
PUBLISHED IN: PROCEEDINGS OF THE IFIP NTMS 2016 1

RT-SENMOS: Sink-Driven Congestion and Error
Control for Sensor Networks

Charilaos Stais and George Xylomenos and Evangelos Zafeiratos
Mobile Multimedia Laboratory & Department of Informatics

School of Information Sciences and Technology
Athens University of Economics and Business

76 Patision, Athens 10434, Greece
E-mail: stais@aueb.gr, xgeorge@aueb.gr and zafiratosv@gmail.com

Abstract—A very common problem in the sensor networks
area, where large numbers of sensors transmit data to a single
sink node, is reliable transport. As sensors become cheaper and
more powerful, sensor networks face the challenge of controlling
all these devices in a efficient manner, which naturally leads to
a sink-driven transport scheme. In this paper we propose RT-
SENMOS, a sink-driven reliable transport protocol for sensor
networks which places the responsibility for transmission rate
allocation, congestion avoidance and error control to the sink.
RT-SENMOS is intended to be integrated within a specific
application which will set its operating parameters depending
on its needs, operating on top of UDP/IP to avoid the need for
kernel/superuser access. As RT-SENMOS is fully sink-controlled,
it enables the use of simple and inexpensive fixed sensors, which
offload all protocol intelligence to a more expensive but reusable
sink. We present the design of the protocol, comparing it with
a similar approach, called RCRT, and evaluate its performance
using a real implementation.

I. INTRODUCTION

A Wireless Sensor Network (WSN) may serve many ap-
plications and situations, from simple data collection and
reporting, e.g. smart home monitoring or securing a controlled
area, all the way to assisting human or robotic rescuers
in disaster recovery situations. It is obvious that emergency
cases are the most demanding, since the sensor network may
be partially connected and the need for quick and reliable
data transmission is paramount. The rescuer cannot count on
sensor redundancy for gathering critical information, hence
the sensor network must rely on a transport layer that can
transfer data quickly, without losing packets due to congestion
forming around the sink, where data from many sources
naturally converge. As the network environment in WSNs in
general, and in disaster recovery situations in particular, is very
unpredictable, transport protocols should be quick to adapt to
changes in prevailing conditions.

Initially motivated by the DIstributed Sensor systems For
Emergency Response (DISFER) project [1], we designed the
Reliable Transport protocol for SEnsor Networks with MObile
Sinks (RT-SENMOS) [2], [3], a purely sink-controlled proto-
col, in the sense that the sink allocates transmission rates to
all reachable sensors and manages the error recovery process
depending on application objectives. A crucial aspect of our
approach is that sensor handling depends on the application
at hand, since sensors only need to implement a generic

and very simple behavior, with the sink implementing the
complex behavior required by that application. This allows the
same sensors to be used for different application scenarios, by
simply modifying the behavior of the sink. Furthermore, RT-
SENMOS uses UDP/IP for packet transmission, therefore it
can be fully embedded into the application, operating without
kernel/superuser access.

In earlier versions of this work, we presented our sink-
driven approach to congestion management and error han-
dling [2] and a preliminary performance evaluation of a real
RT-SENMOS implementation over an actual network [3]. In
this paper, we present the latest version of RT-SENMOS,
which incorporates a new error control mechanism, as well as a
completely revised congestion control scheme that can handle
sensors that only transmit at specific rates, for example, video
cameras. We also present a detailed performance evaluation of
a real RT-SENMOS implementation over an actual network
and compare it against the Rate-Controlled Reliable Trans-
port (RCRT) [4] protocol, another sink-controlled scheme for
sensor networks. We apply the general design of RT-SENMOS
to a disaster recovery scenario in a public building, in which
different types of sensors attempt to communicate with a
mobile rescuer that moves around the disaster area.

The remainder of this paper is organized as follows. In
Section II we present our assumptions, motivate our design
choices and show how RCRT compares to our work. In
Section III we review protocol operation and we present the
new features introduced to the scheme. Section IV describes
our implementation and the experimental results. We conclude
in Section V.

