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a b s t r a c t 

We present an efficient mobility-based proactive caching model for addressing niche mobile demand, 

along with popularity-based and legacy caching model extensions. Opposite to other proactive solutions 

which focus on popular content, we propose a distributed solution that targets less popular, personalised 

or dynamic content requests by prefetching data in small cells based on aggregated user mobility predic- 

tion information. According to notable studies, niche demand, particularly for video content, represents a 

significant 20–40% of Internet demand and follows a growing trend. Due to its novel design, our model 

can directly address such demand, while also make a joint use of content popularity information with 

the novelty of dynamically tuning the contribution of mobility prediction and content popularity on local 

cache actions. 

Based on thorough performance evaluation simulations after exploring different demand levels, video 

catalogues and mobility scenarios including human walking and automobile mobility, we show that 

gains from mobility prediction can be high and able to adapt well to temporal locality due to the 

short timescale of measurements, exceeding cache gains from popularity-only caching up to 41% for low 

caching demand scenarios. Our model’s performance can be further improved at the cost of an added 

computational overhead by adapting cache replacements by, e.g. in the aforementioned scenarios, 41%. 

Also, we find that it is easier to benefit from requests popularity with low mobile caching demand and 

that mobility-based gains grow with popularity skewness, approaching close to the high and robust gains 

yielded with the model extensions. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Wireless networking witnesses an unparalleled growth. During

the past ten years mobile data demand grew x40 0 0 and only in

2015 by 74% [1] . According to the same study, mobile data per de-

vice will grow to 4.4 GB per month by 2020, which is almost a x5

increase relative to 2015. Mobile video on its own will account for

75% of traffic, pushing macro-cellular capacity to the limit. In an-

other report in [2] , wireless communication systems will support

more than 10 0 0 × today’s traffic beyond 2020. 

This unprecedented growth calls for cost-efficient solutions that

do not relegate user Quality-of-Experience QoE. To this end, several

solutions in literature try to offload [3] the costly macro-cellular

traffic to small cells as an alternative to expanding macro-cellular

coverage to satisfy demand. Small cells can be provider-controlled

pico / femto cells or third-party open-access Wi-Fi hot-spots. Due to

their small range, they allow providers to better utilise the licensed
∗ Corresponding author. Tel.: +30 210 8203 693. 
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pectrum, to exploit the non- licensed spectrum through of Wi-Fi

otspots, and to reduce power consumption for signal emissions

ith significant benefits for providers’ costs and user’s battery con-

umption. On the down side, installing provider-controlled small

ells in places that lack or have poor backhaul support, e.g., on

amp posts or traffic lights, implies considerable business expendi-

ures for deploying, running and maintaining new infrastructures

nd services that can meet with demand volumes. In addition, ex-

loiting the already established Wi-Fi hotspot infrastructure is also

imited due to the capacity restrictions of typical backhaul con-

ections that create a bottleneck for certain throughput-demanding

ontent types and, particularly, for mobile video : Even if higher ca-

acities are available, users tend [1] to cause even larger traffic vol-

mes when offered with higher capacities. 

To address the problem of backhaul congestion, recent devel-

pments in the literature [4–8] as well as in the industry 1 adapt

roactive caching of content in small cells so as to directly serve
1 For instance, Altobridge “Data at the edge” www.idirect.net/Altobridge. 

spx or www.intel.com/content/dam/www/public/us/en/documents/white-papers/ 

ommunications- small- cell- study.pdf . 

http://dx.doi.org/10.1016/j.comnet.2016.10.001
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Fig. 1. Independent prefetching decisions in (a). Cooperation between mid-level 

and leaf caches in (b). 
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obiles from a low-access delay local cache. Similarly to Content

elivery Network (CDNs), these local approaches focus on serving

opular content to users, hence leaving niche demand for less pop-

lar or personalised content that falls in the “long tail” of typical

opularity distributions largely unaddressed. 

In this paper we take a different approach and propose a

ovel, mobility- and popularity-based distributed proactive caching

odel with notable design differences from the other solutions,

hich focuses on niche mobile video demand. This way, local cache

ctions target less popular content or personalised requests which

re not directly addressed by CDNs, thus our model’s performance

an be more robust w.r.t. the already established and successful

DN replication of popular content near to consumption, which

eaves little room for further improving the service and related

ser QoE of popular mobile videos. Cache decisions with our model

re lightweight and taken autonomously by each small cell based

n a dynamic cache congestion pricing scheme that helps to effi-

iently trade the limited local cache buffer resources for reduced

ser download charges or experienced delay. Therefore, our solu-

ion can be easily applied to heterogeneous wireless networking

cenarios to yield gains with a positive implication on QoE for

onetary cost-concerned or delay-sensitive mobile users, via trad-

ng pure macro-cellular communication with small-cellular down-

oads. 

.1. Contribution 

The contribution of this paper can be summarised as: 

• Addressing niche demand with mobility-based proactive caching:

e conclude after notable studies [9–13] that a significant 20–

0% of requests that refers to less popular videos remains not ad-

ressed by popularity-based approaches. Thus, 

even if 60–80% of video accesses continuous to account for popular

content in the future, a significant 20–40% of the total mobile video

requests will still refer to niche demand. 

Moreover, we discuss the possible implications of niche person-

lised demand in social networks and try to explore the possible

mpact of CDNs on the delay gains from local caching, showing

hat our model can have a good and robust performance against

he cases of applying no, popularity-only or naïve local proactive

aching, exactly due to targeting the part of niche mobile demand

hich is not directly addressed by CDNs. 

• Joint mobility-based and popularity caching: We present Ef-

cient Mobility-based Caching (EMC), a proactive caching model

hat is designed to address niche demand for personalisedor less

opular requests that fall within the “long tail” of typical popular-

ty distributions via cache decisions which exploit individual user

obility prediction and requests. We also present content popular-

ty and legacy-caching model extensions that aim to serve multiple

obiles sharing the same requests. The main novelty of the pre-

ented approach lies in the abilityto dynamically tune the contribu-

ion of contemporary dynamic mobility and popularity information

n cache actions and, hence, to capture short timescale temporal

ocality better than other approaches. 

• Investigation of influence of system parameters on performance:

e investigate the impact of mobility-prediction and popularity on

he gains from proactive caching for a plethora of different sys-

em parameters. We find that gains from mobility prediction can

e high and able to adapt well to temporal locality due to the short

imescale of measurements, and that it is easier to benefit from re-

uests’ popularity under low mobility-based caching demand con-

itions. Furthermore, the gains of our basic mobility-based model

row with video popularity skewness, approaching close to the

igh and robust gains yielded with the model extensions. 
.2. Outline 

This paper is organised as follows: Section 2 provides the nec-

ssary background on the problem of mobile video explosion and a

horough discussion on the significance of niche mobile video de-

and. We proceed with presenting the basic system model along

ith popularity and legacy caching extensions in Section 3 . Next,

e analyse the results of a comprehensive performance evalua-

ion in Section 4 , followed by an analytical discussion on imple-

entation in Section 5 . Finally, we discuss the state-of-the art in

ection 6 before we wrap up and outline future work directions in

ection 7 . 

. Background and motivation 

Mobile video traffic arises as the ultimate challenge for wireless

roviders. Due to the combined widespread of devices and video

ontent, particularly within social networks, mobile video is ex-

ected to account for 75% of traffic by 2020 [1] . This translates

o a x11 demand increase relative to only 2015, and is impossi-

le or too expensive to satisfy by simply expanding the traditional

acro-cellular support. The problem gets further aggravated due to

he aggressive buffering policies of most HTTP video streaming ser-

ices which cause 25–39% of unnecessary mobile traffic [14] . An-

ther important problem dimension regards service charges. Users

an become very unhappy with charging mechanisms that aim to

ontrol demand peaks. 

Perhaps the most difficult dimension of the problem which

e try to address in this paper regards capturing niche demand.

he currently applied solutions in the internet help to mitigate

he problem of increased demand by identifying which content is

opular and by increasing its availability. CDNs, in particular, are

ighly successful in replicating popular content close to consump-

ion, which helps to reduce providers’ cost and to offer better ser-

ices to their users. But as we discuss, even CDNs fail to capture

ig part of mobile demand which is due to less popular content.

his part of traffic has an increasing significance due to the in-

reasing share of video content in social networks , which create a

rend for sharing personalised, hence less popular, videos. 

In the rest of this section we focus on the background details

f the problem, explain why niche demand is significant and ar-

ue why it will continue to be at least as important in the future

ue to social networking. Moreover, we discuss why we need lo-

ally applied solutions in small cells targeting on niche rather than

opular videos, which can complement CDNs in capturing the part

f the traffic that they typically neglect, yielding benefits for both

sers and providers. 

.1. Niche demand is significant 

Regarding web content , Fig. 1 in [9] shows that popularity-based

aching reaches a 60–70% practical hit ratio upper limit depending

n the homogeneity of the client population. A similar conclusion
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Macro BS

Femto/Pico BS

Wi-Fi BS

Fig. 2. Macro-cellular area including provider’s pico/femto cells and third-party Wi- 

Fi hotspots. Blue-dashed (resp. red-dotted) arrows denote that the mobile is con- 

nected to a small (resp. the macro) BS. 
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2 According Facebook’s CEO M. Zuckerberg, “In five years, most 

of [Facebook] will be video ” http://www.pcworld.com/article/2844852/ 

facebook- will- be- mostly- video- in- 5- years- zuckerberg- says.html . 
is drawn from Fig. 2 in [10] which shows that 25–40% of the top-

most popular documents account for 70% of all requests seen by a

web cache proxy. In a more recent study in [15] , the authors shows

that a large portion of web traffic is dynamically generated and per-

sonalized data, contributing up to 30–40% of the total traffic. These

findings lead to the conclusion that at least a significant 30% of less

popular or personalised web requests that account for 30–40% of traf-

fic, are not addressed based on popularity. 

Regarding video demand , the work in [12] and references

therein, acknowledge the significance of niche demand and iden-

tify the opportunities of leveraging latent demand for niche videos

that are currently not reached. According to the same study,

caching only 10% of the most popular videos accounts for 80% of

views on YouTube, i.e. a 20% of videos accesses on YouTube corre-

sponds to less popular content. However, this profound popularity

skewness could be the result of a distortion imposed by search or

recommendation algorithms due to wrong categorisation or rank-

ing. Speculation is also backed by another study [13] on different

centralised video services, which reveals that 10% of the top-most

popular videos accounts for ∼60% of requests, i.e. 90% of the least

popular videos accounts for 40% of all requests . For all that, we can

conclude that a significant part of video requests, which reportedly

lies between 20% and 40%, is not addressed by popularity-based

caching, hence even if 60–80% of video accesses continuous to ac-

count for popular content in future, a significant 20–40% of the total

mobile video demand will still refer to niche content. 

