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Abstract—Caching decisions by default seek to maximize some
notion of social welfare: the content to be cached is determined
so that the maximum possible aggregate demand over all users
served by the cache is satisfied. Recommendation systems, on the
contrary, are oriented towards user individual preferences: the
recommended content should be most appealing to the user so
as to elicit further content consumption.

In our paper we explore how these, phenomenically conflicting,
objectives can be jointly addressed. To this end, we depart
radically from current practice with recommender systems, and
we approach them as network traffic engineering tools that
can actively shape content demand towards optimizing user-
and network-centric performance objectives. We formulate the
resulting joint theoretical optimization problem of deciding on
the cached content and the recommendations to each user so that
the cache hit ratio is maximized subject to a maximum tolerable
distortion that the recommendation should undergo. We conclude
on its complexity, and we propose a practical algorithm for its
solution. The algorithm is essentially a form of lightweight control
over the user recommendations so that the recommended content
is both appealing to the end user and more friendly to the caching
system and the network resources.

I. INTRODUCTION

Content caching has been experiencing revived interest in
recent years within the context of current and next generation
wireless cellular networks. The soaring demand for mobile
video services pushes caching functionality towards the wire-
less network edge [1]. Storing popular content at caches close
to the user results in enhanced Quality of Experience (QoE)
for the end users and smaller footprints of the bandwidth-
demanding mobile video traffic within the wireless network.

On the other hand, recommender systems have become
integral components of content provision sites. Their mission
is to make personalized recommendations for movies, video
clips, music songs or other content items that best match the
interests and preferences of individual users. This, in turn,
improves the users’ satisfaction and boosts their engagement
in the sense that it increases the number of content downloads.
For instance, the recommender system used by Netflix is
considered responsible for about 80% of the hours streamed
at Netflix [2], whereas the related video recommendations
generate about 30% of the overall views on YouTube [3].

Typically, the recommendation engine and the caches at the
wireless network are owned and managed by different entities.
Recommender systems are controlled by content providers
through mobile apps that interact with the users, whereas the

caching infrastructure is typically possessed and controlled by
the wireless network operator. Content providers often insert,
through their own or third-party Content Delivery Networks
(CDNs), content servers within other networks. In the case of
cellular networks, these tend to be placed at their egress nodes
rather than at their edge.

However, a persistent trend is that players with originally
distinct roles in the business value chain, such as access net-
work operators and content providers, tend to deploy their own
content delivery solutions, albeit for different reasons. Content
providers seek to acquire better control of the network access
infrastructure so as to improve the Quality of Experience
(QoE) delivered to their subscribers. Netflix Open Connect1

and Google Global Cache2 are two widely known examples
of CDN solutions owned by content providers. Access network
operators, on the other hand, primarily seek to minimize
costs related to the delivery of video traffic through external
networks. At the same time, by having storage servers closer
to the end users, telco CDNs can provide their subscribers
with faster content access.

In the case of wireless networks, these trends motivate novel
content provisioning scenarios, whereby the coordination of (at
least) three different mechanisms is deemed feasible towards
optimizing user- and network-centric performance measures.
First, content replication at the caches of different (small)
cells can be used to maximize the locally-served demand and
optimize the access delays experienced by users, hence their
QoE. At the same time, caching reduces the traffic at the
backhaul links and maximizes the cache hit ratio. Secondly,
by routing user content requests dynamically to different cell
caches, it is possible to balance the request load across caches,
again improving user QoE but also the network resource usage.
Finally, recommender systems can be carefully used to nudge
users towards more network-friendly content request patterns,
i.e., shape content demand for the benefit of the caching
mechanism.

Motivation: This last mechanism appears to have interest-
ing repercussions for the design of caching algorithms. It is,
in fact, the coupling between these two mechanisms, content
caching and recommender systems, that serves as the main
motivation for this work. Consider, for example, a cell cache

1https://openconnect.netflix.com/en/
2https://peering.google.com/



serving the users who are associated with the cell. The rough
idea is that the recommender system does not necessarily
issue recommendations for content that ranks as the top most
relevant according to the recommendation algorithm; instead,
it could recommend to individual users cached content that
still matches adequately their preferences and, at the same
time, attracts strong demand from many other users. Hence,
anticipating that its recommendations affect the content access
patterns of users, the recommender system seeks to gently blunt
some of the heterogeneity in users’ demands aiming at higher
caching efficiency and better users’ QoE.

