
1

An Improved Scheme for Protecting Medical Data
in Public Clouds

Nikos Fotiou, George Xylomenos
Mobile Multimedia Laboratory, Department of Informatics

School of Information Sciences and Technology
Athens University of Economics and Business

Athens 10434, Greece
fotiou@aueb.gr, xgeorge@aueb.gr

Abstract—Public Clouds offer a convenient way for storing and
sharing the large amounts of medical data that are generated by,
for example, wearable health monitoring devices. Nevertheless,
using a public infrastructure raises significant security and
privacy concerns. Even if the data are stored in an encrypted
form, the data owner should share some information with the
Cloud provider in order to enable the latter to perform access
control; given the high sensitivity of medical data, even such
limited information may jeopardize end-user privacy. In this
paper we employ an access control delegation scheme to enable
the users themselves to perform access control on their data,
even though these are stored in a public Cloud. In our scheme
access control policies are evaluated by a user-controlled gateway
and Cloud providers are only entrusted with respecting the
gateway’s decision. Furthermore, since medical data must often
be shared with health providers of the user’s choice, we rely
on a proxy re-encryption technique to allow such sharing to
take place. Our scheme encrypts data before storing them in the
Cloud and applies proxy re-encryption using Cloud resources to
encrypt data separately for each (authorized) user. Our proxy
re-encryption scheme ensures that misbehaving Cloud providers
cannot use re-encryption keys to share content with unauthorized
clients, while delegating the costly re-encryption operations to the
Cloud.

Index Terms—access control, proxy re-encryption, medical
data, public clouds

I. INTRODUCTION

Nowadays, smart devices that collect users’ vital signals
have become a commodity. It is expected that the data col-
lected by these devices will soon be used for preventing and/or
diagnosing various health related problems, as well as for
promoting a healthier way of living and well-being. Storing
and sharing these data using a public Cloud infrastructure
appears to be an appealing option, as public Clouds offer
cost effective, reliable and always-on storage services. On
the other hand, security and privacy concerns are raised, as
medical data are highly sensitive and they should be very
well protected, even against misbehavior by the Cloud service
provider. Encryption and access control can be used as a
countermeasure, but privacy threats remain. For example, an
access control policy of the form “these (encrypted) data can
only be accessed by psychiatrist A” reveals to the entity that
performs access control that the data owner shares some data
with a psychiatrist.

In this paper we propose a scheme that allows secure
and private storage of medical records in the Cloud. Our
scheme allows data owners to define access control policies
and to enforce them by themselves. The Cloud provider
is only responsible for storing data and for respecting the
access control decisions of the data owner. Even if the Cloud
provider misbehaves, the data remain protected, since they
are encrypted so that only authorized users can access them;
unauthorized users – including the Cloud provider – can learn
nothing about the data. In order to achieve our goal we use
the system proposed by [1] by adding an additional layer of
data confidentiality protection.

Since our proposal encrypts data before storing them in
the Cloud, they cannot be directly shared with authorized
health providers, without revealing the user’s encryption keys.
To allow controlled data sharing, our scheme relies on re-
encrypting the data before sharing, so that they can only be
decrypted by users authorized by the data owner. Rather than
having the user’s devices re-encrypt data, we rely on a proxy
re-encryption scheme so as to delegate this processing to the
Cloud provider, without however allowing the Cloud provider
to gain access to the encrypted data. In this manner, the user
only needs to deal with the original data encryption, delegating
all further storage and processing to the Cloud provider.

This paper extends our previously published work [2] in the
following areas: (i) we improve our proxy re-encryption based
scheme so as to protect our system against misbehaving Cloud
providers, (ii) we add a client authentication procedure, (iii)
we provide more details about our protocol, (iv) we perform a
more thorough evaluation of our system, including its security
evaluation.