II. RATIONALE AND RELATED WORK

The communication environment assumed by RT-SENMOS
is a multi-hop network, where neighboring nodes are con-
nected via a broadcast wireless technology, such as WiFi,
Bluetooth or ZigBee. Some of the nodes in the network
(possibly all of them) host sensors which attempt to transmit
their data to a destination node, the sink. The sink may
be mobile, for example, a human or robot equipped with a
computer. We assume that all nodes know the network address
of the sink, that is, they are pre-programmed with a specific
sink address which they periodically try to connect to. Sensors



2 PUBLISHED IN: PROCEEDINGS OF THE IFIP NTMS 2016

are relatively dumb, in the sense that they are not aware of a
specific application scenario, they just try to send their data
to the sink. On the other hand, the sink is customized for a
specific application, employing the RT-SENMOS mechanisms
to control the sensors as needed. Different applications can
be used at different times over the same network, by simply
taking over the pre-programmed sink address. Due to mobility
and sensor outages, the sink may only be able to communicate
with a subset of the sensors at any given time, therefore it must
be able to adapt to rapid changes in the network environment.
We assume that a dynamic routing protocol is used, ensuring
connectivity between the sink and any reachable sensors [5].
Connectivity may be lost at any time though, due to node
failures or sink mobility.

To allow RT-SENMOS to serve diverse applications, we
assume multiple classes of sensors, which can be treated
differently. In general, the sink first allocates bandwidth to
each class and then it assigns a portion of that bandwidth to
each sensor. Different algorithms can be used for each of these
allocation schemes, depending on the application, although
we generally expect congestion to be concentrated around the
sink, as all transmissions converge there. Since RT-SENMOS
is purely sink-controlled, the sensors are unaware of these
policies. In our tests, sensors are divided into two classes:
continuous and event sensors. A continuous sensor collects
point data, e.g. a temperature value or a camera snapshot,
and sends them periodically to the sink. An event sensor is
triggered by an event, e.g. motion detection, to send some data,
e.g. a 30-sec live video. We assume that event sensor data are
delay sensitive, since they are correlated to a specific event in
time. In contrast, we assume that continuous sensor data are
not delay sensitive, as they are periodically refreshed.

III. PROTOCOL DESCRIPTION

In this section we describe the behavior of the current
version of RT-SENMOS. The detailed message formats and
exchanges are omitted due to space limitations, as they are
available in [3]. In general, the protocol operates in three
phases: first, the sensor attempts to connect to the sink
and send its class and its desired rate; then, one or more
data exchanges take place, with recovery taking place either
together with data transmission or in recovery rounds; finally,
either side can drop the connection. Pairs of control messages
that always follow each other are used to estimate the current
round-trip time (RTT) between the sink and each sensor.

A. Error recovery

The basic error recovery mechanism of RT-SENMOS relies
on the sink issuing Negative Acknowledgements (NAKs) for
data packets and the sensors retransmitting the lost data.
However, while most protocols retransmit lost data immedi-
ately, RT-SENMOS can differentiate its behavior based on
sensor class. As the basic retransmission policy must also
be implemented at the sensors, we have chosen two schemes
which cover a wide range of applications, while allowing the
sink to modify its behavior depending on the application.

For the continuous sensor class, and in general for any
transmissions that are not delay-sensitive, retransmissions are
performed in recovery rounds, as follows. First, all the data
packets are transmitted, with the sink issuing NAKs. Next, the
data packets for which NAKs were received are retransmitted,
then the ones for which NAKs were received again are
retransmitted, and so on, as in RMTPSI [6]. The sink can
modify this policy by stopping the recovery process whenever
it deems appropriate, for instance, when enough packets have
been received to reconstruct the content. Furthermore, if a
source loses connectivity with the sink before the transmission
completes, the sink can approximately reconstruct the content,
as it will have received incomplete data from beginning to end,
rather than complete data only from the beginning.