2.2. Video demand in Social Networking Service (SNS) 

Social Networking Service (SNSs) reflect social relations among

users who share a common background such as news interests

or real-life connections, thus forming a unique personalized online

social network per user profile. Since their advent, they are hav-

ing an increasing impact on ISP traffic and on wireless mobility:

Cisco [1] verifies that the observed increase in wireless traffic vol-

umes is the result of the increasing popularity of SNSs and pre-

dominantly Facebook, in addition to the traffic from large video

streaming providers like YouTube or Netflix. While initially focused

mostly on textual and image content, currently SNSs mark a new

era of personalised videos . Before that, demand was driven by devel-

opments in large video streaming providers, which led to solutions

designed for increasing the offered QoS of such services. In what

follows, we focus on the current and future levels of mobile video

traffic on Facebook and stress the qualitative differences between

SNSs and video hosting websites. 

2.2.1. Video explosion on Facebook 

Facebook is the pacesetter for almost all developments in SNSs,

marking the trend for new mobile services. As of 2010 [16] , its

users where uploading over a billion of new images, i.e. 60 TB,
er week, with Facebook serving over one million images per sec-

nd during peak hours. But clearly Facebook content sharing has

hifted from image data to an era of video dominance . Video func-

ionality was added on Facebook in 2007, and since then video

osts have gradually evolved from simple external links to up-

oaded videos on Facebook facilities 2 Moreover, the latest web and

obile versions of Facebook enable video auto-play on users “time-

ines” or profile pages. This is important for it implies an added

raffic for videos that are not explicitly requested to be viewed by

sers, similarly to aggressive buffering techniques [14] applied by

ervices like YouTube. Finally, files will be significantly bigger in fu-

ure , as advanced mobile devices and greater network capacities

ill enable users to capture and upload videos with a longer dura-

ion and in a higher resolution. 

.2.2. Differences from video hosting websites 

To complete one’s understanding on the level of impact of SNSs

n video demand, we must focus on the differences w.r.t. the de-

and models in the case of “traditional” video streaming services

uch as YouTube. The latter holds a leading role [17] and, con-

equently, it is a de facto case-study [12,14] for Internet video

emand. Prospective viewers are offered with a keyword-based

earch mechanism, paralleled by suggestions based on popularity

rendsin order to discover desired videos. As identified in [12] and

eferences therein, the filtering mechanisms applied on search re-

ults and on recommended content can be held responsible for the

ccurring truncated power-law distributions , i.e. distributions char-

cterised by only a small fraction of videos that stands out sub-

tantially for its popularity and, therefore, translates to most of the

roduced traffic volumes. With this in mind, CDN services (see

ection 2.3 ) and local caching strategies (see Section 6.1 ) are de-

igned to bring popular content “closer” to its prospective viewers.

onetheless, this approach may be not appropriate w.r.t. SNS de-

and, due to the following important qualitative differences from

he demand model in the case of “traditional” video streaming ser-

ices: 

.2.2.1. User-specific filtering. Video hosting websites try to influ-

nce popularities [12] . Unlike that, demand in SNSs is mainly dic-

ated by the users’ personalized networks of peers, liked/followed

ccounts and preference settings. For instance, Facebook users do

ot directly search for content based on keywords. Their “time-

ine” of content suggestions is defined after their own settings used

s input to a special algorithm which features only desired content

rom within their social network instead. Twitter on the other com-

ines personalised (filter) listswith hashtag searching and news

trends”. 

.2.2.2. Individuality, transitiveness & transience. Popularity de-

ends on the characteristics of the individual users’ social net-

orks. To provide an example, the chance that a published video

ecomes popular grows with the publisher’s network size. Also, it

s highly transitive as content can gain increased visibility if repub-

ished by popular users. Nevertheless, popularity falls sharply after

wo days on Facebook because publications stop from showing in

he default news feed [16] . 

.2.2.3. Latent popularity. Latent popularity is difficult to capture.

ontacts may consume content without commenting, liking, etc.

ven views-counting provides a questionable measure of popular-

ty –especially now that users can “silently” watch or neglect auto-

layed videos – with further studies [14] showing that users can

http://www.pcworld.com/article/2844852/facebook-will-be-mostly-video-in-5-years-zuckerberg-says.html
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asily abort playback. And although there appears to be a strong

orrelation between popularities and rankings in [12] , the authors

f the same study also state that requests on YouTube are so

kewed that it is debatable whether this is because viewers want

o watch what others watch or because of a distortion caused by

rong ranking or categorisation. 

.3. The impact of CDNs on local caching 

Content Delivery (or Distribution) Networks (CDNs) are large

istributed systems deployed within ISP facilities across the Inter-

et with the goal to serve content with high availability and per-

ormance. To do so, they exploit the truncated power-law popu-

arity distributions of web and video demand and use distributed

lgorithms [18] to bring popular objects “closer” to prospective end-

sers . This way, CDNs also reduce data transit charges [19] , avoid

andwidth bottlenecks and large network distances. 

Still, CDNs can fail to assist a considerable part of demand:

ache effectiveness for content in the “long tail” of popularity

istributions increases only logarithmically with the size of the

ache [10,20] , whereas CDN edge-caches are sufficiently big for

osting only the most popular videos. This leaves niche requests to

pass through” the CDN level, although they represent a significant

ortion of mobile demand (see Sections 2.1 and 2.2 ). Moreover,

here is evidence that content popularity is not adequate for in-

ercepting post-CDN demand: Empirical findings [16] indicate that

equests missed by the CDN caches are unlikely to hit Facebook’s

nternal cache due to wrong cache actions as a result of a plethora

f content of similar popularity in the “long tail”. Likewise to Face-

ook’s internal cache misses, local caches deployed on networks

dges that adapt a popularity-based caching model can also leave

iche demand unaddressed. 

For all that, we argue for a local solution, that is beyond the

cope of popularity-based approaches, and which can complement

DNs by addressing niche mobile video requests. To our knowl-

dge, EMC is currently the only such solution in literature. 

. System model 

We present our basic mobility-based cache decisions model and

ow it can be applied in both a “flat” and a hierarchical config-

ration of the available distributed cache space ( Section 3.1 ). Fur-

hermore, we present content popularity and legacy caching model

xtensions ( Section 3.2 ), and demonstrate an application scenario

or users of heterogeneous wireless networks who wish to reduce

heir monetary charges ( Section 3.3 ). Last, we discuss and an anal-

se how (i) monetary charges or (ii) delay costs and their impact

n QoE can be integrated in our model decisions ( Section 3.4 ). 

.1. Basic model 

Cache actions with the basic Efficient Mobility-based Caching

EMC) model consider (i) the cost of fetching data from an ex-

ensive source, e.g. from a mobile carrier’s macro cell or a remote

ource T R , and (ii) the cost for consuming data from the local cache

oint T L . 

“Cache points” are mobile network Access (or Attachment)

oint APs equipped with low-access time storage resources which

ake cache actions that aim to trade their locally available buffer

pace efficiently for a reduced cost of obtaining data by their

phemerally hosted mobiles. Our model can be applied when T L 
 T R , i.e. when caching content closer to consumers or within the

rovider’ own resources reduces transfer delay or data consump-

ion charges for mobiles. Both T R and T L , which we discuss in

ore detail in Section 3.4 on page 17, can be assessed per individ-

al content or even content chunks, or per user. Additionally, such
osts can be associated with certain content types (e.g. premium

uality videos) and/or Quality-of- Service (QoS) requirements for

ertain categories of mobiles and applications. 

In addition, cache actions consider the cost of consuming cache

pace in order to capture the trade-off between occupying cache

pace for some content instead of another. Since EMC offers a

aching service to both niche and popular requests, demand ex-

ectations can be higher compared to popularity-based solutions.

n order to tackle cache congestion and to utilise the local storage

esources efficiently, EMC uses a dynamic price p l ( t ) that is updated

ith each new request s issued at time t + 1 to cache point l with

apacity B l : 

p l (t + 1) = 

[
p l (t) + γ

∑ (
o s · b s (t) − B l 

)]+ 
. (1)

Parameter γ defines how quickly prices adapt to demand

hanges, o s is the size of each content s , and b s is a binary value

hich denotes if s will be cached. Adjusting the price helps to effi-

iently utilise the cache and to reach closer to the cost optimisation

arget : 

in 

b s 

∑ 

s ∈ S l 
T s (2) 

.t: 
∑ 

s ∈ S l 
o s · b s ≤ B l , ∀ l ∈ L, (3) 

here T ∫ stands for the expected cost for obtaining content s . Note

hat trading transfer and cache costs presupposes a common mea-

urement value , such as a monetary unit, which expresses how

uch willing are mobile applications to “pay” in terms of cache

torage in exchange for reduced transfer costs for obtaining s . 

.1.1. Autonomous caching in a “flat” structure of cache points 

Fig. 1 a depicts a neighbourhood of caches organised in a “flat”

tructure in which cache decisions b l s (t) in every cache point l are

utonomous according to rule (4) : 

 s (t) = 

{
1 if Q 

l 
s (T R − T L ) ≥ p l (t) , 

0 Otherwise . 
(4) 

he rule captures user mobility prediction and individual requests

nformation via Q 

l 
s , which aggregates the individual transition

robabilities q i,l s of all mobiles with an active request for object s

rom their current cache point i to the target point l : 

 

l 
s = 

∑ 

∀ i q 
i,l 
s (5) 

he left-hand side the rule is divided by the object’s size to adapt

he rule for different-sized objects, i.e. Q 

l 
s · (T R − T L ) /o s . Also, the

ule can be accordingly adjusted to address cases in which transfer

osts are individual to different content, caches, users, etc, hence

he latter can be accordingly adapted as T s 
L 

and T S 
R 

in (4) . 

Following a mobile’s handover to l , (i) the mobile starts to con-

ume s from the local cache (in case of a cache hit), while (ii) the

est of caches l 
′ 

in the neighbourhood of i get notified to reeval-

ate Q 

l ′ and accordingly to redecide upon evicting or keeping s .

ikewise, l redecides upon keeping s or not after its data are trans-

erred to the mobile. 