The remainder of the paper is organized as follows. Sec-
tion II briefly presents access control delegation and proxy re-
encryption. Section III presents our system design in detail.
In Section IV we evaluate our solution and in Section V we
present related work in the area. Finally, we conclude our
paper in Section VI

II. BACKGROUND
A. Access control delegation

The access control scheme proposed in [1] separates data
storage and access control functions: the former is imple-
mented in a public Cloud, whereas the latter is implemented



2

Data Owner

(1) Access control policy

(2) URI to policy

(3) Data, URI to policy

(4) Request data

(5) Token, URI to policy

(6) Authenticate, Token, URI to policy

Cloud ClientACP

(9) Data

Fig. 1. Access control delegation (reproduced from [2])

by a trusted entity named the access control provider (ACP).
These entities interact with each other as follows (Figure 1)1:
Initially, a data owner creates an access control policy, stores
it in an ACP (step 1) and obtains a URI for that policy (step
2). Then, he stores some data in the Cloud, indicating at
the same time the URI of the policy that protects these data
(step 3). When a client tries to access these data (step 4),
the Cloud responds with the URI of the access control policy
and a unique token (step 5). Then, the client authenticates
herself to the ACP and requests authorization (step 6). If the
client “satisfies” the access control policy, the ACP generates
a signed authorization and sends it back (step 7). Finally, the
client repeats her request to the Cloud, this time including the
authorization (step 8). The Cloud checks the validity of the
authorization and if it is valid, it returns the desired data (step
9).

This scheme has many advantages. The Cloud provider
learns nothing about the client since all her personal data
(which are required to evaluate the access control policy) are
stored in the ACP. Moreover, Cloud providers do not have to
interpret any access control policies, therefore they do not need
to understand content owner specific semantics. Each ACP
can implement any conceivable access control policy, since
the Cloud provider only sees the URI identifying the policy
and the authorizations returned by the ACP. Access control
policies are reusable i.e, in order to protect a new item using an
existing access control policy the same URI can be simply re-
used. Access control policies can be easily updated; updating
an access control policy does not involve any communication
with the Cloud provider. Finally, provided that many Cloud
providers support this scheme, it is trivial for a data owner to
migrate from one Cloud provider to another, as the URIs of
the access control policies remain the same.

B. Proxy re-encryption

A Proxy re-encryption (PRE) scheme is a scheme in which
a third, semi-trusted party, the proxy, is allowed to alter a
ciphertext encrypted with the public key of a user A (the
delegator), in a way that another user B (the delegatee)

1The description has been modified to fit the purposes of the present paper.

 (2) Extract SKID1

PKA

CID1

(4) RKGen RKID1 PKA 

(3) Encrypt using ID1

Proxy

(5) Reencrypt using RKID1 PKA 

CPKA
(6) Decrypt using SKA

ID1

SKID1

(1) Setup

PKG

MSK

SP

Fig. 2. IB-PRE example (adapted from [2])

can decrypt it with her own appropriate key (in most cases,
her secret private key). During this process the proxy learns
nothing about the private keys of A and B, and does not gain
access to the encrypted data.

In this paper we employ the identity-based proxy re-
encryption (IB-PRE) by Green and Ateniese [3]. In particular
we use a variant of that scheme in which the delegatee
uses public key based encryption (PKE) instead of identity-
based encryption (section 5 of [3]). This scheme specifies the
following algorithms (the description has been adapted to the
PKE variant):

• Setup: it is executed by a Private Key Generator (PKG).
It takes as input a security parameter k and returns
a master-secret key (MSK) and some system
parameters (SP ). The MSK is kept secret by the
PKG, whereas the SP are made publicly available.

• Extract: it is executed by a PKG. It takes as input
the SP , the MSK, and an identity ID, and returns a
secret key SKID. An ID can be any arbitrary string.

• Encrypt: it can be executed by anyone. It takes as input
an identity ID, a message M , and the SP , and returns a
ciphertext CID. This ciphertext can only be decrypted by
the owner of SKID, i.e., the secret key that corresponds
to the identity ID.

• RKGen: it is executed by the owner of the identity ID1. It
takes as input the SP , the secret key SKID1 and the PKE
public key PKA of a user A. It outputs a re-encryption
key RKID1→PKA

.
• Reencrypt: it is executed by a proxy. It takes as

input the SP , a re-encryption key RKID1→PKA
, and

a ciphertext CID1 and outputs a new ciphertext CPK ,
which can be decrypted by the owner of the PKE secret
key SKA.

• Decrypt: it is executed by the owner of the PKE secret
key SKA. It takes as input SP , CPK , and SKA, and
returns the message M .