The possibility to dynamically route content requests
through different (small) cells within reach of the user adds
further degrees of freedom to the problem. Besides which
content to store, the caching decisions concern where to store
it. Hence, a joint caching and recommendation algorithm could
cache and recommend to a user content items that rank second,
third, or lower in his/her preferences, as long as these items
are in great demand in at least one of the cells that lie within
the range of the user. It would instead avoid caching and
recommending an item that, say, ranks first in the user interests
but is not popular among other users in any of the cells the
user can associate with.

Our contributions: The main novelty of our work is that
we take a different viewpoint to recommender systems. We
approach them as an additional traffic engineering mechanism
that can also help improve performance measures on the
wireless network side. As a result,
• We define a model that captures the coupling between

caching decisions and recommendations to a set of users.
Our viewpoint to recommender systems raises some
concerns, not least ethical ones. To this end, we introduce
a measure called user preference distortion, to quantify
how much the engineered recommendations distort the
original user content preferences.

• We formulate the constrained optimization problem of
maximizing the cache hit ratio subject to the maximum
tolerable distortion of issued recommendations. The dis-
tortion tolerance is embedded as constraint to the problem
formulation and marks an equally important dimension
for assessing possible solutions to it.

• We devise a low-complexity practical heuristic algorithm
that solves efficiently the problem above. The algorithm
is essentially a form of lightweight control over user
recommendations so that the recommended content is
both appealing to the end user and more friendly to the
caching system and the network resources. The algorithm
and its complexity are analyzed in section IV.

• Finally, in section V, we provide a holistic assessment
of the joint caching and recommendation algorithm, ad-
dressing both performance aspects and ethical concerns.

II. SYSTEM MODEL

A. Caches, content, users
Our model involves a set of caches C, a catalogue of content

items (e.g., video clips), I, and a set of users, U , as shown in

Fig. 1. Illustration of the system model. Caches are co-located with the
wireless network microcells and serve users with content of their preference.
Users interact with the system through a recommender system application. The
content placed at the caches is determined with the help of a recommender
system.

Figure 1.
1) Caches: Caches of limited storage, Ci, i ∈ C, are co-

located with the wireless network microcells. The range of
these cells is assumed to be identical and typically amounts
to a few hundred meters. An additional cache is installed on
a backend server, e.g., in the cloud. This “cache” is assumed
to have enough capacity to store copies of the entire catalog.

2) Content: Content items are relevant to one or more the-
matic categories. The detail and resolution of this categorical
separation may vary (e.g., “soccer” might be a distinct category
but it may also be further split into English/French/Spanish
soccer). We denote the number of different thematic categories
by M . Such information may be stored in content metadata
in the form of (hierarchical) tags.

The M thematic categories serve as the feature set that
describes items. Namely, each item i ∈ I has a finite size Li

and is represented by a feature vector fi, whose jth element
fi(j), j ∈ [1, ..,M ] denotes the score of item i in feature
j, i.e., how relevant is item i to thematic category j. These
relevance scores assume values in [0,1] and are normalized so
that

∑M
j=1 fi(j) = 1 ∀i ∈ I. Replicas of each content item

may be stored in any set of the small cell caches, besides the
backend cache, depending on the actual caching decisions.

3) Users: At any point in time, each user u ∈ U is
located within range of a different subset of the network
(micro)cells. Theoretically, (s)he could access different content
items through different caches, each time dynamically chang-
ing his/her association depending on the requested content3.
In this paper, we assume that users do not change their
association point in the network dynamically in response to
content requests. This is in line with the user association
practices in current wireless networks.

Users are described by similar feature vectors fu as the
content items. Now, each vector element fu(j), j ∈ [1, ..,M ],
expresses how much user u is interested in content classified
under thematic category j. We normalize these values as well,

3The combination of caching with dynamic user associations and content
routing has been investigated in literature, e.g., see [4].



Fig. 2. A priori content preference distribution for arbitrary user u, its
recommendation window Wu of size Ku (black), and the resulting content
request probability after recommendations (red). The content items are ranked
in decreasing order of user preference and only items in the recommendation
window are recommended.

i.e.,
∑M

j=1 fu(j) = 1 ∀u ∈ U . Practically, content provision
sites draw on the history of users’ content downloads, and
more broadly their interactions with the site, to infer these
vectors.