Regarding where decisions are taken, one option is for the

equesting mobile (or some proxy) to inform the neighbouring

aches about the corresponding mobile’s transition probabilities;

lternatively, the mobile (or its proxy) can decide after learning the

ransfer costs and the cache prices from all the neighbours. As for

hen should prefetching start and for which parts of the content,

his is a function of (i) the mobile’s expected handover and con-

ection (a.k.a. residence) durations to the next cache and (ii) the

ime needed for prefetching data from the remote location(s) to

he cache. 
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3.1.2. Cooperative caching: a two-level hierarchy 

EMC can be also applied in a hierarchical cache space where leaf

caches are under only one mid-level cache and the cost for fetch-

ing data from the mid-level parent T M 

satisfies T L < T M 

< T R . For

practical reasons our analysis is specifically focused on the case of

a two-level cache hierarchy (see Fig. 1 b), because this configura-

tion reflects the current network reality where leafs correspond to

local networks such as small cells or wired office LANs, and mid-

level caches to CDN servers placed inside Internet Service Providers

(ISPs). Generalising to arbitrary hierarchies is possible via a recur-

sive application of the decision procedure which we discuss next,

yet this comes at a cost of added complexity with limited practical

relevance. 

Our approach for solving the proactive caching problem in a

two-level hierarchy considers two flat cache selection problems:

One assuming that content is proactively fetched in the mid-level,

and the other assuming that content is not proactively fetched in

the mid-level cache. Each of these problems can be solved using

the distributed approach presented in Section 3.1.1 by having the

mid-level to submit the values of T R for obtaining data from its

original source to the leafs, and T M 

for obtaining data from the

mid-level cache. Next, each leaf uses (4) to decide for each of the

two problems: (i) for the problem where the content is assumed

to be not cached its parent, the leaf uses formula (4) to decide if

the object should be prefetched to the leaf, and (ii) for the prob-

lem where the content is assumed to be cached in its parent, the

leaf uses (4) by replacing T R with T M 

to decide. Then, each leaf in-

forms its mid-level parent about the corresponding resulting aver-

age data transfer cost: q i,l s T R or q i,l s T M 

if the decision is to not fetch

the object to the leaf, or otherwise q i,l s T L . 

After receiving the costs from all its leafs, each mid-level cache

considers the sum of the transfer costs for each problem: D 

mid 
M 

in

the case the mid-level proactively fetches the content and D 

mid 
bkhl 

in

the case the mid-level cache does not prefetch the content but,

instead, it will bring it from its backhaul upon request. The ver-

dict b mid 
s (t) upon caching an object in the mid-level resembles rule

(4) : 

b mid 
s (t) = 

{
1 if D 

mid 
bkhl 

− D 

mid 
M 

≥ p mid (t) , 

0 Otherwise , 
(6)

where p mid ( t ) is the congestion price for the mid-level at the time

of the decision t , updated in a similar manner as for the leaf caches

(1) , only based on the cache demand and the available storage

in the mid-level. Following its decision, the mid-level informs the

leafs which transfer cost factor (T R or T M 

) they should use in (4) ,

implying that the content may be proactively fetched even to both

the leaf and its mid-level parent. 

The above procedure remains distributed as in the case of the

flat structure, but requires cooperation between mid-level caches

and their leafs. Moreover, it can be applied to a hierarchy with

more than one mid-level caches, as long as each leaf is a child of

only one mid-level cache. Cace actions for each mid-level cache

and its leafs follows the above approach, independently from the

other mid-level caches. 

3.1.3. Problem hardness and the feasibility of an optimal solution 

3.1.3.1. Flat cache configuration. Finding an optimal cache place-

ment for a flat set of caches given a set of requests for equally-sized

objects of content can be obtained as follows: For each cache l we

order requests in a decreasing order of value q i,l s (T R − T L ) . Then,

starting from the request with the highest q i,l s (T R − T L ) , we fill the

cache until the constraint B l is reached. This procedure for obtain-

ing the optimal is performed in rounds , unlike the online -applied

solution based on cache congestion pricing, where cache actions

are taken iteratively for each request according to formula (4) . Fur-

thermore, there is a serious practical issue regarding the duration
f each round, which determines the number of requests that are

onsidered in the beginning of a round. For objects with different

izes , the optimisation problem becomes identical to the 0/1 Knap-

ack problem , which falls within the class of NP-hard problems and

or which the cache congestion pricing can have advantages to-

ards approaching an optimal solution. 

.1.3.2. Two-level cache hierarchy. Introducing an intermediate level

f caching between the leaf caches and the remote data sources

urns the problem into a Generalised Assignment problem [21] .

he latter is a variation of the 0/1 Multiple Knapsack problem, in-

olving multiple knapsacks, each with a possibly different maxi-

um weight limit. At any time, there will be a given set of cache

equests from the mobiles that are active at that time instant. For

ach such time instance, the problem for a two-level cache hierar-

hy has similarities with the Data Placement Problem [22] , where

he probability of an object being requested at a specific cache

s given by the probability of the mobile moving to the corre-

ponding network attachment point. In another work by the same

uthors [23] , it is shown that the data placement problem with

ifferent object sizes is NP-complete. Although the problem may

e solved in polynomial time [24] in a hierarchical network with

qually-sized objects, such solutions have a high polynomial degree

nd apply to an offline version of the problem. 

.2. Model extensions 

We extend our basic model to integrate cache replacements

nd/or to jointly exploit content popularity information along with

ser mobility prediction for cache actions. This yields two alterna-

ive extended model versions: 

1. Efficient Mobility-based Caching with Replacements (EMC-R),

and 

2. Efficient Mobility and Popularity-based Caching with Replace-

ments (EMPC-R) 

The goal of the adapted extensions is twofold: it lies in better

apturing temporal locality so as to prefetch and keep content that

s more likely to be served to multiple users, and second, in ex-

loiting legacy-cached content from past decisions in the case of

MPC-R, for which there are currently no active mobile requests. 

.2.1. Cache replacements 

Adapting cache replacements causes two important differences

elative to the basic model: (i) requests are not directly tested with

 decision rule like (4) and (ii) actions do not consider local cache

rices. Instead, the extended model directly caches an object s if

ts size o s can fit in the unallocated cache space, otherwise it ex-

lores the possibility of evicting one or more cached objects e , ei-

her legacy or active. To decide which object(s) to evict, we fol-

ow a procedure according to which cached objects e with size o e 
re polled for eviction in order of increasing G ( e )/ o e untilthere is

nough 

 

∀ e G (e ) / 
∑ 

o e < G (s ) /o s (7)

ree space cache s under constaint (7) , where G ( x ) is the expected

ain from caching (resp. keeping cached) content x , computed af-

er a special gain valuation formula that is subject to the consid-

red requests information (see Section 3.2.2 ). If (7) is not satisfied,

hen the cache request for s gets dismissed. The purpose of (7) is

o optimise the total gain per utilised cache buffer unit and it can

e omitted if all objects have the same size, e.g. when cache deci-

ions are taken on the level of equally-sized content chunks. Note

hat (7) works also as a heuristic for tackling the knapsack combi-

atorial optimisation problem that arises from maximising the to-

al gain of the cached objects given their different individual gains,

izes, and the limited capacity of the cache. 
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.2.2. Extended model versions 

Next, we present two alternative extended model variations

.r.t. gain valuation. Notice that only EMPC-R can exploit the pos-

ible benefits of legacy cached contents e for which there are no

ctive mobile requests, i.e. for which Q 

l 
e = 0 . 

1) Efficient Mobility-based Caching with Replacements (EMC-R). This

variation adapts only the cache replacements extension, thus

the gain valuation formula is defined as: 

G (s ) = Q 

l 
s · (T R − T L ) . (8) 

The resemblance to the decision rule (4) is evident, only with-

out the comparison part against a cache congestion price as in

the original model. 

2) Efficient Mobility and Popularity-based Caching with Replacements

(EMPC-R). This model version refers to the integration of both

cache replacements and requested content popularity to cache

decisions, hence the gain valuation formula is defined as: 

G (s ) = (Q 

l 
s + w · f l s ) · (T R − T L ) . (9) 

This formula integrates both user mobility information Q 

l and

popularity information f l s . Whereas Q 

l remains as defined in

(4) , f l s is the probability that object s gets requested again from

cache l in the future, weighted by a special tuning factor w .

This factor is the number of requests served by l to its cur-

rently attached users during one handover interval. Hence, w

adapts a dynamic value that is used to “tune” the balance be-

tween mobility prediction and content popularity information

on gain valuation by growing the significance of popularity ex-

pressed via f l s with the number of requests currently served by

l . We can approximate f l s as defined in (10) , where T l req is the

time duration between two consecutive requests for any object

submitted to cache l and I l s 

f l s = T l req /I l s , (10) 

is the time between two consecutive requests for s submitted

to l , i.e. f l s reflects the contemporary popularity of s in cache l

w.r.t. the most recent requests information. 

.3. Model application in Heterogeneous Wireless Networks 

Heterogeneous Wireless Networks (HWNs) are characterised by

he coexistence of different radio access technologies. Within the

ontext of this paper, we assume HWNs as the one portrayed in

ig. 2 , that are comprised by one macro Base Station (BS) and mul-

iple small cell BSs. Each small BS is equipped with a cache stor-

ge and has a running instance of our model to enhance mobility

upport for users with niche requests who are primarily concerned

bout download charges. Such cost-concerned users may choose to

ostpone entire downloads until they connect to a small cell, or

o download data concurrently from the macro and any ephemeral

mall cells connections. Along these lines, social networking users

re a notable example: they request for content that is tailored

o their personalised social network (See Section 2.2 on page 6)

nd they commonly choose to receive only notifications or small

bjects from the macro BS and to engage into data downloads of

onsiderable size later via a Wi-Fi hotspot. 

Fig. 2 depicts a cost-concerned user moving across the macro

rea and connecting to the small cells along its path. The loca-

ion and the range of coverage of the small cells is up to de-

ice settings and landscape properties, while clusters of contigu-

us coverage such as in the figure can denote the presence of a

rovider-orchestrated 

3 coverage. To apply our model, each running
3 Philips SmartPole (with 4G LTE support from Ericsson) street lighting in Los 

ngeles: goo.gl/KzCsVs. 

 

nstance (see Section 5 on page 33) has to attain information about

he user’s (i) transition probabilities, (ii) expected handover and

mall-cellular “residence” session durations, (iii) content requests

nd (vi) the corresponding data-transfer costs. To better utilise the

vailable backhaul and storage resources during prefetching, re-

uests can be fine-grained to the level of the content chunks pre-

icted to be consumed during the mobile’s ephemeral residences. 