Figure 2 gives an example of a complete IB-PRE transac-
tion. In this figure, initially the PKG generates the MSK and
the SP , and makes the SP publicly available, while keeping
the MSK to itself (step 1). This initializes the system. When a
user ID1 wants to use the system, it asks the PKG to extract
the secret key SKID1 and return it to user ID1 (step 2).
Another user ID3 can then encrypt a piece of text using the
publicly known identity of ID1, creating a ciphertext CID1,



3

which is then stored in a proxy (step 3). This ciphertext can
only be decrypted by the user that owns ID1, and therefore
knows the corresponding SKID1. To allow another user ID2
to decrypt the content using a PKE private key SKRSA2

,
the owner of ID1 creates a re-encryption key RKID1→RSA2

using the well known PKE public key PKRSA2
of user ID2

and sends it to the proxy (step 4). The proxy re-encrypts CID1

using the re-encryption key and generates CID2 (step 5). The
owner of SKRSA2 is now able to decrypt the re-encrypted
ciphertext (step 6). The proxy learns nothing about the contents
of the ciphertext or the secret keys of the users.

If the original version of the scheme is used (instead of
the PKE variant described above) then the secret keys of
delegatees should be generated by a PKG. This however raises
security concerns, since the PKG will know the private keys
of all users. Although this is not a problem in some scenarios,
in our case a delegatee is a doctor or a hospital that has
access to very sensitive information. Therefore, this is an
unacceptable security threat. Moreover, if a delegatee interacts
with many delegators (as, for example, in the case of a hospital
that interacts with its patients) then this results in a non-
negligible key management overhead. For this reason, we rely
instead on the PKE keys of the delegatees for the re-encryption
procedures.

III. DESIGN

In this section, we explain how the aforementioned access
control and proxy re-encryption schemes are adapted for our
scheme. We assume the use of smart devices that collect
user related data, such as smart watches that measure cardio
activity. All collected data are stored in a public Cloud.
The smart devices do not interact directly with the Cloud;
they instead communicate with a user controlled gateway.
This gateway holds the roles of both the PKG and the ACP
described in the previous section, i.e., the gateway generates
the appropriate secret keys and is responsible for enforcing
access control policies. In addition, a gateway is responsible
for initially encrypting (not re-encrypting) files, storing them
in the Cloud, and for generating re-encryption keys. Clients
interested in receiving a file stored in the Cloud, initially send
an unauthorized request to the Cloud provider. The Cloud
provider re-directs them to the appropriate gateway, where
they authenticate themselves and get authorized to access
the protected file. The authorization process also results in
the creation of an appropriate re-encryption key, which is
securely transmitted to the Cloud provider. Then, clients issue
authorized requests and receive the (re-encrypted) file. All
communications (between the smart devices and the gateway,
between the gateway and the Cloud, between the clients and
the Cloud, and between the clients and the gateway) are
secured using TLS. Figure 3 gives an overview of our system
entities and their interactions, which we explain in more detail
in the following subsections.

A. Setup

With this procedure a data owner creates access control
policies and generates the appropriate cryptographic keys. Our

Smart device PKG

ACP

Gateway

Cloud

Client

Files

Data 

Owner

Policies

Encrypted files, URL to 

policies

Fig. 3. An overview of the entities of our scheme and their interactions
(adapted from [2])

Table of clients Table of roles

Permission Table 

https://gw.example.com/policy32B

Fig. 4. Access control policy example

system uses NIST’s core Role-based Access Control (core-
RBAC) model [4]. Based on this model, data owners create
tables of clients, roles, and permissions. The table of clients
contains tuples of the form [index, identity] where index is
an integer number unique for each client and identity is the
client’s public key. The table of roles contains tuples of the
form [role,< clientindex >], where role is a unique role
name, and < clientindex > is a list of indices from the clients
table and represents the clients that hold that specific role.
Finally, for each file, the client maintains a table of permissions
that contain tuples of the form [operation,< role >], where
operation is an operation over the file (e.g., read, write,
delete) and < role > is a list of roles that are permitted to
perform that operation. Each permission table is identified by
a unique URIpolicy. All relationships in a core-RBAC model
are many-to-many, hence, a client may have multiple roles and
a role may be allowed to perform multiple operations.

Figure 4 illustrates an example of access control policy
definition. In this example, a data owner has defined three
clients and three roles. It can be observed that client 003 has
multiple roles. The data owner has created a permissions table
and has specified its URIpolicy. We can observe in this table
that the role “My Doctors” is allowed to perform multiple
operations.

The first time the setup procedure is executed, the gateway



4

executes the IB-PRE setup algorithms and generates a mas-
ter secret key (MSK) and the corresponding (public) system
parameters. The MSK is securely stored in the gateway.