B. Modeling the content preferences of users

The demand for content items is generally time-varying. Its
dynamics usually evolve over a finite interval from the moment
the content item enters the system, which may include several
days or months [5]–[7]. Our work concerns time scales over
which the demand for each item can be considered “fixed”, in
the order of a few hours within a day. Namely, content demand
predictions and caching decisions are made once every such
an interval and the user content request patterns change slowly
over the same interval.

On the user side, we distinguish between the inherent
content preferences of users and the eventually issued content
requests by them. More formally, each user u can be described
by a content preference distribution, pprefu ,

∑
i∈I

pprefu (i) = 1,

over the different content items. This captures the original
preferences of u over all items. Technically, the preference of
u for item i, pprefu (i), can be inferred from the feature vectors
of u and i. In this paper, it is taken to be the cosine similarity
index, aui of the two vectors [8], although any other measure
of distributional similarity would be equally appropriate [9].

aui =

∑M
j=1 fu(j) · fi(j)√∑M

j=1 fu(j)
√∑M

j=1 fi(j)

Normalizing these index values over all items for a given user
u yields the content preference distribution pprefu .

pprefu (i) =
aui∑
i∈I aui

(1)

However, the content users eventually request from the
network also depends on the recommendations of the content
provision site so that the probability with which user u
requests item i, prequ (i) 6= pprefu (i). We describe our modeling
approach to the recommendations’ impact separately in the
next subsection since it forms a critical part of the overall
system model.

C. The impact of recommendations on user content requests

Evidence of this impact is reported in [10] [3]. In both
studies, it is found that a significant portion of content views
is the result of recommendation mechanisms deployed by
the sites. Hence, our starting modeling assumption is that a
recommendation, at least when issued for a content item i
that indeed matches the preferences of user u, increases the a
priori probability that the user requests it.

This capability of recommender systems to shape the user
demand for content turns them to a powerful tool at the
hands of the content provider. In settings such as those
outlined in the introduction section, where the content provider
has also control over the cached content, the recommender
system could be actively used to optimize network-centric
performance objectives. This implies a departure from the
nominal user-oriented mission of recommender systems and
raises issues of ethical nature: how acceptable would be for
users a system that actively manipulates its recommendations
to them to serve its own performance objectives?

We argue that the answer to this question is not univocal
but rather depends on the specific way recommendations are
handled. Our approach to this is summarized in Fig. 2 and
described in what follows.

Assume that the recommender system seeks to recommend
R new items to each user u. Instead of issuing recommenda-
tions for the top R items in u’s content preference distribution
pprefu , the system selects R items out of a recommendation
window Wu determined by the top Ku items, Ku > R, as
shown in Fig. 2a. Namely, our recommender system inflates
the set of candidate-for-recommendation items for each user
by a user-specific factor Ku/R. At the same time, it has
two properties addressing the aforementioned ethical concerns
regarding the manipulation of recommendations:

1) it preserves the user preference rank of recommended
items: If an item i is recommended at higher rank than item
j, it holds necessarily that pprefu (i) ≥ pprefu (j).

2) it controllably bounds the distortion it introduces to user
preferences: In the worst case, the system will end up recom-
mending items that are ranked in positions [Ku −R+ 1,Ku]
in pprefu (ref. Fig. 2b), instead of the items in positions [1, R].
We can define the user preference distortion measure, ∆u to
be the ratio

∆u(Ku, R) = 1−

Ku∑
j=Ku−R+1

pprefu (j)

R∑
j=1

pprefu (j)

. (2)

The denominator of the fraction in (2) equals to the cumu-
lative user preference for the top R items, the ones a typical
recommender system would recommend. The numerator, on
the other hand, equals the user preference for the bottom R
items in the recommendation window, i.e., the rightmost items
within Wu that our recommendation scheme is allowed to
select. Hence, ∆u(Ku, R) expresses the worst-case deviation,
in terms of original user preferences for the recommended



items, that may result from the choices of our scheme when
compared to a typical ”honest” recommender system. As such,
it poses an upper bound on the possible distortion of the
original user content preferences.

Therefore, the size of the recommendation window Ku

introduces a trade off. Higher Ku values let more flexibility
in selecting items to recommend to users and shaping their
demand in favor of caching efficiency. But they may result in
higher distortion of user content preferences, as quantified by
∆u in (2).

