID2 to decrypt the content using an RSA private
key RSA2, the user that owns ID1 creates a re-encryption
key RKID1→RSA2 and sends it to the proxy. The proxy
re-encrypts CID1 using the re-encryption key and generates
CRSA2. The user ID2 is now able to decrypt the re-encrypted
ciphertext. The proxy learns nothing about the contents of the
ciphertext or the secret keys of the users. Moreover, the scheme
of Green and Ateniese assures the SK of the delegator (in
this example, SKID1) is protected even if the proxy and the
delegatee collude.

If the original version of the scheme is used (instead of
the RSA variant) then all delegator-delegatee pairs have to
agree on the the same PKG. This however, raises security
concerns, since PKGs will know the private keys of both



PUBLISHED IN: PROCEEDINGS OF THE ICT4AWE 2016 3

ID2

 (2) Extract SKID1

RSA2

ID3

CID1

(3) Encrypt using ID1

Proxy

(5) Reencrypt using RKID1 ID2 

CID2
(6) Decrypt using SKRSA2

ID1

SKID1

(1) Setup

PKG

MSK

SP

Fig. 2. IBE-PRE example

parties of a transaction. Moreover, if a delegatee interacts with
many delegators (as for example in the case of a hospital that
interacts with its patients) then this results in a non-negligible
key management overhead.

III. DESIGN

Our system assumes smart devices that collect user related
data (such as smart watches that measure cardio activity) and
store them in a public Cloud. All these devices interact with
the Cloud through a user controlled gateway. This gateway
has the roles of the PKG and ACP described in the previous
section. All communications (between the smart devices and
the gateway and between the gateway and the Cloud) are
secured using TLS. Data storage is implemented using the
following steps:

• Initially the gateway executes the IBE-PRE setup algo-
rithms and generates the user’s master secret key (MSK)
and the corresponding (public) system parameters. The
MSK is then securely stored in the gateway. Moreover,
the gateway generates a secret key (SK) that corresponds
to the user’s identity. The form and the semantics of a
user identity are application specific.

• The user defines access control policies specifying the
public keys that can access the data generated by each
device. These policies are also stored in the gateway. For
each policy the gateway generates a URI of the form
<gateway FQDN/access control policy name>. We will
refer to this URI as URIpolicy .

• For each data item that arrives in the gateway, the gateway
generates a symmetric encryption key K, encrypts the
item using K (we refer to the output as Enc(key)), and
encrypts K using the IB-PRE encrypt algorithm, with
the user’s identity as input (we refer to the output as
CID(K)).

• The gateway stores Enc(key), CID(K), and URIpolicy
in the Cloud.

All potential clients that want to access some data stored in
the Cloud must have generated a public/private key pair. The
public part of this pair (which we refer to as PKclient) is the
key used by data owners when defining access control policies.
Data access is implemented using the following steps:

• The client sends a data request to the Cloud. The Cloud
responds with URIpolicy and a token.

• The client communicates with the gateway of the user
(located in gateway FQDN), and authenticates himself.

The authentication procedure is application specific. For
example, it can be implemented by having the client
digitally sign a gateway-generated nonce using his private
key. When the authentication procedure is completed,
and providing that the client is authorized to access
data items protected by URIpolicy , the gateway gener-
ates the appropriate authorization and uses the IB-PRE
RKGen algorithm to generate the (public) re-encryption
key RKID→PKClient

.
• The client sends a new data request to the Cloud, in-

cluding this time the authorization and the re-encryption
key. The Cloud provider validates the authorization, and
if it is valid, it re-encrypts CID(K) and sends the new
ciphertext along with Enc(key) to the client.

• Provided that the client is indeed the owner of the
PKclient used during the authentication process, he is
able to decrypt the re-encrypted version of K and then
use K to decrypt the file.

Figure 3 gives an overview of our system. It should be
noted that access control policies and re-encryption keys are
re-usable. Therefore, if a client, authorized for a particular
URIpolicy, requests another item protected by the same policy,
then communication with the gateway is not required.