B. Data storage

Data storage in the Cloud is achieved using the following
steps:
• For each file that arrives in the gateway a permissions

table and an appropriate URIpolicy is generated, or an
existing one may be re-used.

• The gateway generates a symmetric encryption key K,
encrypts the file using K (we refer to the output of
this encryption as EncK(file)), and encrypts K using
the IB-PRE encrypt algorithm, using URIpolicy as the
input identity (we refer to the output of this encryption
as CURIpolicy (K)).

• The gateway stores EncK(file), CURIpolicy (K), and
URIpolicy in the Cloud.

Gateways keep track of all files and their associ-
ated URIpolicy and Cloud provider in a table of files.
A table of files contains a set of tuples of the form
[filename, policy, PubCP ] where filename is the file name,
policy is the URIpolicy of the file’s permissions table, and
PubCP is the public key of the Cloud provider where the file
is stored. Cloud providers maintain a similar table that con-
tains entries of the form [filename, policy, PubGW ], where
PubGW is the public key of the gateway.

C. Unauthorized request

This procedure is executed by a client in order to perform
an operation over some protected data. The client sends an
operation request to the Cloud provider that contains nothing
but the operation itself and the name of the file it concerns.
Upon receiving the request the Cloud provider creates a unique
token (i.e., an adequately large random number) and sends it
back to the client, along with the corresponding URIpolicy.
Cloud providers keep track of all generated tokens, as well as
their associated URIpolicy.

D. Client authentication and authorization

This procedure is executed by a client upon receiving a
response to an unauthorized request. The client generates an
authorization request that is composed of the following fields:
URIpolicy, token, filename (i.e., the name of the desired
file), operation, PubCP , PubClient (i.e., the public key of
the client), and digitally signs this message using his private
key (we refer to the outcome of the signature operation as
SignClient(msg)). Then, the client sends the authorization
request to the gateway denoted by URIpolicy . Upon receiving
this request, the gateway performs the following steps in order
to authorize the client:
• It verifies SignClient(msg). If the signature verification

fails, the client is not authorized, as he has not proved
his identity.

• From the files table it retrieves the policy and the PubCP

of the entry that corresponds to the filename included in

the authorization request and checks if these fields match
those included in the request. If this verification fails, the
client is not authorized.

• It retrieves the file’s permissions table and examines if
the client identified by PubClient has a role authorized
to perform the operation included in the authorization re-
quest. If this verification fails, the client is not authorized.

If the client is authorized, then the gateway performs the
following operations:
• It executes the IB-PRE RKGen algorithm and cre-

ates RKURIpolicy→Pubclient
and encrypts this key using

PubCP . We refer to the output of the latter encryption
as CCP (RK).

• It sends to the client an authorization response which
contains CCP (RK) and a digital signature generated us-
ing the gateway’s private key that covers CCP (RK) and
all fields of the authorization request, except PubClient

and SignClient(msg). We refer to that signature as
SignGW (msg).

E. Authorized request

This procedure is executed by an authorized client. The
client constructs an authorized request that includes the follow-
ing fields: the filename of the desired file, the operation, the
token received with the execution of the unauthorized request
procedure, and the authorization response retrieved with the
execution of the client authentication and authorization proce-
dure. Then, the client sends this request to the Cloud provider.
Upon receiving this request, the Cloud provider performs the
following steps in order to decide if the client is permitted to
perform the requested operation:
• It retrieves URIpolicy and PubGW that corresponds to the

name and examines if the retrieved URIpolicy matches
the one associated with the token. If it does not match,
the client is authorized.

• It evaluates SignGW (msg). If the signature verification
fails, the client is not authorized.

If the client is permitted to perform the requested operation,
the Cloud provider performs the following operations:
• It uses RKURIpolicy→Pubclient

and the IB-PRE
Reencrypt algorithm to re-encrypt CURIpolicy (K) so
as to generate CClient(K).

• It sends CClient(K) and EncK(file) back to the client.
Figure 5 illustrates a message sequence diagram of the

unauthorized request, client authentication and authorization,
and authorized request procedures.