The system recommendations affect the relative user de-
mand for all content items: they boost the demand for the
recommended items and proportionately decrease the demand
for remaining items. Yet, we lack experimental evidence about
the exact way that recommendations modulate the a priori
content preference distribution pprefu to yield the ultimate
content request distribution prequ . As a result, modeling prac-
tice in literature is intuition- rather than evidence-driven. In
[11], for example, the recommendations are mapped to a new
distribution purec over the content items and prequ (i) is taken
to be equal to max(pprefu (i), precu (i)).

Here, we assume that recommendations provide all R items
with an equal boost,

precu (i) = 1/R, (3)

which fades out with R. The intuition is that the fewer the rec-
ommendations are, the less cognitive load they demand from
users to process them and the more significant their impact on
the user content requests. Then the ultimate content request
distribution is a convex combination of the two distributions,
pprefu and precu so that

prequ (i) = wr
u · precu (i) + (1− wr

u) · pprefu (i) (4)

for the R items that are recommended to u, and

p̃requ (i) = (1− wr
u) · pprefu (i) (5)

for the |I| −R items that are not recommended. The recom-
mendation weights wr

u in (4) and (5) express the importance
user u assigns to recommendations. Equations (4) and (5)
capture the way recommendations shape the content requests
that are ultimately issued by user u. The request proba-
bilities are boosted when compared to original preferences
for recommended items4 and decrease for non-recommended
ones, so that the resulting content request distribution remains
normalized (see Fig. 2b).

III. THE JOINT CACHING AND RECOMMENDATIONS
PROBLEM

The coordination of caching decisions, i.e., which items to
store in the cell cache(s), with the recommendation decisions,
i.e., which items to recommend to each user in the cell, aims
at best serving both user- and network-centric performance
measures. In what follows, we analyze these objectives and

4For practical values of R and realistic content preference distributions, the
1/R boost term is higher than the preference probability for any single item

formulate the problem when the user-to-cell associations are
fixed and do not take into account the user content preferences
and cached content. This is in line with current practices in all
wireless cellular networks, where users choose cell to associate
with on the basis of radio signal quality parameters. In these
cases, the caching and recommendation decisions for each cell
are independent.

On the user side, the requirement is to maximize the number
of requests that can be satisfied by the cell cache (cache
hits). This results in lower content access delays and higher
user QoE. At the same time, since fewer requests have to
be satisfied by the backend server, the utilization of backhaul
links is lower. In other words, the maximization of the cache
hit ratio serves both types of requirements.

Formally, in our case study the aim is to

max
y,x

∑
u∈U

∑
i∈Wu

yi(xuip
req
u (i) + (1− xui)p̃requ (i)) (6)

s.t.
∑
i∈I

yiLi ≤ C (7)∑
i∈Wu

xui = R ∀u ∈ U (8)

yi, xui ∈ {0, 1} u ∈ U , i ∈ Wu (9)

In (6) and (8) Wu denotes items within the recommendation
window of user u. The cardinality of this set is Ku with

Ku = max{k|∆u(k,R) ≤ rd} (10)

where rd ∈ [0, 1) is the upper bound on user preference
distortion in (2) that should not be exceeded for any user.

There are two sets of binary decision variables: yi=1 when
item i is cached and yi=0, otherwise; xui=1 when item i is
recommended to user u and xui=0 when it is not. The optimal
variable values are sought under two types of constraints.
Inequality (7) reflects the cache storage capacity constraint,
whereas equalities (8) ensure that R items are recommended
to every user.

This problem is a (non-linear) generalization of the exten-
sively studied 0-1 Knapsack problem (0-1 KSP) and, thus, it
is NP-hard. In the following section, we propose a heuristic
algorithm for the joint caching and recommendation problem.

IV. A HEURISTIC ALGORITHM FOR THE JOINT CACHING
AND RECOMMENDATION PROBLEM

A. Description of the algorithm

The algorithm proceeds in three steps, as shown in Fig. 3.
First, in the initialization step, the provisional set of rec-

ommended items RCinu is derived for each user. Input to
this are the content preference probability distributions of
users, and recommendations are made for the top-R items
in the user preferences. Contrary to what would happen with
a typical recommender system, these recommendations are
not communicated to the end user. They are only relevant as
intermediate result of the algorithm’s operation.
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Fig. 3. Schematic outline of the three-step heuristic algorithm for the joint caching and recommendation problem. The three steps are presented in Algorithm
1 and, in more detail, in section IV-A.