A. Group policies

It is often desirable to organize potential clients in a group
and define access control polices based on these groups. For
example, “doctors of hospital A” could be considered a group.
Contemporary cryptographic techniques such as attributed-
based encryption [3], or hierarchical identity-based encryp-
tion [4] could be used to achieve this goal. However, we do
not consider this option, because, for security reasons, we want
each client to be able to generate her keys by herself, which is
not possibly with these cryptographic techniques. Instead, we
follow a more conservative approach. We assume that each
group is identified by a public key. This key is known to
data owners and it is used during access control definition.
Moreover, each group member has generated a public/private
key pair. The public part of this pair is included in a X.509
certificate which is digitally signed using the private key of
the group. For instance, in our example the public keys of
the doctors should be signed by the private key of the group
“doctors of hospital A”. If a client belongs to multiple groups,
he should have multiple X.509 certificates.



4 PUBLISHED IN: PROCEEDINGS OF THE ICT4AWE 2016

Smart device PKG

ACP

Gateway

Cloud

Client

Files

Data 

Owner

Policies
File Request

Token, URI

Token, Authorisation Req.

Authorization, Re-key

Fig. 3. Design overview

When a client requests authorization from the gateway,
she includes in her request her digital certificate. The digital
signature included in the certificate is used by the gateway
in order to evaluate whether or not the client belongs to an
authorized group. If this is the case, then the gateway can
use the public key of the client (included in the certificate) to
perform the proxy re-encryption procedure described above,
and therefore to allow the user access to the data. Note that
the gateway does not need to know or store any details about
the members of the group; it only needs to know the public
key of the group.

IV. EVALUATION

We have implemented the IB-PRE part of our system
by modifying the Green-Ateniese IBE-PRE implementation
included in the Charm Crypto library [5] to support RSA
public keys for the delegatee. In order to achieve a security
level equivalent to RSA with a key size of 1024 bits for the
encryption of the symmetric key, the size of CID(key) is
3232 bits, and the size of a re-encryption key is 1536 bits. In
an Ubuntu 12.04 Desktop machine, running in a single core
of an Intel i5-4440 3.1 GHz processor with 2GB of RAM,
the creation of CID(key) required 40 ms, the creation of
a re-encryption key required 20 ms, the re-encryption of a
ciphertext required 31 ms, and the decryption of a ciphertext
required 28 ms.

The IB-PRE cryptographic algorithm used by our system
has been proven to be secure in [2]. Moreover, the access
control delegation solution used by our system exhibits many
advantages: it is generic enough, it can be easily implemented
by a Cloud provider, data can be easily transferred between
Cloud providers that implement this solution, it protects client
privacy against third parties (including the Cloud providers),
and it allows easy modification of access control policies [1].

Each data item is encrypted using a different symmetric
encryption key, therefore, the compromise of a symmetric
encryption key would require the re-encryption of that specific
item only with another fresh key. This is an inevitable overhead
of all similar systems and it is due to the fact that public key
encryption cannot be applied directly to the file contents, due
to its computation complexity. Nevertheless, for small data

items, such as readings from wearable devices, it may be
possible to negate the need for symmetric encryption.

V. RELATED WORK

Löhr et al. [6] have proposed a solution for securing e-health
clouds based on Trusted Virtual Domains (TVDs). TVD is a
virtualization technique that creates secure “sandboxes” where
user data can reside. This solution is orthogonal to our system:
the solution by Löhr et al. concerns the design of secure clouds
specific to e-health services, whereas our solution assumes a
generic cloud service and builds a secure data sharing system
on top of it.

Wu et al. [7] propose an access control mechanism for
sharing electronic health records in the Cloud. The main
component of their mechanism is an access broker that is
responsible for enforcing access control policies. The access
broker is an entity shared among many stakeholders, therefore,
privacy concerns are raised. In our work, access control
policies are enforced by data owners in a way that reveals
no information about data owners or clients to third parties
(including the Cloud provider). Son et al. [8] propose a
mechanism that supports “dynamic” access control, i.e., access
control that takes into consideration the user’s context. In their
solution, access control is also implemented in the Cloud,
therefore the same privacy concerns are raised.

Fabian et al. [9] use attribute-based encryption (ABE)
to protect medical data stored in multi-Cloud environments
and shared among different cooperative organizations. ABE
produces encrypted data in a way that only users with specific
“attributes” can decrypt. In essence, ABE incorporates access
control policies into ciphertexts. The disadvantage of using
ABE for this purpose is that the loss of a private key that
corresponds to an attribute requires the generation of a new
key, the distribution of this key to all users that have this
attribute, and the appropriate encryption of all files protected
by this attribute. In contrast, in our system the loss of the
data owner’s secret key only requires a new encryption of
all symmetric keys. Similarly, [10], [11] use attribute-based
encryption to protect personal health records stored in public
cloud environments; these solution also suffer from the same
problems.