F. External roles

When protecting medical data stored in the Cloud, it is
desirable to have roles, and create access control policies
based on such roles, which are defined by external (third)
parties. For example, “doctors of hospital A” could be such
a role, defined by the entity “hospital A”. Contemporary cryp-
tographic techniques such as attributed-based encryption [5],
or hierarchical identity-based encryption [6] could be used to
achieve this goal. However, we do not consider this option,



5

Gateway Client Cloud

filename, operation

URIpolicy, token

URIpolicy, token,filename, operation, PubCP, 

PubClient, SignClient(msg)

CCP(RK), SignGW(msg)

filename, operation, token, CCP(RK), 

SignGW(msg)

CClient(K), EncK(file)

RKURIpolicy->PubGW

Fig. 5. Message sequence diagram

because, for security reasons, we want each client to be able
to generate her keys by herself, which is not possible with
these cryptographic techniques. Moreover, these cryptographic
techniques have been found to be ineffective when used for
controlling access to data stored in the Cloud [7]. Instead, we
follow a more conservative approach. We assume that each role
is identified by a public key, generated by the same third party
that has defined this role. This key is used by data owners in
the table of roles instead of < clientindex >. Moreover, the
public key of each client is included in a X.509 certificate
which is digitally signed using the private key of the role. For
instance, in our example the public keys of the doctors should
be signed by the private key of the role “doctors of hospital A”.
If a client has multiple roles, he should have multiple X.509
certificates.

When a client requests authorization from the gateway,
she includes in her request her digital certificate. The digital
signature included in the certificate is used by the gateway
in order to evaluate whether or not the client belongs to an
authorized role. If this is the case, then the gateway can use the
public key of the client (included in the certificate) to generate
the appropriate re-encryption key (as described in the previous
section), and therefore to allow her to access the protected
file. Note that the gateway does not need to know or store any
details about the members of an external role; it only needs to
know the public key of that role. In our example, this allows
a hospital to change the set of doctors that it has authorized,
without communicating with all the gateways of the clients
that trust the hospital.

IV. EVALUATION

We have implemented the IB-PRE part of our system by
modifying the Green-Ateniese IB-PRE implementation in-
cluded in the Charm Crypto library [8] to support PKE for the
delegatee. In particular, we have added support for the Cramer
and Shoup elliptic curve based public key cryptosystem [9].
That is, in our implementation a ciphertext generated using
Identity-based encryption is transformed into a ciphertext that
can be decrypted using a Cramer-Shoup secret key (combined
with some pairing operations).

In order to achieve a security level equivalent to RSA with a
key size of 1024 bits for the encryption of the symmetric key,
the size of SP is 2048 bits, the size of CURIpolicy (K) is 2048
bits, and the size of a re-encryption key is 2816 bits. In Table I

TABLE I
COMPUTATION OVERHEAD OF IB-PRE CRYPTOGRAPHIC OPERATIONS

Operation time in ms
Create CURIpolicy (K) 23
Generate RKURIpolicy→Pubclient

40
Re-encrypt CURIpolicy (K) 4
Decrypt CClient(K) 25

we report the time required to perform various cryptographic
operations, in an Xbuntu 14.04 Desktop machine, running in
a single core of an Intel i5-4440 3.1 GHz processor with 2GB
of RAM, using the Charm Crypto library v0.43, python v2.7,
the pbc library v0.5.4, and the gmp library v5.1.3.

The IB-PRE cryptographic algorithm used by our system
has been proven to be secure in [3]. Each data item is en-
crypted using a different symmetric encryption key, therefore
the compromise of a symmetric encryption key would require
the re-encryption of only that specific item with a fresh key.
This is an inevitable overhead of all similar systems and it is
due to the fact that public key encryption cannot be applied
directly to the file contents, due to its computational complex-
ity. Nevertheless, for small data items, such as readings from
wearable devices, it may be possible to negate the need for
symmetric encryption.

Traditional proxy re-encryption schemes require proxies to
be semi-trusted, i.e., a proxy should (i) not share re-encryption
keys, and (ii) use re-encryption keys only for authorized users.
Our system relaxes the second requirement: since symmetric
encryption keys are encrypted using URIpolicy as an input
identity a RKURIpolicy→Pubclient

would be useful only for
clients that abide by URIpolicy . In other words, if a client
does not abide by an access control policy, the gateway will
never generate the corresponding re-encryption key.