Then, in the content placement step, we determine which
content should be cached. To this end, we compute the content
request probabilities according to (3), (4), and (5). All content
items are assigned utilities that equal the aggregate content
request probability they attract

util(i) =
∑
u∈U

prequ (i) i ∈ I (11)

The optimal placement is then an instance of the 0-1 KSP.
We use the Dynamic Programming (DP) FPTAS algorithm
in ([12], §8.2) to obtain an 1-ε, ε > 0 approximation of the
optimal solution. We denote P the resulting placement.

Finally, in the recommendation amendment step, the original
recommendations to users are amended in an attempt to
maximize the utility (i.e., expected attracted requests) of the
cached content. To this end, we first identify for each user u the
set of Ku items in his/her recommendation window from (10).
Then we compare the item sets P andRCinu – two possibilities
exist:
• RCinu ⊆ P: then the original recommendations derived

in the initialization step remain intact (and the resulting
user preference distortion is zero).

• |RCinu
⋂
P| = F1 < R: then the F1 items that appear in

both sets are retained in the final recommendation list;
F = min(R − F1, F2), F2 = |(Wu \ RCin

u )
⋂
P|, most

preferred cached items appearing in the recommendation
window of u but not in the recommendation set derived in
the initialization step, are added to the recommendation
list for u, replacing the bottom-F items in RCinu ; and,
if there is still space (F1 + F < R), the remaining
recommendations are made for the R − F1 − F least
popular items out of the R−F1 remaining (non-cached)
items in RCinu .

The final set of items RCfu that are recommended to user u
are in general different from the provisional set RCinu derived
in the initialization step.

The algorithm is summarized in the pseudocode of Algo-
rithm 1.

B. Properties of the algorithm

It is straightforward to show that:

Proposition IV.1. The cache content and the recommen-
dations are stabilized by the end of the recommendation
amendment step.

Proof. It suffices to show that the recommendation amend-
ment step does not motivate any change in the cached content.

Algorithm 1 Joint recommendation and caching algorithm
Input: Probabilities pprefu and weights wr

u, ∀u ∈ U
Output: Content placement P and recommended item sets
RCfu,∀u ∈ U
Step 1:

1: Set the initial recommendation list RCinu to the R most
preferred items of the user and prec to 1/R

2: for every user u ∈ U and item i ∈ I do
3: Compute the content request probabilities prequ (i) from

(4) and (5).
4: end for

Step 2:
5: for every item i ∈ I do
6: Compute its utility from (11)
7: end for
8: Use the Dynamic Programming 1− ε, ε > 0-approximate

algorithm for solving the Knapsack problem and derive
the content placement P
Step 3:

9: for every user u do
10: Add items in RCinu

⋂
P to the final recommendation

list RCfu for u.
11: if RCfu is not full then
12: Add to the list items that are both cached and within

in decreasing order of preference probability till it is
filled up.

13: end if
14: if RCfu is still not full then
15: Add to the list items out of the remaining ones in

RCinu in decreasing order of preference probability
till it is filled up.

16: end if
17: end for

Such a change would occur if the modification of recommen-
dations resulted in change of item utilities (see 11) so that

∃ j ∈ P, j′ /∈ P : util(j′) > util(j) (12)

However, the recommendation amendment step increases
the utility of items already in the cache, when issuing rec-
ommendations for them to additional users than those in the
initialization step; or, in the worst-case, it leaves it intact. At
the same time, it reduces or leaves intact the utility of items
that have not been included in P during the content placement



step. Hence, condition (12) cannot be fulfilled and the cache
placement P does not change.

Hence, the algorithm essentially sets the cache placement
on the basis of the original recommendations to users (with
zero user preference distortion). Then, it selectively changes
recommendations (injecting controllable distortion) to enhance
the utility of the cached content (i.e., the expected cache hit
ratio) by nudging individual user preferences towards content
that attracts demand from the overall user population. In the
worst case, the algorithm recommends the bottom R of the top
Ku items to every user u, leading at most to a ∆u distance
from the recommendations an ’honest” recommender system
would do.

In the first step, our heuristic algorithm sorts the list of the
items and finds the most preferred ones for each user, needing
O(|U| · |I| · log |I| + |U| · |I|) = O(|U| · |I| · log |I|). In the
second step the algorithm computes a utility for every item and
then uses the DP for the 0-1 KSP. This implies a complexity
of O(|I| + |I| · |C|) = O(|I|2) since the cache capacity is
upper bounded by the total catalogue size. In the third step,
the algorithm compares the items within the recommendation
window of each user against the cache placement to define the
final recommendations, leading to O(|U| ·maxu(|Wu|) · |C|).
Since the size of the recommendation window is naturally
bounded by catalog size, the total computational complexity
of our heuristic is O(|U| · |I|2).