For the event sensor class, and in general for any transmis-
sions that are delay-sensitive, recovery has to be completed in
a limited time frame. For this reason, packets are immediately
retransmitted by the sensors when a NAK is received, as in
RCRT [4]. The sink can modify this policy by choosing which
packets to NAK, depending on their value to the application.
For example, in MPEG video, packets containing I-frames
are more valuable than those containing P-frames. In our
experimental evaluation we have implemented a policy where
the sink measures the recovery time for the past 10 retrans-
missions (a configurable parameter) to determine whether a
retransmitted packet will arrive soon enough to be played out,
based on the current position of the video player. If not, the
packet is not NAKed at all.

B. Congestion management

The congestion management algorithm relies on two ob-
servations: first, congestion will most likely be concentrated
around the sink, where all transmissions converge and, second,
due to sink movement, the algorithm must converge quickly
in order to be stable. For these reasons, while TCP and many
other transport protocols use an Additive Increase - Multi-
plicative Decrease (AIMD) algorithm to probe the (unknown)
available bandwidth on the end-to-end path, RT-SENMOS
starts from the (known) available bandwidth around the sink.

Starting from the bandwidth available around the sink, RT-
SENMOS first allocates a fixed portion of the bandwidth
to each sensor class, depending on application requirements.
Then, it performs rate allocation separately for each class, pos-
sibly using an entirely different algorithm per class. Note again
that since RT-SENMOS is rate-controlled, the sensors are not
aware of the actual scheme used, they just follow the sink’s
instructions. In our original scheme, each sensor announced
its desired rate during connection establishment [3]; we have
extended this to allow either indicating a single target rate, or
a set of target rates. In our implementation, continuous sensors
ask for a single target rate, while event sensors ask for a set
of target rates, which could match different video qualities.
The interpretation of the single target rate is that this is the
minimum rate that the sensor would need to offer good service,
so the rate allocation algorithm tries to match or exceed that
rate allocation. The interpretation of the multiple target rates
is that the sensor will use the highest one of these rates that



PUBLISHED IN: PROCEEDINGS OF THE IFIP NTMS 2016 3

is allowed by its rate allocation, meaning that ideally the rate
allocation algorithm should exactly match one of these rates.

Whenever a new sensor is connected or an existing one
is disconnected, the system is checked to see whether global
adjustments need to be made, separately in each class. First,
we calculate the total rates requested (not assigned) by the sen-
sors of each class. If these are below the available bandwidth,
new sensors will get their requested rate, existing sensors that
were previously rate-limited will increase their rate by 20%,
while all other existing sensors will get their requested rate. If,
however, the requested bandwidth is higher than the available
one, the available rate is shared equally among all sensors of
that class; sensors with multiple rates are assigned the rate
just below the equal share. New sensors are notified of their
assigned rate in a start transmission message, while existing
sensors are notified by a rate update message [3].

Congestion detection is based on the assumption that the
congestion losses experienced by the sink in each connection
are more akin to those occurring in a network with Random
Early Detection (RED) [7]: due to the large number of
sensors and the convergence of their data around the sink,
congestion losses are expected to be randomly distributed
among connections, with the loss probability increasing with
the level of congestion. Furthermore, we assume that each
sensor class has some minimum requirements in order to
provide an acceptable service level, expressed by a maximum
acceptable loss rate max rate. The congestion management
scheme monitors the current loss rate, loss, for each sen-
sor, and uses the difference between max rate and loss to
make its decisions. Specifically, when max rate < loss, the
sink decreases the assigned rate in proportion to the current
loss rate: newRate = currentRate ∗ (1 − loss). When
max rate > loss, the sink increases the assigned rate in pro-
portion to the difference between the threshold and the current
loss rate: newRate = currentRate∗ (1+max rate− loss).
As an example, if max rate = 3%, when loss = 1% the rate
will be increased by 2%, while when loss = 5% the rate will
be decreased by 5%. To allow the network to react to these
changes, we do not modify the rates for a small period after
each change, unless if the sensor pool changes, in which case
we apply the previous (global) algorithm. The event sensor
rates are modified in the same way as described above, that
is, we adjust their allocations to their actually desired rates.