.4. Transfer costs integration 

Our model’s cache actions are designed to reduce monetary

osts or download delay via trying to increase transfer cost gains

 R − T L . Monetary costs may refer to user service charges for

acro-cellular downloads, but also to charges and other expenses

or providers, e.g. due to inter-domain data transit services used

or fetching data from external sources. Delay on the other may

efer to the propagation or transmission delay suffered by users

hen downloading their desired content, with a considerable im-

act on QoE. This paper adapts a user-oriented approach by ad-

ressing niche mobile requests, particularly for video, hence our

ollowing discussion is focused upon (i) user charges and (ii) down-

oad delay and its relation to QoE. 

.4.1. Monetary charges 

We assume monetary charges M MC and M SC for macro- and

mall-cellular usage in HWNs respectively, thus the corresponding

ransfer costs adapted by our model are: 

 L ≡ M SC , T R ≡ M MC (11) 

Our model can be applied only when M SC < M MC such when

sers utilise a third-party Wi-Fi hotspot connection free of charge

r in case they are offered with favourable charges 4 for connecting

o their own providers’ pico/femto resources as a means of moti-

ation for increasing the amount of the offloaded traffic to small

ells. 

.4.2. Delay cost 

Delay implies an important cost for both users and their

roviders. It can cause video buffering breaks or lead to lower

ideo qualities such as with the Dynamic Adaptive Streaming over

TTP (MPEG-DASH) protocol in order to match the offered level of

oS. Therefore, on the one hand there is delay as a metric, and on

he other hand there is the users’ own utility of delay which di-

ectly relates to the perceived user QoE. In the following, we pro-

ide an analytical discussion on delay w.r.t. both its measurable

alue and its utility. Given our focus on big objects and particularly

ideo content, the analysis focuses on transmission delay, which is

 function of the available throughput relative to the transited con-

ent volumes and the QoS requirements of the mobile application.

dditionally, we present a user utility function which can repre-

ent users’ valuation for delay d and via which we may capture

he impact of delay on QoE: 

• Transmission delay . Let R W 

be the throughput of the wireless

small cell interface and and R bkhl be the corresponding through-

put of the backhaul link or the path to the source of data

via the backhaul. Also, assume that R bkhl < R W 

, which justi-

fies that prefetcing and caching data can yield benefits. With-

out proactive caching, the delay for downloading content s with

size o s is d ≡ d bkhl = o s /R bkhl as the throughput to a mobile is

constrained by R bkhl . However, with proactive caching, delay is

d ≡ d W 

= o s /R W 

< d bkhl . Due to the lower delay and the higher

throughput levels R W 

> R bkhl that can be utilised to transfer

more data to mobiles, the users’ QoE can be improved such as
4 www.thinksmallcell.com/Operation/billing.html . 

http://www.thinksmallcell.com/Operation/billing.html
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Fig. 3. Example utilities as a function of delay. Users obtain no value above a maxi- 

mum delay threshold. (a) Linear utility. Value increases as delay approaches to zero. 

(b) Sigmoid utility. Max value below a min delay threshold. 
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Fig. 4. Impact of user mobility on performance using 35 small cells with a short, 

medium or long radius (r). 
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by transferring videos in a higher quality. If only a part x l s of s

is prefetched to small cell l , then the remainder o s − x l s is com-

pensated via the backhaul. If the mobile requesting s moves to

l , then the small-cellular delay for transferring the whole of s

is: 

D sc (x l s ) = 

x l s 
R W 

+ 

o s − x l s 
R bkhl 

= 

o s 

R bkhl 

−
(

1 

R bkhl 

− 1 

R W 

)
x l s . (12)

• User utility function U s (d) Fig. 3 portrays two possible forms

of U s (d) , namely, a linear utility that decreases with delay in

Fig. 3 a, and a sigmoid utility for which a maximum value is

achieved below a minimum delay threshold in Fig. 3 b. We can

define utility 

U 

l 
s (x l s ) = U s 

(
D s (x l s ) /q i,l s 

)
(13)

as a function of the part x l s of object s that is proactively fetched

in cache l . If a user has a higher probability q i,l s to move to

l , then it needs to proactively cache a larger part of the con-

tent to achieve the same utility. We assume that (13) is contin-

uous and strictly increasing in [ m 

l 
s , M 

l 
s ] , where m 

l 
s ≥ 0 and m 

l 
s <

M 

l 
s ≤ o s are minimum and maximum values of x l s for which

U 

l 
s (x l s ) = U 

l 
s (m 

l 
s ) for x l s ≤ m 

l 
s , and U 

l 
s (x l s ) = U 

l 
s (M 

l 
s ) for x l s ≥ M 

l 
s .

An example corresponding to Fig. 3 a is U 

l 
s (x l s ) = 

R 

q i,l s 

(x l s − m 

l 
s ) ,

where x l s ∈ [ m 

l 
s , M 

l 
s ] and R = 

1 
R bkhl 

− 1 
R W 

. 

4. Performance evaluation 

We present an extensive performance evaluation conducted

with a custom simulator built especially for evaluating our model

and model extensions in heterogeneous wireless networking appli-

cation scenarios. Our performance results show the mean mone-

tary or delay cost gains from small-cellular data consumption as

a percentage of the cost of the corresponding pure macro-cellular

communication. The presented gain percentages and their corre-

sponding 95% confidence intervals refer to 100 simulation repeats.

Apart from EMC, EMC-R and EMPC-R, we include the performances

of three benchmark models, namely, Naïve , Max Popularity (Max-

Pop) and NoCache ( Table 1 ). 

4.1. Geospatial and wireless properties 

We begin our evaluation with studying the impact of geospa-

tial and wireless properties on performance. These properties refer
Table 1 

Cache performance benchmarks. MaxPop and NoCache used only in Section 4.2 . 

Notation Description 

Naïve : Caches content to all neighbours with available cache space. Such

benefits of adapting user mobility or content popularity, as wel

MaxPop : Prefetches the topmost popular videos at small cell based on their

it helps to highlight the advantages of adapting up-to-date user

NoCache : No proactive caching used. Mobiles consume data only from the b
o (i) the range of coverage, (ii) the mobile handover policies and

iii) the overall cache-storage supply over demand ratio. We adapt

he following simulation setup, which is convenient at this stage

or focusing our analysis exclusively on the geospatial and wire-

ess properties of our model. Unless stated otherwise, all results

resented throughout Section 4.1 refer to: (i) topology: stochasti-

ally distributed small cells across a 700 × 700 macro cell area;

ii) mobility model: “Uniform” user mobility pattern unless stated

therwise (see Table 2 for details); (iii) cache capacity supply: cache

upply of 100 content objects per small cell; (iv) gains upon hits:

xed, to 90% gains upon cache hits; (v) user demand: 2800 mobile

sers initialised at random points of the area, each with a single,

nique request. Since unique, requests are equally-popular and the

MC model has to consider only one mobile transition probability

er object request. Thus, we use only the basic model here, leaving

he popularity and legacy caching extensions for Section 4.2 . 

.1.1. User mobility 

Fig. 4 shows EMC and Naïve gains for the mobility models of

able 2 . The more skewed the mobility model is, the greater are

he performance gains for EMC. This is expected due to the fact

hat mobility prediction becomes more accurate with increased

obility skewness, hence mobile decisions can better utilise the

vailable buffer space resources. Nevertheless, even EMC (Uniform)

anages to utilise its buffer space better than Naïve by ∼6% due to

he cache pricing scheme adapted in EMC. In another conclusion,

he graph shows that increasing the radius length r of the small

ells can significantly increase the performance of EMC. The former

auses demand to increase, which leads to a better cache-storage

tilisation in the case of EMC due to its congestion pricing mecha-

ism. On the very contrary, exposing Naïve to a higher demand de-

rades its performance. Its gains difference from EMC range from

6% for r = 35 , to ∼25–32% for r = 70 and even to ∼31.8–37.3% for

 = 140 , as Naïve (i) lacks the ability to handle higher demand and

ii) neglects mobility and cache space congestion. 

.1.2. Handover policies 

Fig. 5 shows EMC gains as a function of cache supply over de-

and for two handover policies, namely, Cached Content (CC) that

llows mobiles to attach to cells that have prefetched their re-

uested content, and Closest Range (CR) , according to which mo-

iles attach to the closest cell within range. The graph show that
 “blind” proactive caching lacks intelligence and helps to point out the 

l as cache congestion pricing in cache decisions. 

 long-term requests frequency. MaxPop lacks locality knowledge, hence 

 mobility or local popularity to cache actions. 

ackhaul. 
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Table 2 

Mobility models, i.e. patterns of probabilistic user mobility in space. All models integrate a ± 2.5% 

probability jitter. Note that each model creates the necessary conditions to approximate, yet not to 

impose, corresponding handover probabilities between cells, as this is also w.r.t. to the location and 

range of the cells. 

Notation Description 

Uniform: The number of mobiles moving along each direction is uniformly equal. 

SKD80%: Skewed mobility model with 80% of mobiles moving towards the same direction. 

SKD100%: Skewed mobility model with 100% of mobiles moving towards the same direction. 

0%

20%

40%

60%
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100%

0% 75% 150% 225% 300%

G
ai

n 
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EMC (CC)
EMC (CR)

Fig. 5. Impact of handoff policies on performance. The X-axis shows the supply of 

storage-cache from 21 small cells as a percentage of total demand from all mobiles. 
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5 http://ita.ee.lbl.gov/html/traces.html . 
6 Wireless Geographic Logging Engine: https://wigle.net/ . 
oth performances continuously increase, yet with a decelerating

rowth rate. Performance is higher for CC by ∼37.5–42% as users

aximize their gain by attaching to the cells which offer their re-

uested objects directly from a local cache. Note though that the

resented gain measurements say nothing about actual data-rates,

ence hybrid CC/CR policies may combine cache hits and corre-

ponding low access latencies with higher wireless rates. 

.1.3. Transient performance 

The graphs of Fig. 6 show the transient performance of EMC

ompare to Naïve for different levels of storage supply over a fixed

evel of demand. Both graphs show that gains converge to a steady-

tate . For EMC, this happens shortly after the beginning of the sim-

lation, i.e. from a initial state of no knowledge on information

bout user mobility and requests. This strongly indicates that EMC

an adapt quickly to changes in demand and user mobility. Fur-

hermore, graph Fig. 6 a shows that doubling supply S over de-

and D from 25% to 50% nearly doubles average gains from ∼36%

o ∼65.5%, whereas further doubling S / D to 10 0% or 20 0% corre-

ponds to a ∼13.5% and ∼5% of extra cost gains on average. Evi-

ently, cache expansion can yield significant performance benefits

n the case of EMC, particularly, when increasing small capacities.

n the very contrary, cache expansion offers minor extra gains to

aïve. As portrayed in graph Fig. 6 b, transient performances for

aïve overlap for S / D ≥ 50%, being broadly lower than EMC. Re-

all that Naïve’s performance in Fig. 4 shows its inability to handle

igher demand due to neglecting mobility and cache space conges-

ion. Likewise, here we observe that it can not exploit higher cache

uffer supplies for the same reason. 