Unfortunately we cannot derive approximation guarantees
for the cache hit ratio our algorithm achieves when compared
to the optimal one without making very specific assumptions
regarding the dissimilarity in the preferences of users. In the
section that follows, we carry out simulations to gain more
insights about the performance properties of our algorithm.

V. EVALUATION OF THE HEURISTIC ALGORITHM

A. Simulation methodology

1) Datasets: In our experiments, we use synthetic datasets
to model end user preferences and content items. This way
we can control the experimentation settings and analyze the
sensitivity of our algorithm to different unknowns such as the
(dis)similarity of content preferences across users.

We model users and content items as feature vectors fu
and fi, respectively (see section II). The elements of the two
vectors are populated with values drawn randomly from the
standard uniform distribution. The feature space is common to
both and corresponds to M predefined thematic areas (M=8
in subsequent simulation runs).

2) Default parameters: Unless otherwise stated, the default
parameter values for our simulations are |U|=150 users and
|I|=1000 items, while the item size is sampled by a dis-
crete uniform variable U{1, Lmax}. In our simulations, we
recommend R=3, 5 or 10 items, whereas rd values range in
[0.01, 0.1]. The recommendation weights of users are let vary
uniformly over different intervals within [0,1].

3) Comparison references: We consider three schemes as
comparison references for our algorithm. The first one is a
zero-distortion scheme that recommends to users the R items
that are inferred to be most relevant to his/her preferences.
This scheme essentially carries out only the first two of the
three steps (initialization and content placement) described
in section IV-A. It represents the current practice, where the
recommender system acts completely independently from the
caching system, bothering only to propose the most relevant
content to each user.

The second comparison reference is an unconstrained-
distortion scheme that is meant to represent the opposite
extreme of the zero-distortion one. This scheme ranks the
items in order of decreasing aggregate demand over all users,
caches the top C of those in the cache and recommends to
all users the same top R items. Thus, it recommends to users
content that is cached, without accounting for the preference
distortion constraint.

The third comparison is the Least Frequently Used (LFU)
caching algorithm. The algorithm caches the items that have
the maximum aggregate demand over all users, without rec-
ommending anything to them. The LFU maximizes the hit
ratio at a single cache in the absence of recommendations.

B. Simulation results
1) Caching-aware vs. unaware recommendations and the

impact of recommendation weights: In the experiments of this
subsection we vary the values of recommendation weights wr

u

in (5). We consider two different intervals where these weights
take values in. In the first instance, wr

u ∈ (0.5, 1] (Figure 4a)
and in the second wr

u ∈ (0, 0.2) (Figure 4b), u ∈ U .
For small recommendation weights, the performance dif-

ferentiation of the four schemes is negligible. As shown in
Figure 4b, all schemes start with similarly small cache hit
ratios at low cache capacities. As this capacity grows, the
four schemes tend to get more similar and the achieved hit
ratios tend almost linearly towards 1. On the other hand, for
larger recommendation weight values, the three schemes that
issue recommendations outperform LFU and achieve cache hit
ratio values as high as 0.8 already for modest cache sizes, in
the order of 5% of the catalogue. Figure 4a suggests that our
heuristic improves over the zero-distortion scheme, while the
unbounded distortion counterpart sets an upper bound for the
achievable cache hit ratio.

When combined, figures 4a and 4b suggest, in accordance
with intuition, that gains with the proposed scheme are achiev-
able as far as users do assign importance to recommendations
made to them.

2) The impact of heterogeneity in user content preferences:
In this section, we want to explore how the heterogeneity of
user content preferences affects the efficiency of our algorithm.
To controllably vary this heterogeneity, we generate the user
content preference distribution as a convex combination of
two distributions: a user-specific component pegou , which is
modeled as described earlier in section V-A; and a second
user-agnostic probability distribution, pext, which is modeled
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Fig. 4. Cache hit ratio vs. user preferences distortion ratio: |I| = 1000, |U| = 150, R=3, rd=0.01

after a Zipf distribution, in line with the experimental evidence
in [13] and [14]. The preference of user u for item i is then
given by:

pprefu (i) = we
u · pegou (i) + (1− we

u) · pext(i) (13)

The rationale for introducing pextu is that the user preferences,
as evidenced and logged at the content provider site, are
the combined result of individual preferences and external
promotional and marketing actions that set global trends in
content preferences and popularity. The weight we

u captures
how these two influences mix on user u. Lower values we

u

emphasize the component distribution that is common across
users, smoothing out the intrinsic user heterogeneity.