Client revocation is achieved by removing a client from
a role, or by removing a role from a permission. From the
moment a client is disallowed to perform an operation, a
gateway will not generate a re-encryption key when that client
requests authorization for this operation. Nevertheless, if the
Cloud provider caches re-encryption keys and it is not trusted
to use them properly, then the URIpolicy of the permission
table from which the client has been removed, has to be
updated. As a consequence, a new CURIpolicy (K) will have
to be generated.

Our system borrows most of the properties of the access
control delegation scheme described in [1]. In particular, our
system is generic enough, it can be easily implemented by a
Cloud provider, data can be easily transferred between Cloud
providers that implement this solution, it protects client privacy
against Cloud providers, and it allows easy modification of
access control policies. Compared to [1], our system does not
hide the Client’s interests from the ACP. This happens because
we use URIpolicy for protecting content confidentiality, hence
it is not possible to use a different URIpolicy for each
operation (as in [1]). If hiding the Client’s interests is highly
desirable, then the “level extension” (sec. 3.5 in [1]) can be
used.

Another notable difference of the present system compared



6

to [1] is that the present system does not rely on an external
mechanism for authenticating clients to ACPs, using instead a
digital signature (i.e., SignClient(msg)). In order to prevent
malicious users from re-using an authentication message,
ACPs should keep track of already seen tokens. Nevertheless,
even if this not possible, or this check fails, the malicious user
will end up receiving a file that he cannot access.

V. RELATED WORK

Löhr et al. [10] have proposed a solution for securing e-
health clouds based on Trusted Virtual Domains (TVDs). TVD
is a virtualization technique that creates secure “sandboxes”
where user data can reside. This solution is orthogonal to
our system: the solution by Löhr et al. concerns the design
of secure clouds specific to e-health services, whereas our
solution assumes a generic cloud service and builds a secure
data sharing system on top of it.

Wu et al. [11] propose an access control mechanism for
sharing electronic health records in the Cloud. The main
component of their mechanism is an access broker that is
responsible for enforcing access control policies. The access
broker is an entity shared among many stakeholders, therefore,
privacy concerns are raised. In our work, access control
policies are enforced by data owners in a way that reveals
no information about data owners or clients to third parties
(including the Cloud provider). Son et al. [12] propose a
mechanism that supports “dynamic” access control, i.e., access
control that takes into consideration the user’s context. In their
solution, access control is also implemented in the Cloud,
therefore the same privacy concerns are raised.

Fabian et al. [13] use attribute-based encryption (ABE)
to protect medical data stored in multi-Cloud environments
and shared among different cooperative organizations. ABE
produces encrypted data in a way that only users with specific
“attributes” can decrypt. In essence, ABE incorporates access
control policies into ciphertexts. The disadvantage of using
ABE for this purpose is that the loss of a private key that
corresponds to an attribute requires the generation of a new
key, the distribution of this key to all users that have this
attribute, and the appropriate encryption of all files protected
by this attribute. In contrast, in our system the loss of the
data owner’s secret key only requires a new encryption of all
symmetric keys. Similarly, [14], [15], [16] use attribute-based
encryption to protect personal health records stored in public
cloud environments; these solution also suffer from the same
problems.

Thilakanathan et al. [17] use ElGamal public key encryption
and a proxy re-encryption like protocol to protect generic
health data stored in the cloud. Their solution relies on a
centralized trusted third party that generates private keys on
behalf of users. In our system users generate their private
keys by themselves, therefore our approach offers increased
security.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a scheme that allows secure and
privacy preserving storage of medical data in public Clouds.

Our solution combines access control delegation and proxy
re-encryption, providing content confidentiality, client privacy
enhancement, and resilience against malicious entities. This is
achieved by following a gateway-based design, where a user-
controlled gateway is responsible for encrypting user generated
data, authenticating clients and enforcing access control poli-
cies. Cloud providers learn no information about the identity
of the clients accessing the protected data and they are only
trusted have to respect the gateway’s decisions. Moreover,
our proxy re-encryption based confidentiality solution protects
sensitive data against misbehaving Cloud providers, even those
that do not respect the gateway’s access control decisions. Our
proof of concept implementation shows that our solution is
feasible, posing minimal overhead.

Future work involves the transfer of the encryption process
to the devices that generate the data. In this manner, the
device could store the data directly to the Cloud, avoiding the
gateway, therefore reducing communication overhead. In this
setup, the gateway would still hold the ACP and PKG roles.
Moreover, the ACP could also be used for authenticating end-
user devices to the Cloud.