.2. Mobile video gains 

In this second part of the evaluation we provide a meticulous

erformance study w.r.t. user charges and delay gains in scenar-

os that involve mobile video demand. Unless stated otherwise, the

resented results correspond to the following default setup: 

1) Wireless throughput: Mobiles have a constant 2 Mbps access

to the macro-cell and an extra 4 Mbps of wireless through-

put when linked to a small cell. Users can also leverage up to

2 Mbps from their hosting small cell’s backhaul capacity, i.e.

mobiles can jointly download data from the local cache and the
backhaul up to 4 Mbps during their ephemeral small-cell ses-

sions. We also study performance w.r.t. different macro-cellular

throughput values in Section 4.2.1 . 

2) Content requests: We use a set of five different synthetic traces

produced with the GlobeTraff [25] workload generator, which

comply with the latest literature modelson requests popular-

ity and temporal locality. Each trace refers to a different Video

Catalogue (VC) of 100K videos with average file size ∼100 MB,

split into ∼2.5 MB chunks. We adapt s = 0.75 after literature ob-

servations [10] as the default value of the Zipf distribution ex-

ponent parameter used for video popularity. For completeness,

we also study performance w.r.t. (i) a series of different s val-

ues in Section 4.2.2 , and (ii) real web traffic 5 after filtering-out

non-video requests in Section 4.2.3 . 

3) Topology & user mobility: We use 22 small cells stochasti-

cally distributed over a 10 0 0 × 10 0 0 area and a real mobil-

ity trace [26] with GPS data of 536 taxi cabs over a period of

30 days in the San Francisco Bay Area, USA. The chosen small

cell density corresponds to data about the area extracted from

the publicly available WiGLE database 6 and after grouping Wi-

Fi hotspots within less than a 100 m distance from each other.

Besides the default setup, we adapt different mobility traces in

Section 4.2.4 and study the impact of alternative densities in

Section 4.2.7 . 

4) Mobile & Stationary demand: Mobiles have 1 active request at a

time which is jointly served via the macro and the small BSs.

During a mobile’s “residence” in a small cell, it consumes data

from the local cache in parallel to consuming the non-cached

video chunks from the small cell’s backhaul and the macro link.

Apart from the mobiles, small cells also host “stationary” de-

vices with long-lasting connections, e.g., laptops. We assume an

average number of 20 active stationary requests in each target

small cell, which last for a time that is equal to the average mo-

bile handover time to the small cell. Also, we study the impact

of the number of stationary requests in Section 4.2.6 . 

5) Cache capacity: We assume 4 GB cache-storages for simulating

a low-cost, highly-distributed HWNs along the lines of Fig. 2 .

Also, we compare the performance of our model against differ-

ent cache storage capacities in Section 4.2.8 . 

6) Cost gains: Macro-cellular (resp., small-cellular) transfers cost

10 (resp., 0 ) monetary units per downloaded data unit. Note

though that the results presented in Section 4.2.10 adapts a se-

ries of cost combinations which refer to transfer delay. 

.2.1. Performance against benchmarks and macro-cellular 

hroughput 

Fig. 7 shows performance for 3 different wireless macro-

ellular throughput values MC t : (i) low throughput (Graph Fig. 7 a);

ii) average throughput (Graph Fig. 7 b); and (iii) high throughput

Graph Fig. 7 c). As a general comment, we observe that all perfor-

ances drop with MC t because the mobiles consume an increased

art of their requests from the macro cell during both their han-

http://ita.ee.lbl.gov/html/traces.html
https://wigle.net/


314 X. Vasilakos et al. / Computer Networks 110 (2016) 306–323 

0%

20%

40%

60%

80%

500 1000 1500 2000 2500 3000
G

ai
n 

%
Time

(a) EMC

0%

20%

40%

60%

80%

500 1000 1500 2000 2500 3000

G
ai

n 
%

Time

S/D=400% S/D=100%

S/D=50% S/D=25%

(b) Naı̈ve

Fig. 6. Transient performance for different supply over demand ratios (S/D). 

0%

20%

40%

60%

80%

100%

G
ai

n 
%

Cache

Backhaul

(a) MCt = 1 Mbps

0%

20%

40%

60%

80%

100%

(b) MCt = 2 Mbps

0%

20%

40%

60%

80%

100%

(c) MCt = 8 Mbps

Fig. 7. Performance with different macro-cellular wireless throughput levels. Graphs portray a performance breakdown between download gains from the cache (in red) and 

from the backhaul link (in blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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dover and residence periods. The extend of the drop is better per-

ceived via observing NoCache: its performance falls from 50% to

34% and from there to 20% in correspondence to a 2 × and an 4 ×
MC t increase respectively. The impact on cache gains is less for

EMC ( ∼−1.5%) with each MC t increase compared to the extended

model variations, whose gains fall from 66% to 61% and 56% re-

spectively. Last, cache gains for MaxPop are robust but low (6%),

and Naïve cache gains drop by 4% and 2% for each correspond-

ing MC t increase. Next, we discuss the performance against the

benchmarks. Without loss of generality, we focus on the average-

throughput scenario of Graph Fig. 7 b, which is the default scenario

(see Section 4.2 ); yet the same conclusions apply to the rest sce-

narios as well: 

1) Maximum gains from cache with replacements: EMC-R and

EMPC-R appear 7 to exploit small-cellular wireless throughput

exclusively with data straight from the local cache, due to the

added efficiency of cache replacements that yields ∼14% more

cache gains relative to EMC. 

2) EMC yields a robust and overall good performance: The difference

between EMC and EMC-R/EMPC-R is only 3% when including

backhaul gains. This outcome is highly important as cache re-

placements imply a considerable computational overhead rela-

tive to the basic model (see Section 5.4 on page 14). 

3) EMC and EMC-R adapt well to temporal locality: Even though

only EMPC-R directly addresses content popularity, EMC and

EMC-R decisions appear to adapt well to contemporary pop-

ularity conditions via the aggregated transition probabilities

Q 

l 
s of the mobiles with an active request for content s . Such

short timescale 8 and dynamic mobility information help to adapt

quicker and better to temporal locality conditions than long-

term popularity information. A comparison against the cache

gains of MaxPop (6%), verifies that EMC corresponds better to
7 Given this setup. See also Section 4.2.9 . for a more meticulous analysis w.r.t. 

different system parameters. 
8 An outcome which largely coincides with [4] , which concludes that “We need 

to take into consideration the latest mobility information from nearby devices to 

make accurate predictions” w.r.t. urban environments. 

w  

p  

i  

i  

t  

d

temporal locality than the long-term popularity used by Max-

Pop, thus exceeding the latter’s performance by 41% (19% in-

cluding the backhaul). Also, EMC-R and EMPC-R appear to have

the same performance. This does not imply that popularity in-

formation in (9) is needless, as it allows to decide upon legacy-

cached objects with the cache replacements extension. 

4) Intelligent Vs. naïve caching: Naïve has 11% less cache gains (8%

including the backhaul) relative to EMC. This fair performance

difference is due to (i) the total user demand of the taxi trace,

which is generally not high. Many out of the simulated taxi cabs

can have long and varying handover periods that make them

consume most (or even the whole) of their requested content

before entering a small cell. Moreover, (ii) Naïve decisions are

not totally “blind” and regard only a part of the requested con-

tents (see Section 5.2.2 on page 36), while the gains of intelli-

gent caching can be much higher against a “pure” Naïve as we

show in Sections 4.1.1 and in 4.1.3 . In addition, (iii) Naïve’s gains

come with larger confidence intervals, which implies that EMC

and especially EMC-R/EMPC-R are less susceptible to demand

fluctuations. 

5) Compared to NoCache: Gains from mobility-based proactive

caching are significant compared to using only the backhaul.

EMC (resp., EMC-R/EMPC-R) outperform NoCache by ∼24%

(resp., 28%), while MaxPop by only 6% and Naïve by 16%. 

.2.2. Content popularity skewness 

Fig. 8 shows the gains of our model as a function of the Zip-

an video popularity distribution exponent parameter ( s ). We use

 fixed 100 MB size for all videos so as to focus exclusively on

he impact of content popularity skewness as it increases with s .

he results show a robust performance for the model extensions

nd an increasing trend for EMC. EMC better utilises the cache

ith more skewed content popularities (greater s ), which is ex-

ectable as cache decisions regard mostly specific content. Also,

ts performance approaches to that of the model extensions, be-

ng only ∼7.6% lower for s ≥ 0.9. Note, however, that our model

argets niche requests; highly popular content can be anyway ad-

ressed by CDNs (see Section 4.2.11 ). 
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to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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.2.3. Real trace requests 

Fig. 9 presents gain performance w.r.t. a real trace of web

equests [5] . A comparison between Graphs Fig. 7 b and 9 reveals

hat EMC gains are lower than with GlobeTraff: Cache gains are

ess by 14% (53% including the backhaul). Opposite to EMC, the

ains of the extended models are increased by 2%. Gains for Naïve

lso drop, remaining lower by 9% relative to EMC. Interestingly,

axPop’s cache gains are 20% higher (10% including the backhaul)

ompared to Graph Fig. 7 b, along with smaller confidence intervals.

oreover, they exceed Naïve’s cache gains by 2% despite being 30%

ower than Naïve’s in Graph Fig. 7 b. This dramatic increase can be

ue to an increased popularity skewness and/or due to the size of

he pool of video files (see Section 4.2.9 for more). 

.2.4. Walkers mobility traces 

We use the “KTH/Walkers” dataset [27] as a benchmark to the

esults with the taxi cab mobility trace and present the results

n Fig. 10 . We adapt the same small cell density as with the

axi trace, only for a 40 0 × 40 0 area to which the KTH/Walkers

races refer to. The walkers trace comes in three versions w.r.t.

he density of users in space: (i) “sparse”, (ii) “medium” and (i)

dense”. User density with the taxi trace is stable and closer to

medium” relative to the rest. However, density can vary with

ime with KTH/Walkers. In addition, walking speeds are less vari-

ble than the taxi driving speeds which can be anywhere between

ery slow (e.g., due to traffic jams or traffic lights) and very high.
hese differences lead to a smaller level of cache demand with

TH/Walkers, either because the active users are at times less, or

ecause the handover or residence periods last less, which implies

hat less data can get prefetched to the caches or consumed while

eing connected respectively. As a result: 

1) EMC cache gains are lower: They drop by ∼15% and there are no

backhaul gains as the residence in the small cells lasts too little

to utilise the backhaul link. 