We experiment with two different values for wu
e . In Fig.

4a-4b we had set wu
e = 1, while in 4c, we let wu

e = 0.
Thus, in the two instances analyzed in section V-B1, users are
totally heterogeneous, whereas in the third case the individual
preferences are totally smoothed out. For we

u = 0 we notice
that the three schemes that issue recommendations collapse to
one. This is intuitively expected since, in this rather extreme
case, the recommendations issued by the three schemes to the
users are identical. Although Figures 4a, 4b and 4c present
different patterns for the curves of the three recommendation-
aware schemes, they all outperform the LFU scheme, thus
reinforcing the positive impact recommendations can have on
the cache hit ratio.

3) The impact of the number of recommended items: In
Figure 4 we recommend R=3 items to every user. In the
experiments of Figure 5a and 5b R=5 and R=10 items are
recommended, respectively, to every user. First, we notice
that increasing the number of recommended items decreases
the achievable absolute hit ratio values but increases the
relative gain of our heuristic over the zero-distortion scheme.
This is a non-intuitive result, since fewer recommended items
should be easier for the user to elaborate, leading to a bigger
increase of hit ratio for the heuristic, in opposition to the
zero-distortion scheme. Nevertheless, this behaviour could be
expected from the definition of the recommendation window.
Second, recommending more items to the users causes a right
shift of the curves. This implies that a bigger cache capacity

is needed to achieve the same cache hit ratio for given items
and aggregate expected demand values.

4) The impact of the Distortion parameter, rd: From Figure
5c we can notice that increase of rd leads to increase of the hit
ratio. This is in line with our intuition, because relaxing the
distortion constraint we get closer to the performance of the
unbounded distortion scheme. In Figure 5c, for small cache
capacities, we can see an up to 80% increase of the hit ratio
of the heuristic when compared to the zero-distortion scheme,
introducing at most 10% of distortion in user preferences. In
all these schemes, the LFU is significantly less effective than
the three schemes issuing recommendations.

5) The impact of the catalogue size: Finally, as the total
number of items in the system increases, the cache hit ratio
decreases. Nevertheless, the heuristic and the zero-distortion
reach the hit ratio of the unbounded-distortion scheme propor-
tionally faster, i.e., for smaller values of the ratio

α =
cache capacity
catalogue size

=
C

|I|
(14)

when compared to a system that has fewer items. It is
important that our heuristic needs 35% less cache space in
order to reach the maximum achievable cache hit ratio. For this
combination of parameters, we observe that the LFU scheme
remains significantly worse than the other three schemes.

VI. RELATED WORK

Content caching, and the often interchangeably used terms
content placement and content replication, are classic network-
ing themes that have been attracting research interest for at
least twenty five years (e.g., [15]). Much of this interest is
due to the new spins that are given to the caching problem
by technologies and trends that emerge in the course of time:
Content Delivery Networks (e.g., [16]), peer-to-peer systems
(e.g., [17]), IPTV (e.g., [5]) and Content- and Information-
Centric Networking architectures (e.g., [18]).

More recently, caching experiences a new research thread
in the context of mobile cellular networks and the small cell
architectures in 4G and 5G networks [19]. One of the major
concerns in these settings is how the user demand and content
popularity can be accurately predicted. Besides the temporal
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locality of content demand [6], such predictions should ac-
count for the user mobility and the small user populations
that small cell caches present. To this end, a proactive caching
approach for 5G wireless networks is proposed in [20]. The
authors use data from a network operator and machine learning
tools to predict content popularity and proactively fetch con-
tent to cell caches. In [21] a threshold-based policy is derived
for caching content in the presence of small user populations.
The policy consists in caching all content requested more times
than a threshold and is shown to be asymptotically optimal
regarding the hit rate. Their results further show that while
a global cache learns faster, the local caches can be more
accurate. At the same time, the combination of small with
macro cells yields further possibilities to coordinate caching
with content routing through different cells, as shown in [4].