REFERENCES

[1] N. Fotiou, A. Machas, G. C. Polyzos, and G. Xylomenos, “Access
control as a service for the cloud,” Journal of Internet Services and
Applications, vol. 6, no. 1, pp. 1–15, 2015.

[2] N. Fotiou and G. Xylomenos, “Protecting medical data stored in
public clouds,” in Proceedings of the 2nd International Conference on
Information and Communication Technologies for Ageing Well and e-
Health (ICT4AWE), 2016.

[3] M. Green and G. Ateniese, “Identity-based proxy re-encryption,” in
Applied Cryptography and Network Security, ser. Lecture Notes in
Computer Science, J. Katz and M. Yung, Eds. Springer Berlin
Heidelberg, 2007, vol. 4521, pp. 288–306.

[4] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan-
dramouli, “Proposed NIST standard for role-based access control,” ACM
Trans. Inf. Syst. Secur., vol. 4, no. 3, pp. 224–274, Aug. 2001.

[5] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proceedings of
the 13th ACM Conference on Computer and Communications Security,
2006, pp. 89–98.

[6] D. Boneh, X. Boyen, and E.-J. Goh, “Hierarchical identity based
encryption with constant size ciphertext,” in Advances in Cryptology –
EUROCRYPT 2005, ser. Lecture Notes in Computer Science, R. Cramer,
Ed. Springer Berlin Heidelberg, 2005, vol. 3494, pp. 440–456.

[7] W. C. Garrison III, A. Shull, S. Myers, and A. J. Lee, “On the practicality
of cryptographically enforcing dynamic access control policies in the
cloud,” in Proceedings of the IEEE Symposium on Security and Privacy,
2016.

[8] J. Akinyele, C. Garman, I. Miers, M. Pagano, M. Rushanan, M. Green,
and A. Rubin, “Charm: a framework for rapidly prototyping cryptosys-
tems,” Journal of Cryptographic Engineering, vol. 3, no. 2, pp. 111–128,
2013.

[9] R. Cramer and V. Shoup, “A practical public key cryptosystem prov-
ably secure against adaptive chosen ciphertext attack,” in Advances in
Cryptology – CRYPTO ’98, ser. Lecture Notes in Computer Science,
H. Krawczyk, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
1998, vol. 1462, pp. 13–25.

[10] H. Löhr, A.-R. Sadeghi, and M. Winandy, “Securing the e-health
cloud,” in Proceedings of the 1st ACM International Health Informatics
Symposium, 2010, pp. 220–229.

[11] R. Wu, G.-J. Ahn, and H. Hu, “Secure sharing of electronic health
records in clouds,” in Proceedings of the 8th International Conference on
Collaborative Computing: Networking, Applications and Worksharing
(CollaborateCom), Oct 2012, pp. 711–718.

[12] J. Son, J.-D. Kim, H.-S. Na, and D.-K. Baik, “Dynamic access control
model for privacy preserving personalized healthcare in cloud environ-
ment,” Technology and Health Care, vol. 24, no. 1, pp. 123–129, 2015.



7

[13] B. Fabian, T. Ermakova, and P. Junghanns, “Collaborative and secure
sharing of healthcare data in multi-clouds,” Information Systems, vol. 48,
pp. 132 – 150, 2015.

[14] J. A. Akinyele, M. W. Pagano, M. D. Green, C. U. Lehmann, Z. N.
Peterson, and A. D. Rubin, “Securing electronic medical records using
attribute-based encryption on mobile devices,” in Proceedings of the 1st
ACM Workshop on Security and Privacy in Smartphones and Mobile
Devices, 2011, pp. 75–86.

[15] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scalable and secure shar-
ing of personal health records in cloud computing using attribute-based
encryption,” IEEE Transactions on Parallel and Distributed Systems,
vol. 24, no. 1, pp. 131–143, Jan 2013.

[16] J. Liu, X. Huang, and J. K. Liu, “Secure sharing of personal health
records in cloud computing: Ciphertext-policy attribute-based signcryp-
tion,” Future Generation Computer Systems, vol. 52, pp. 67 – 76, 2015.

[17] D. Thilakanathan, S. Chen, S. Nepal, R. Calvo, and L. Alem, “A platform
for secure monitoring and sharing of generic health data in the cloud,”
Future Generation Computer Systems, vol. 35, pp. 102 – 113, 2014.