2) User density appears to have small impact: There is no im-

pact on EMC and only a small one on EMC-R/EMPC-R whose

gains increase from 42% to 45% and 47% for “sparse”, “medium”

and “dense” respectively. Interestingly, there are some backhaul

gains (0.5–1.7%) for “sparse”. The corresponding cache gain dif-

ferences from the taxi trace are: 19% ( ∼17% including the back-

haul), 16% and 12%. 

.2.5. Mobility prediction accuracy 

As discussed in Section 5.2.2 on page 36, the prediction of the

onsumable part of a mobile’s content request is an integral part

f the cache allocation process that is based on the mobile’s pre-

icted handover and residence duration times. To clarify the im-

act of these mobility predictions, we present the graph of Fig. 11

hich shows the performance against different accuracy levels. As

xplained in the legend, prediction is most accurate for x = 100% ,

hile it can lead to buffer underutilisation (resp., waste) for x <

00% (resp., x > 100%). Indeed, the graphs shows that gains in-

rease with accuracy and that the best average performance along

ith the smallest confidence intervals corresponds to x = 100% .

here is though a difference between the basic and the extended

odels. The latter converge earlier and preserve their performance

or 75% ≤ x ≤ 125% due to cache replacements, while gains for

MC are lower and the corresponding confidence intervals are

ore than twice larger for x � = 100%. 

.2.6. Stationary user requests 

Fig. 12 shows the aggregate performance for all users’ requests.

he total number of connected mobiles per small cell converges to

7 with time for both graphs; yet the average number of station-

ry requests is set to 21 (resp. 7) for Graph 12 a (resp. Graph 12 b).

ur conclusions are summarised as: 

1) Less backhaul gains for less stationary requests: Stationaries have

less hits as cache actions are based on mobiles’ requests. Thus,

they consume more data from the backhaul than the mo-

biles, which explains the reduced backhaul consumption in

Graph 12 b by 10.8%, 2.9% and 3.6% for NoCache, EMC and Naïve

respectively. Note MaxPop’s backhaul decrease by 3% and the

higher impact on NoCache because of the proportionally more

mobiles in Graph 12 b that consume data also from the macro

cell. 
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9 High caching demand corresponds to x10 video file size increasebut the exact 

impact on the demand level depends on mobility, i.e. on the handover and resi- 

dence times as discussed in Section 5.2.2 on page 36. 
2) Cache gains increase for less stationary requests: Cache gains are

higher in Graph 12 b by 5.9%, 5.0% and 10.6% for EMC, EMC-

R/EMPC-R and Naïve respectively, due to the increased propor-

tion of mobiles. The former outweigh corresponding backhaul

loses, hence the aggregated backhaul plus cache gains increase

by 3%, 5% and 7.2%. Note that MaxPop cache gains remain ap-

proximately equal to 3%. 

3) EMC-R and EMPC-R have the same performance: Caching with

EMC-R takes content popularity into account via w · f l s in for-

mula (9) , where w tunes the impact of popularity based on the

number of requests served to attached users during a handover

interval. Thus, w adapts a different value in the two graphs, but

only causes a marginal gain difference compared to EMC-R, ver-

ifying our former conclusion ( Section 4.2.1 ) that the model can

adapt well to temporal locality via only mobility information. 

4.2.7. Small cell density 

Fig. 13 shows performance gains for three different densities

over the 10 0 0 × 10 0 0 simulation area: (i) “sparse”: 11 small cells;

(ii) “medium”: 22 small cells; and (iii) “dense”: 55 small cells. In-

creasing the density increases cache gains in a twofold way: First,

because it increases the available cache supply and, second, be-

cause it increases (resp., decreases) the aggregate residence time in

small cells (resp., handovers) during which the mobiles can down-

load more cached or backhaul data from the small cells (resp., the

mobiles can download only from the macro cell). To sum up: 

1) Cache gains increase with cell density: Doubling the number of

small cells from sparse to medium increases 2.14 × and 1 .96 ×
the cache gains of EMC and EMC-R/EMPC-R respectively. Fur-

ther increasing density from medium to dense by 2.5 × has no

impact on EMC cache gains but it adds up 12% to the cache

gains of EMC-R/EMPC-R. 

2) Backhaul gains increase with density only for EMC: Backhaul

gains for EMC increase with density from 8% to 11%, and to

15%. However, the few backhaul gains ( ∼3%) with a sparse den-

sity for EMC-R/EMPC-R cease to exist. While a greater residence

duration helps EMC to cover up for cache misses with backhaul
data, it helps EMC-R/EMPC-R caching to become even more ef-

ficient and not need the backhaul. 

.2.8. Cache storage supply 

Fig. 14 on page 29 portrays the performance of our model vari-

tions for three different cache storage sizes in each small cell: (i)

 BG, (ii) 4 BG and (iii) 8 BG. The results have similarities with

ig. 13 due to increasing the available cache supply, yet with less

ignificant added cache gains. Our main conclusions are as follows:

1) Cache gains increase with storage size: Doubling the storage

buffer from to 4 GB increases EMC cache gains by 8% and EMC-

R/EMPC-R by 5%. Further doubling to 8 GB adds up 7% to EMC

cache gains and only 2% to EMC-R/EMPC-R. 

2) Declining backhaul gains: Backhaul gains for EMC drop from

16% to 11%, and from 11% to 8%. Likewise, any backhaul gains

( ∼2.5%) that exist with the 2 GB scenario for EMC-R/EMPC-R

cease to exist because increasing storage improves cache hits,

thus decreasing the need for utilising the backhaul to cover up

for cache misses. 

.2.9. Video catalogue size and mobile demand 

Table 3 shows the average gains for two mobility-based caching

emand over total cache storage ratios: low (0.6) and high 

9 (6),

nd two Video Catalogue (VC) sizes in terms number of files:

mall ( ∼10.5K) and large (100K). 

1) Caching demand impacts performance significantly: In the ex-

amined scenarios, the impact of mobiles’ caching demand is

higher than that of |VC|. Increasing |VC| affects confidence inter-

vals, increases gains for EMC-R/EMPC-R, but decreases the other

performances, particularly MaxPop’s: given the fixed-sized 4GB

buffers, MaxPop caches a diminishing fraction of the top-most

popular videos with growing |VC|. 
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Fig. 15. Performance for different small-cellular over macro-cellular delay cost ratios (SC/MC). (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Table 3 

Cache gains w.r.t. a low and a high video caching demand over total cache 

storage ratios (Dmd), combined to a low or large Video Catalogue (VC). 

Parentheses contain confidence interval values. Line 2 marked with ( ∗) 

corresponds to the default setup explained on page 22. All results refer 

to the same local cache buffer size (4 GB) and the same total cache stor- 

age supply (22 small cells × 4 GB). 

Dmd |VC| EMC EMC-R EMPC-R MaxPop Naïve 

Low Small 47 .7% 60 .4% 60 .4% 11 .7% 37% 

(5 .8%) (2 .2%) (2 .1%) (12 .1%) (8 .3%) 
∗Low Large 46 .7% 61 .1% 61 .1% 5 .8% 36 .4% 

(6 .1%) (3%) (2 .8%) (7 .9%) (10 .1%) 

High Small 10% 26% 26 .1% 1 .5% 5% 

(4 .4%) (5 .1%) (4 .6%) (1 .7%) (3 .4%) 

High Large 10 .4% 38 .9% 38 .9% 0 .5% 4 .9% 

(8%) (8 .7%) (8 .5%) (0 .3%) (5 .2%) 
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2) Maximum gains from cache replacements: Given a low caching

demand, cache replacements add up ∼12.5% to performance

relative to the basic EMC model for either a small or a large

VC. The impact is even more significant w.r.t. a high caching

demand, yielding 2.6 × (resp., ∼3.7 × ) the gains of EMC with a

small (resp., large) VC. 

3) Good gains from mobility prediction: Assuming low caching de-

mand scenarios, gains are high from mobility prediction based

on small timescale information, especially for a larger |VC|:

EMC yields 4.1 × (resp., 8.1 × ) the gains of MaxPop for a small

(resp., large) |VC|. Likewise in high demand scenarios, EMC

yields 6.7 × (resp., 20.8 × ) the gains of MaxPop and 2 × (resp.,

2.1 × ) that of Naïve for a small (resp., large) |VC|. 

4) Easier to benefit from requests’ popularity with low caching de-

mand: All gains, particularly MaxPop’s , are high relative to the

corresponding gains for a high caching demand. Since all setup

combinations in the table refer to the same mobility model, the

former indicates that we can better exploit requests’ popularity

with a smaller demand. 

5) Low gains, particularly from popularity, with high caching de-

mand: Gains are generally low with high cache demand, espe-

cially for Naïve and MaxPop. Corresponding gains for EMC are

∼4.8 × (resp., ∼4.5 × ) lower relative to its own performance in

scenarios that combine low demand with a small (resp., large)

|VC|. 

.2.10. Delay gains 

We complete our evaluation by studying our model’s perfor-

ance from a download delay perspective. We adapt the same

etup that is explained on page 22, with the difference of assum-

ng transfer costs which reflect users’ cost valuation of download

elay. Moreover, we try to approach the impact of CDN presence.

espite its growing scale, the Internet works thanks to CDNs. How-

ver, the current state of the art does not consider the possible im-

lications caused by CDN content replication on local caching per-
ormance. Opposite to that, we try to study the impact of a CDN on

ocal caching in support of our discussion in Section 2.3 on page 8,

here we argue for complementing CDNs by targeting niche re-

uests locally. 