The impact of recommendations on user demand for content
is studied in [3]. The authors report that the ”Related Video”
recommendation lists of Youtube is the main source of view
for the majority of its content and that the position of an
item in those lists plays a critical role for its popularity.
Much sparser is the literature with respect to the interplay
between caching and recommender systems, which is the core
theme of our paper. To the best of our knowledge, they are
jointly considered in [10], [11], [22]–[24]. The first three are
concerned with video traffic, whereas the last two with generic
content.

The authors in [11] appear to be the first who base
caching decisions on personalized recommendations issued
by recommender systems. They use synthetic datasets to
compare their recommendation-driven caching scheme with

a conventional popularity prediction one. They report small
gains for their scheme that disappear in practical scenarios
with ten or more users served by the cache. In [22], the
authors derive conditions under which it pays off to look
into the spatial variation of content demand and fill the cache
with content that is locally, rather than globally, most popular.
Recommendation-based techniques are proposed, albeit not
quantitatively evaluated, also in [23]. The aim is to determine
how to replicate content within a CDN. Common to [11], [22],
[23] is the fact that recommender systems are used as proxies
for inferring the content popularity. We are distinctly different
from them, regarding the way we approach recommender
systems: not just as alternative predictors of content demand
but also as demand-shaping tools that can actively be used to
tradeoff user- and network-centric performance objectives. In
fact, our approach to increasing the utility of cache content
could be seen as dual to the one taken by these three studies.
Rather than struggling for accurate predictions of the users
demand for content, our algorithm nudges the users demand
towards content items that are common in their preferences.

Hence, conceptually most relevant to our work are the
studies in [10] and [24]. In the empirical study of [10],
the authors achieve an increase of the Youtube cache hit
ratio by reordering the videos shown to the users under the
Related Videos list so that already cached ones occupy the
first positions. Whereas in [24], the authors work with peer-
to-peer (P2P) systems and propose heuristic recommendation
algorithms accounting for both the content dissemination costs
and user preferences. Compared to these two studies, in our
work we focus on wireless networks and formalize the joint
caching and recommendation problem under the assumption
of personalized recommendations, i.e., different items are rec-
ommended to each user. The results in section V suggest that
such an approach could yield significant gains for the network
performance and the users satisfaction without disrespecting
their individual preferences.

VII. CONCLUSIONS AND DISCUSSION

Our work in this paper is motivated by the trend that
wants content providers also assuming roles in content delivery
by owning and managing content delivery networks. We
have looked into the possible benefits that can arise for the



end users and the network when there is some coordination
between recommender systems and caching decisions. This
coordination, at least in this work, implies that recommender
systems actively engineer the recommendations issued to users
in ways that enhance the caching performance. Practically, this
engineering consists in recommending content that may not
necessarily rank top in the inferred user content preferences
but still score high in them. By carefully nudging the indi-
vidual user demand towards content that attracts preference
from many users, the recommender system can result in higher
cache hit ratios and enhanced QoE for end users.

Practitioners in areas like e-commerce are more familiar
with this demand-shaping (more broadly: behavior-shaping)
dimension of recommendations since there is strong evidence
that willingness to pay can be affected by online recom-
mendations [25]. Their manipulation there aims at nudging
consumers to spend more on products and services. We
rather advocate their “manipulation” for “good” purpose, as
an additional network traffic engineering tool that can be
used to jointly optimize or balance user- and network-oriented
performance objectives.

We have attempted to show this potential in the context
of wireless networks with small cells. At the same time, we
tried to explicitly and systematically address ethical concerns
that are raised by this approach. Simulation results show
that the proposed caching-aware recommender systems bring
significant caching performance gains that persist over a broad
range of parameters for the diversity in users’ preferences, the
capacity of caches, the number of recommended items and the
content catalogue size.

As a direct next step, we intend to evaluate the performance
of our heuristic using real datasets5 of rated content for
inferring user preferences. An interesting direction for further
work is to try to fully integrate such an heretic approach
to recommendations with other resource management and
traffic engineering functions in cellular networks to achieve
more composite performance objectives such as load balancing
across the radio network cells.
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and service costs in swarming systems,” in Proc. IEEE International
Conference on Communications ICC, London, UK, June 2015, pp.
5878–5883.

[25] G. Adomavicius, J. Bockstedt, S. P. Curley, and J. Zhang, “Effects of
online recommendations on consumers’ willingness to pay,” in Proc.
2nd Workshop on Human Decision Making in Recommender Systems,
Dublin, Ireland, September 2012, pp. 40–45.