IV. PERFORMANCE EVALUATION

A. Experimental setup

To evaluate the performance of RT-SENMOS, we created
a mixed sensor scenario with 14 event and 14 continuous
sensors with an extra node acting as the sink. All sensors
are connected to the sink over a single physical hop using a
shared wireless channel. We used our own implementations
of RT-SENMOS and RCRT written in Java, adding a loss
injection module to emulate congestion losses at the sink.
The emulated loss rate rather than being random, as in losses
induced by wireless errors, was actually proportional to the
current bandwidth usage, matching our assumption of a RED-
like congestion loss model. Specifically, the loss rate at any

TABLE I: Experimentation parameters

Parameter Value
Continuous Sensor content size (MB) 8
Continuous Sensor bit rate (KBps) 82
Event Sensor content duration (sec) 30
Event Sensor bit rates (KBps) 50, 87, 187 and 312
Chunk size (bytes) 512
Loss samples stored per sensor 10
Bandwidth available at the sink (MBps) 2
Continuous Sensor share 10%, 30% and 50%
Target Loss rate 2%

given time was calculated by multiplying the fraction of the
total bandwidth allocated by the sink with the target loss rate,
which was 2%, thus ranging from zero to the target loss rate.

We assumed that the continuous sensors were security cam-
eras that sent individual 8 MB frames at a minimum desired
rate of 82 KBps, while the event sensors when triggered sent
30 sec of live video at 50, 87, 187 or 312 KBps, depending
on their rate allocation. The total bandwidth available at the
sink was 16 Mbps (or, 2 MBps). In the test scenario we have a
100 m corridor, with event sensors deployed every 6.8 m; the
rescuer connects to them while moving along the corridor.
The continuous sensors are all connected at the beginning
of the experiment and we wait until all transmissions are
complete. The experimental parameters are listed in Table I.
Regarding RCRT, we implemented its functionality, including
all three rate allocation policies, on top of our message
exchange scheme, using the same parameters values as in [4].
However, we only show results from the fair (all sensors get
the same rate) and demand-proportional (each sensor gets the
same proportion of its desired rate) policies, using the highest
desired bit rate for event sensors, The rate-limited policy
does not allow continuous sensors to exceed their minimum
bandwidth, therefore it cannot be compared to our scheme.

B. Experimental results

In RT-SENMOS we assign a fixed fraction of the available
bandwidth to each class, so Figures 1a and 1b show the
mean bandwidth allocated to continuous and event sensors,
respectively, when continuous sensors take up 10%, 30% and
50% of the bandwidth. The fraction allocated to each class
balances their performance against each other, allowing the
application to determine which sensor class it values more.
We can also see that each sensor class quickly converges to
a fair allocation of rates: event sensors are slowly connected,
hence they only need to reduce their rates when a large number
of them are in the pool, while continuous sensors are all
connected at the beginning, hence they quickly reach their fair
shares, which increase as some transmissions are completed.

Figures 1d and 1e show the same metrics for RCRT, using
the two allocation policies available. With the fair policy,
RCRT attempts to equally share the rate among all sensors,
so they all converge around 100 KBps, which is more than
enough for the continuous sensors, but too low for the event
sensors. On the other hand, the demand-proportional policy
attempts to allocate to each sensor class the same fraction of
their desired rates, hence ending up with 50 KBps for continu-
ous sensors (less than the desired 82 KBps) and 200 KBps for



4 PUBLISHED IN: PROCEEDINGS OF THE IFIP NTMS 2016

 0

 20

 40

 60

 80

 100

 120

 140

 160

0 25 50 75 100

K
B

ps

execution time

10% to continuous
30% to continuous
50% to continuous

(a) RT-SENMOS - Continuous

 100

 150

 200

 250

 300

 350

 400

0 25 50 75

K
B

ps

execution time

10% to continuous
30% to continuous
50% to continuous

(b) RT-SENMOS - Event (allocated)

 100

 150

 200

 250

 300

 350

 400

0 25 50 75

K
B

ps

execution time

10% to continuous
30% to continuous
50% to continuous

(c) RT-SENMOS - Event (used)