Fig. 15 shows gains for 3 different small-cellular over macro-

ellular delay cost ratios SC / MC , each of which can reflect how

sers assess, e.g. based on QoE measurements, the benefit of using

 small cell relative to pure macro-cellular usage: (i) low ratio, high

enefit (Graph 15 a); (ii) average ratio and benefit (Graph 15 b);

nd (iii) hight ratio, small benefit (Graph 15 c). As a general com-

ent, all performances, either w.r.t. cache hits or the backhaul,

rop with increasing SC / MC . Also, the gain differences between the

ifferent cache models also tend to decrease. This is normal to ex-

ect as the corresponding gains from caching also drop from 90%

o 75% and 50% for the presented cost ratios in the figure respec-

ively. As with other graphs, we observe that EMC-R and EMPC-

 share the same performances, which are higher than EMC and

ny other benchmark. EMC in particular, has a robust gain per-

ormance relative to the extended model versions. Its correspond-

ng cache gain difference from the extended models grows smaller

rom ∼16% to 12% with increasing cost ratios. Moreover, this per-

ormance difference is significantly lower when considering also

he gains from the backhaul: ∼5–6.5%. As we also highlight in

ection 4.2.1 on page 23, this is important due to the computa-

ional overhead of the cache replacements extension. In addition,

e observe that the cache gains from MaxPop are robust but low,

nd that all the caching models have benefits over NoCaching. For

nstance, cache gains from EMC are higher than from NoCache; if

ackhaul is further included, then the added gains from EMC are

4%, 8% and 7% for the portrayed cost ratios respectively. Last, the

urther gains from EMC relative to naïve are fair and robust: ∼5–7%

resp., ∼5.5–7.5% with backhaul). 

.2.11. The impact of CDNs delay gains 

Next, the results of Fig. 16 correspond to a scenario of SC/MC =
 . 1 , where CDN presence reduces the transfer delay costs of the

op-most popular videos (CDN%) that it serves by 75%. Notice that
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Table 4 

Notation. 

Notation Descripion 

l : A handover destination (target) small cell. 

i : Origins (source of handover) small cell. 

CDM x : The CDM running at small cell x . 

s or s c : A requested content or the c-th chunk of the content. 

M i : A set of mobiles attached to some origins cell i . 

N i : i ’s neighbourhood, i.e. set of next hop destinations from i . 

I l : The set of the different origins cells from where mobiles can move to l . 
ˆ M l : The set of all mobiles that can move to l . 

r̄ : The average number of content requests per mobile. 

r̄ c : The average number of requested chunks per mobile request r. 
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cache gains for EMC-R/EMPC-R are robust . This is due to the cache

replacements extension which identifies what content is mostly

beneficial to preserve in the cache. Contrarily, popularity -based

caching appears to have a significant loss . Gains in general decrease

with CDN% due to the reduced transfer costs offered by the CDN

level. The performance of MaxPop in particular implies that with

merely 20% of the top-most popular videos being addressed by the

CDN level, there is very little to gain from popularity-only caching.

Likewise 10 , EMC gains converge for CDN % > 20%. Only unlike Max-

Pop, EMC continues to yield cache gains due to capturing content

for the niche requests missed by the CDN level. 

5. Implementation 

Our model employs a distributed design which can be incar-

nated via special Cache Decision Modules (CDMs) running in small

cell BSs of HWNs such as portrayed in Fig. 2 on page 16. CDMs are

responsible for orchestrating cache actions after receiving and pro-

cessing information about mobiles’ requests, and by maintaining

a distributed state via exchanging control messages within their

neighbourhood. In what follows, we present 4 basic CDM func-

tions, namely, (i) user requests, (ii) mobility prediction, (iii) content

popularity adaptation and (iv) cache replacements, from an imple-

mentation perspective along with a corresponding analysis of the

implied computational, memory and intercommunication complex-

ities costs. The latter two functions are applied only when adapt-

ing the corresponding model extensions, hence they imply a fur-

ther implementation and running complexity compared to the ba-

sic model. Apart from the analytical approach which follows next,

note that in practice the implied costs depend on the level of in-

tegration in the network “stack”. CDMs can best integrate with the

network layer of Information Centric Networks (ICNs) to directly

exploit named requests and other network primitives [19] , partic-

ularly multicast communication from/to publisher/subscribed mo-

biles and CDMs; albeit the solution can be also implemented as an

application over standard IP. Next, we discuss the implementation

details and the corresponding complexity analysis using the nota-

tion of Table 4 . 

5.1. User requests 

Users and content must be identified by an ICN name, URL or

IP address, used for proactively fetching the objects via the back-

haul network to the caches, as well as indices for maintaining a

required state (see Section 5.2 –5.4 ) for cache requests. While IP

addresses have a fixed size, URLs or ICN names can be arbitrarily

long, unless using a corresponding hash value such as a 20 byte-

long (160 bits) SHA-1 cryptographic hash. The messaging cost for

submitting such data to each neighbour of source i via unicast
10 Recall that EMC can adapt well to temporal locality via Q l s . 

i  

t  

s  
essages is O (| M i | × | N i |). However, it can be significantly reduced

o O (| M i |) via multicasting each mobile’s requests to all member of

 i . In any case, the corresponding memory cost in a target cell l

epends on | ˆ M l | and r̄ , i.e. it is O (| ˆ M l | × r̄ ) . 

.2. Mobility prediction 

CDMs must have good and timely information about the mo-

iles’ transition probabilities , handover and small cell residence du-

ation times to take accurate cache decisions. Within this content,

e identify the following 3 alternative mechanisms: 

1) Centrally coordinated prediction . A neighbourhood of small cells

includes all the possible next-hop transition APs that mobiles

can attach after leaving their origins small cell. Neighbourhoods

adapt a static configuration and cooperate with the a macro cell

which can track user mobility within its coverage. 

2) Decentralised prediction . A fully distributed and decentralised

approach involves mobiles notifying their possible destina-

tions about their origins, allowing for a lightweight distributed

neighborhood discovery and probability estimation. 

3) External mechanisms . Transition probabilities can be attained

through prediction [28] and tracking [29] mechanisms. Extract-

ing user-specific mobility patterns is feasible with the cooper-

ation of mobile providers or by using common navigation ser-

vices such as Google Maps, to which users can explicitly declare

their route and destination. 

.2.1. Memory & messaging 

Complexity costs are low when using navigation services or

ith centrally coordinated prediction (e.g., due to the wireless

AC layer multicast ability of the macro BS). Decentralised predic-

ion on the other requires some communication, computations and

tate maintenance in neighbouring CDMs: Assume a target l for

obiles requesting s , each of which corresponds to its own origins

. CDM l maintains a small state per each i for tracking the number

f incoming handovers h i, l from i and the total number of outgoing

andovers H i from i . The former are used to predict the probabil-

ty of future mobile transitions from each i to l as defined in (14) .

ikewise, a history of handover and residence duration times from

ast handovers per each i can be kept. We refer collectively to all

he former as “mobility prediction information”. 

 

i,l = h i,l /H i . (14)

Noteworthy, all mobility prediction information imply

ightweight messaging and memory costs. h i, l and H i can be

etrieved either from incoming mobiles from i or from the

obiles’ requests submitted to l . Either way, there is no extra

essaging implied as the needed information can be retrieved by l

ia piggy-backing 2 bytes for h i, l and another 2 bytes for H i in ex-

sting communication for either the mobiles’ attachment to l or for

he requests submission to l (see Section 5.1 ) respectively. Though

mall, this amount of control data is reasonably big enough to
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orrespond to the locally maintained counters in memory which

o not have to be bigger than 2 bytes as they must be periodically

eset or readapted (e.g. with exponential smoothing) to reflect the

urrentness of the predicted transition probabilities. Given that | I l |

ounters are needed to maintain h i, l and another | I l | to maintain

 i for each i , the memory cost for transition probabilities in each

DM l is O (| I l |). The same messaging and memory complexities,

nly w.r.t. 4 byte 11 long counters, apply to handover and residence

uration times information, which can be maintained after past

obile transitions and residence sessions. Mobility prediction can

e more accurate if the mobiles update l about their status (e.g.

PS coordinates) while in transit to l . This comes though with

 tradeoff in terms of messaging, O (U f × | ˆ M l | ) , where U f is the

verage frequency of updates per mobile sent to l . 

.2.2. Cache decisions 

CDM l can take cache actions with each incoming request for

ome content s by integrating the predicted q i,l s ≡ q i,l from all

he mobiles with an active request for s , along the lines of for-

ula (5) as Q 

l 
s = 

∑ 

∀ i h i,l /H i . By further leveraging the knowledge

f macro/small-cellular wireless and backhaul throughputs, as well

s the predictions about the handover and residence times for mo-

iles, CDM l can take more accurate and cache- efficient actions at

he level of separate chunks s c . The reason lies in the fact that dif-

erent mobiles can to consume different chunks of the same s from

 , due to the different number of: (i) chunks κ that each individ-

al mobile will already have consumed from the macro link before

onnecting to l ; (ii) chunks λ that CDM l will to be able to prefetch

nd cache via its backhaul while the mobile is in transit; and (iii)

ached chunks ν that the mobile will be able to consume dur-

ng its residence in l via its wireless interface. The earlier two are

ased on information about the mobile’s predicted handover dura-

ion and the latter based on information about the mobile’s resi-

ence duration. Hence, the chunks predicted as consumable from l

nd for which CDM l must decide, are those en [ s κ+1 , s κ+ ρ ] , where

= min (λ, ν) . Accordingly, we adapt the predicted mobile transi-

ion information, this time per chunk, as q i,l s c ≡ q i,l in formula (5) ,

.e. Q 

l 
s c 

= 

∑ 

∀ i q i,l s c = 

∑ 

∀ i h i,l /H i . 

Based on all above, the practical cost of cache actions at l is

ubject to the granularity of requests. The computational complex-

ty of each cache decision is O (1) according to rule (4) and there

re r̄ × ˆ M l decisions to make by CDM l . However, if decisions con-

ider chunks rather than whole objects, this rises to r̄ × r̄ c × ˆ M l .

ote that the former hold for final and irrevocable cache decisions

aken upon receiving a mobile’s request(s). We discuss the compu-

ational complexity cost of cache decisions again when analysing

he impact of model extensions. 

.3. Content popularity adaptation 

The popularity extension (see notation and definitions on page

5) implies no extra messaging costs, again O (1) computations per

equest with an added small burden for computing f l s = T l req /I l s on

he fly, and a low memory cost which we analyse next: The mem-

ry cost of T l req is constrained to only a 4 byte long counter for

eeping the time difference between the latest two consecutive re-

uests. For I l s , we need to have O (| S |) of such 4 byte long coun-

ers, where S = ∪{ s } is the set of all the different objects requested

o be cached by l . Each of these counters has to be mapped to

he corresponding content or chunk names which –as mentioned

bove– can be 20 byte long hash values. Assuming an example of

00 requests for different contents, the total memory requirement
11 Assuming Unix time for simplicity. It can be further reduced as it is used for 

ime differences. 

m  

p  

i  

c

s merely (20 + 4) × 100 = 2400 bytes, i.e. less than 2.5 KB. If these

ontents correspond to big objects, e.g. videos, which are split to ξ
hunks, then the former requirement raises by a factor of ξ , e.g.

ess than a quarter of a megabyte for ξ = 100 . Finally, maintaining

 requires only 4 bytes for keeping the average handover dura-

ion from any source cell to l , and another 4 bytes, at most, for

he number of requests currently served with data via l ’s cache or

ackhaul. 

.4. Cache replacements 

Extending our model with cache replacements has no impact

n messaging, yet it does have a significant impact on the cost

f cache decisions. The cost of cache decisions is dominated by

he cost of maintaining a gain-based ordering of the cached ob-

ects. This can be done with a heap in memory, which implies

n O (1) cost in terms of space and O (n × log (n )) w.r.t. time com-

lexity, where n is the number of objects in the cache. Nonethe-

ess, mobility prediction and content popularity information are

ynamic, which implies that the gain-based ordering of all ob-

ects in the cache, as well as the gains of the pending requests,

ust be periodically updated to reflect changes w.r.t. temporal lo-

ality. This implies that the gains for all n objects must be re-

valuated and re-inserted to the heap, thus raising time complexity

o O (n 2 × log (n )) . 

. State of the art 

The work presented in paper falls within proactive approaches

or HWN environments, and approaches which use cache replace-

ent techniques in order to approach an optimal allocation of the

vailable cache resources. Next, we discuss the state of the art in

roactive caching and cache replacement solutions. 

.1. Proactive caching solutions 

Recent research [4–8] and industry 1 developments adapt proac-

ive caching of popular content in small cells, as a remedy for back-

aul bottlenecks. Unlike “traditional” reactive caching after users’

ecent requests, the idea tracks its roots to the 1990’s pre-fetching

pproaches explored as delay performance enhancements for file-

ystems and Web access, and more recently it has regained at-

ention for vehicular Wi-Fi access [30] and for enhancing seam-

ess mobility support for delay-sensitive applications in publish-

ubscribe networks [31,32] . 

.1.1. Pushing content to mobiles 

Malandrino et al. [33] propose proactive seeding¥ (pushing) of

ontent to mobiles in order to minimize the peak load in cellu-

ar networks based on a content-spreading prediction over SNSs

pproach. Bastug et al. [6] exploit context-awareness and SNSs to

redict the set of influential users to which they proactively cache

trategic contents in order to be further disseminated to their

ontacts via Device-to-Device (D2D) communication. In the same

ork, the authors also explore proactive caching to small cells

uring off-peak hours based on popularity, correlations among

sers, and files patterns. Likewise, the work in [34] by Gonçalves

t al. uses D2D communication to exploit predictable demand with

roactive data caching and in order to minimize user payments by

rading proactive downloads. The solution yields mutual benefit for

arriers via dynamic pricing for differentiating between off-peak

nd peak time prices. Last, centrality measures for content place-

ent is used in [35] , a game theoretical formulation of the data

lacement (caching) problem as a many-to-many matching game

s given in [36] , and proactive caching with perfect knowledge of

ontent popularity in [5] . 
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6.1.2. Caching in small cells 

Golrezaei et al. [8] suggest proactive caching as a solution for

offloading wireless traffic from a macro BS to special, femto-like

“helpers”, each equipped with a large cache-storage and high wire-

less Wi-Fi capacities. Cheung et al. [7] focus also on Wi-Fi empha-

sising on delay-tolerant applications, and propose a dynamic pro-

gramming optimal delayed offloading algorithm, with the objective

of minimizing the total cellular usage and penalizing deadline vio-

lation. A more recent work presented in [37] , the authors focus

on storage-bandwidth tradeoffs using the probability of not satis-

fying requests over a given coverage area as a function of signal-

to-interference ratio, cache capacity, small cell density and content

popularity. 

We investigate procedures that exploit mobility prediction and

proactive caching to Wi-Fi hotspots to enhance data offloading for

delay tolerant and delay sensitive traffic [38,39] , as well as for

video streaming [40] assuming that mobiles’ routes are known.

In addition, our work in [41] evaluates throughput prediction

to prefetch video data in integrated mobile and Wi-Fi networks

in order to improve mobile streaming. Our past work on Effi-

cient Proactive Caching (EPC) [42,43] introduces a fully distributed

cache model for reducing data transfer delay in Publish/Subscribe

(Pub/Sub) mobile network environments with no fallback connec-

tivity such as a macro cell, where mobiles experience (possibly

long) disconnections periods during handovers. 

Our current work extends the EPC decision model and expands

its application to HWNs (see Section 3.3 on page 16). From a tech-

nical point, EPC exploits individual user requests and individual

mobility information for cache actions, whereas here we use ag-

gregated mobility and content popularity information to further

capture the dynamics of local content popularity conditions. The

resulted model is tailored for addressing niche mobile demand

whereas EPC was design for reducing delay and especially propaga-

tion delay of small pieces of content. Opposite to that, the current

work is best suited for reducing mobile charges or delay for bigger

objects such as videos, possibly under the joint use of a macro-

cellular download connection. 

Compared to the rest of the state of the art in proactive ap-

proaches, this paper introduces a distributed model for cache de-

cisions that can adapt quickly to changes in the mobility or the

demand model (e.g., flash crowds) based on dynamically tuned con-

tent popularity and mobility prediction information. Furthermore,

our model does not simply aim on popular content as the rest of

the approaches do, but exploits mobility and individual requests

information to capture niche demand. Even though niche requests

for large objects such as videos imply a higher cache space re-

quirement compared to caching only popular content, still our

approach utilises cache-storage efficiently with its dynamic con-

gestion pricing scheme. Last, the most striking difference of our

model regards the problem formulation . The rest of proactive so-

lutions use mathematical optimisation approximation for the non-

tractable distributed cache problem of “content placement” [44] ,

which is also recognised as NP-hard in [8] . These solutions are cen-

tralised, neglect mobility or employ a static adaptation of popular-

ity that is not conducive to capturing the dynamics of temporal

locality. Even the work in [4] that does consider mobility, statically

splits storage for popularity- and mobility-based caching. 

6.2. Cache replacement algorithms 

Cache replacement is a well studied field in literature, partic-

ularly for web caching. One of the most prominent approaches

which is relevant to the replacement strategy adapted in our

model is GreedyDual–Size (GDS) [11] . GDS is a cost-aware algo-

rithm that integrates locality information as follows: Cached ob-

jects are given a score value based on the cost of bringing them
nto the cache. When a replacement needs to be made, the content

ith the lowest cost score H min gets replaced and the rest of the

bjects reduce their score values by H min . By reducing score values

s time goes on and by restoring them only upon a new request,

he algorithm manages to seamlessly integrate cost concerns and

equests locality in time. Jin and Bestavros [45] analyse temporal

ocality beyond the properties of content popularity skewness and

eneralise GDS. The resulted GreedDual ∗ algorithm uses a utility

alue u in the place of the cost per data unit for fetching an object

hat is used in GDS, along with an cache-ageing factor L as fol-

ows: Objects are assigned with u + L upon cache hits, while L gets

he value that was assigned to the most recently evicted object.

ence, L works as an inflation factor for cached objects in order to

eflect the importance of locality due to temporal requests correla-

ion, versus the importance of long-term content popularity. 

Based on our discussion in Section 3.2 on page 14, our model

dapts a gain-based replacements approach which has compara-

le design features with [11] and, especially, [45] . It captures re-

uests locality via Q 

l , while the performance evaluation results de-

ote that the aggregated mobility information in Q 

l can also adapt

ell to content popularity. Also, our model extension approximates

ontent popularity f l s in a way (see formula (10) ) which captures

emporal correlation, and further tunes its significance on cache

eplacement actions based on local demand information. 

. Conclusions and future work 

We present a novel Efficient Mobility-based Caching (EMC) dis-

ributed model along with content popularity and legacy caching

odel extensions. Our solution has significant design advantages

ver other proactive approaches, the most important of which lie

n its ability (i) to address niche mobile demand, (ii) to dynamically

une the contribution of mobile requests’ popularity and users’ mo-

ility prediction on cache actions, and (iii) to take on-the-fly cache

ecisions based on contemporary, short timescale local mobility in-

ormation. By design, our approach targets less popular or person-

lised content that is unaddressed by other proactive approaches

n literature and CDNs, and can be applied to heterogeneous wire-

ess network environments in order to yield monetary and delay

ost gains for users with positive implications on QoE. According to

redible studies and network forecast reports, such niche content

equests represent 20–40% of Internet demand, with mobile video

n particular following the growing popularity trend of personalised

ideos published in social networks. As we discuss, even if 60–80%

f video demand continuous to account for popular content in the

uture, still a significant 20–40% will refer to niche videos. To our

nowledge, our approach is the most appropriate for complement-

ng CDNs because it is the only one that intercepts requests for

iche content which is otherwise missed due the providence of

DNs exclusively for popular objects. 

Regarding the performance of our solution, among our most no-

able findings, we show that gains are good from mobility predic-

ion against the cases of applying no, popularity-only or naïve local

roactive caching in scenarios that combine different caching de-

and levels, video catalogues and mobility models, among other

ystem parameter combinations. Cache decisions based only on

obility prediction appear to adapt well to temporal locality

ue to using short timescale information which allow to capture

hanges in temporal locality. This outcome largely coincides with

he conclusions in [4] which relate prediction accuracy to the lat-

st mobility information in urban environments due to the higher

oad network complexity, traffic congestion and the variety of mo-

ility habits and routes. Extending our model with cache replace-

ents can (even substantially) improve performance in terms of

verage gains and robustness against system parameters, yet at the

ost of a considerable computational overhead. However, our basic
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odel already yields an overall good performance which in certain

cenarios can be very close to its extended counterparts, especially

hen including backhaul gains. This observation is important given

he added complexity of cache replacements. In addition, we ob-

erve that the performance of mobility-based caching appears to

mprove with the level of popularity skewness, approaching close

o the high and robust gains of the extended model with cache re-

lacements. Furthermore, we present scenarios in which the level

f caching demand has an important impact on performance, more

mportant than the size of the video catalogue and, finally, unlike

ther work in literature we try to study the delay cost gains from

ocal proactive caching w.r.t. the presence of CDNs. Our conclusion

s that our model can have significantly more robust gains than

roactive approaches targeted on popular content. 

For future work we intend to investigate video-streaming and

ierarchical cache structure applications in heterogeneous wireless

etworking scenarios, as well as to explore an entirely different

pectrum of applications such as assisting name resolution in In-

ormation Centric Networks with proactive in-network caching. 
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