PUBLISHED IN: PROCEEDINGS OF THE ICT4AWE 2016 5

Thilakanathan et al. [12] use ElGamal public key encryption
and a proxy re-encryption like protocol to protect generic
health data stored in the cloud. Their solution relies on a
centralized trusted third party that generates private keys on
behalf of users. In our system users generate their private
keys by themselves, therefore our approach offers increased
security.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a solution that allows secure and
privacy preserving storage of medical data in public Clouds, by
leveraging access control delegation and proxy re-encryption.
Our solution is based on a gateway-based design, where a user
controlled gateway is responsible for encrypting user generated
data, as well as for enforcing access control policies.

Future work involves the transfer of the encryption process
to the devices that generate the data. In this manner, the device
could store the data directly to the Cloud, avoiding the gate-
way, therefore reducing communication overhead. Currently,
our work assumes that devices can be securely authenticated
to the gateway and, similarly, the gateway can be securely
authenticated to the Cloud. Future enhancements of our system
would also consider and implement these functions.

REFERENCES

[1] N. Fotiou, A. Machas, G. C. Polyzos, and G. Xylomenos, “Access
control as a service for the cloud,” Journal of Internet Services and
Applications, vol. 6, no. 1, pp. 1–15, 2015.

[2] M. Green and G. Ateniese, “Identity-based proxy re-encryption,” in
Applied Cryptography and Network Security, ser. Lecture Notes in
Computer Science, J. Katz and M. Yung, Eds. Springer Berlin
Heidelberg, 2007, vol. 4521, pp. 288–306.

[3] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proceedings of
the 13th ACM Conference on Computer and Communications Security,
ser. CCS ’06. New York, NY, USA: ACM, 2006, pp. 89–98.

[4] D. Boneh, X. Boyen, and E.-J. Goh, “Hierarchical identity based
encryption with constant size ciphertext,” in Advances in Cryptology
EUROCRYPT 2005, ser. Lecture Notes in Computer Science, R. Cramer,
Ed. Springer Berlin Heidelberg, 2005, vol. 3494, pp. 440–456.

[5] J. Akinyele, C. Garman, I. Miers, M. Pagano, M. Rushanan, M. Green,
and A. Rubin, “Charm: a framework for rapidly prototyping cryptosys-
tems,” Journal of Cryptographic Engineering, vol. 3, no. 2, pp. 111–128,
2013.

[6] H. Löhr, A.-R. Sadeghi, and M. Winandy, “Securing the e-health
cloud,” in Proceedings of the 1st ACM International Health Informatics
Symposium, ser. IHI ’10. New York, NY, USA: ACM, 2010, pp. 220–
229.

[7] R. Wu, G.-J. Ahn, and H. Hu, “Secure sharing of electronic health
records in clouds,” in Collaborative Computing: Networking, Appli-
cations and Worksharing (CollaborateCom), 2012 8th International
Conference on, Oct 2012, pp. 711–718.

[8] J. Son, J.-D. Kim, H.-S. Na, and D.-K. Baik, “Dynamic access control
model for privacy preserving personalized healthcare in cloud environ-
ment,” Technology and Health Care, vol. 24, no. s1, pp. S123–S129,
2015.

[9] B. Fabian, T. Ermakova, and P. Junghanns, “Collaborative and secure
sharing of healthcare data in multi-clouds,” Information Systems, vol. 48,
pp. 132 – 150, 2015.

[10] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scalable and secure
sharing of personal health records in cloud computing using attribute-
based encryption,” Parallel and Distributed Systems, IEEE Transactions
on, vol. 24, no. 1, pp. 131–143, Jan 2013.

[11] J. Liu, X. Huang, and J. K. Liu, “Secure sharing of
personal health records in cloud computing: Ciphertext-policy
attribute-based signcryption,” Future Generation Computer Systems,
vol. 52, pp. 67 – 76, 2015, special Section: Cloud
Computing: Security, Privacy and Practice. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X14002076

[12] D. Thilakanathan, S. Chen, S. Nepal, R. Calvo, and L. Alem, “A
platform for secure monitoring and sharing of generic health data in the
cloud,” Future Generation Computer Systems, vol. 35, pp. 102 – 113,
2014, special Section: Integration of Cloud Computing and Body Sensor
Networks; Guest Editors: Giancarlo Fortino and Mukaddim Pathan.