 40

 60

 80

 100

 120

 140

 160

 180

0 25 50 75 100

K
B

ps

execution time

Fair
Demand proportional

(d) RCRT - Continuous

 50

 100

 150

 200

 250

 300

 350

 400

0 25 50 75

K
B

ps

execution time

Fair
Demand proportional

(e) RCRT - Event (allocated)

 50

 100

 150

 200

 250

 300

 350

 400

0 25 50 75

K
B

ps

execution time

Fair
Demand proportional

(f) RCRT - Event (used)

Fig. 1: Mean Bandwidth Allocated/Used

event sensors (less than the highest rate, more than the second
highest rate). As a result, even though the demand-proportional
policy is better adjusted to a heterogeneous sensor mix, the
allocations it produces are not satisfactory to either class.

While continuous sensors adapt to any rate allocation of-
fered, meaning that the available and used bandwidths are
generally the same, event sensors can only send at specific
rates. As shown in Figure 1c, the mean bandwidth used by
event sensors with RT-SENMOS is nearly exactly the same
as the one allocated, shown in Figure 1b, while with RCRT
the bandwidth used, shown in Figure 1f, is less than the one
allocated, shown in Figure 1e. Specifically, with the fair policy
the event sensors only use 87 KBps out of the 100 KBps
allocated, while with the rate-proportional policy they only use
187 KBps out of the more than 200 KBps allocated. Finally,
there is no appreciable difference in the experiment completion
time between the different protocols and their variants.

V. CONCLUSION AND FUTURE WORK

We have presented and evaluated a reliable transport pro-
tocol for sensor networks, RT-SENMOS, especially suitable
for disaster recovery applications with a rescuer as the sink.
RT-SENMOS is purely sink driven and implemented at the
application layer, thus allowing application policies to be set
at the sink, using a basic toolkit of error and congestion control
policies that we have implemented. This allows the sink to split
the bandwidth between different classes of sensors and within
each sensor class depending on application preferences, with-
out modifying the sensors. RT-SENMOS controls each sensor
individually, depending on the level of congestion, which is
estimated by measuring packet loss. We have also provided a
performance evaluation of an actual implementation of our
protocol over a real network with emulated losses against
RCRT. The results show that our approach exploits available

bandwidth better than RCRT, as it tries to meet the actual
requirements of each class. The experiments show that the gain
from our approach is more visible in scenarios with sensors
that can operate using a set of fixed rates rather than any rate.

ACKNOWLEDGMENT

This research was financed by the Research Centre of the
Athens University of Economics and Business, in the frame-
work of the project entitled “Original Scientific Publications”.

REFERENCES

[1] “Distributed sensor systems for emergency response (DISFER) project,”
http://www.aueb.gr/disfer, accessed: 2016-07-29.

[2] C. Stais, G. Xylomenos, and G. F. Marias, “Sink controlled reliable
transport for disaster recovery,” in Proc. of the International Conference
on Pervasive Technologies Related to Assistive Environments, 2014.

[3] C. Stais and G. Xylomenos, “RT-SENMOS: Reliable transport for sensor
networks with mobile sinks,” in Proc. of the IEEE Symposium on
Computers and Communication (ISCC), 2015, pp. 105–110.

[4] J. Paek and R. Govindan, “RCRT: Rate-controlled reliable transport for
wireless sensor networks,” in Proc. of SenSys ’07, 2007, pp. 305–319.

[5] K. Karenos and V. Kalogeraki, “Traffic management in sensor networks
with a mobile sink,” IEEE Trans. on Parallel and Distributed Systems,
vol. 21, no. 10, pp. 1515–1530, 2010.

[6] C. Stais, G. Xylomenos, and A. Voulimeneas, “A reliable multicast
transport protocol for information-centric networks,” Journal of Network
and Computer Applications, vol. 50, pp. 92 – 100, 2015.

[7] S. Floyd and V. Jacobson, “Random early detection gateways for con-
gestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1, pp.
397–413, 1993.


