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ABSTRACT
In this paper, we investigate the performance gains that are
achievable when jointly controlling (i) in which Small-cell
Base Stations (SBSs) mobile users are associated to, (ii)
which content items are stored at SBS co-located caches
and (iii) which content items are recommended to the mo-
bile users who are associated to different SBSs. We first
establish a framework for the joint user association, content
caching and recommendations problem, by specifying a set
of necessary conditions for all three component functions
of the system. Then, we provide a concrete formulation of
the joint problem when the objective is to maximize the to-
tal hit ratio over all caches. We analyze the problems that
emerge as special cases of the joint problem, when one of the
three functions is carried out independently, and use them to
characterize its complexity. Finally, we propose a heuristic
that tackles the joint problem. Proof-of-concept simulations
demonstrate that even this simple heuristic outperforms an
optimal algorithm that takes only caching and recommen-
dation decisions into account and provide evidence of the
achievable performance gains when decisions over all three
functions are jointly optimized.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Network
Operations; F.2 [Analysis of Algorithms and Problem
Complexity]: General

Keywords
User association, recommender systems, edge caching, QoS

1. INTRODUCTION
Video traffic becomes more and more important for the

current Internet, while the consumption of high quality mul-
timedia content (e.g., HD videos) is turning to a daily habit
for the average mobile user. These trends increase the pres-
sure on the edge of the network where the demand of multi-
ple users is aggregated. According to [4], the monthly mobile
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data traffic is increasing with a CAGR (Compound Annual
Growth Rate) of 47% and will reach the 49 exabytes by
2021. The need to accommodate this exponential growth of
traffic and scale-up the capacity of mobile networks moti-
vates ultra-dense architectures drawing on Small-cell Base
Stations (SBSs). In turn, this densification of radio access
points increases the capacity needs at the mobile backhaul.

To cope with the backhaul capacity limitations, especially
during peak hours of content demand, the wireless network-
ing community has been looking into the deployment of
caches at the SBSs (e.g., [12]). The idea is simple: by dy-
namically predicting the users’ demand and storing content
accordingly at SBS co-located caches, we could serve the de-
mand locally and alleviate the traffic load at the backhaul.

On the other hand, according to [6,8], a significant portion
of content downloads is the result of recommender systems.
These are typically deployed by Content Provider platforms
that interact with users through mobile apps. This demand-
shaping capability of recommender systems renders them a
powerful mechanism for implicitly optimizing the effective-
ness of caching mechanisms and the network performance
while taking into account the users’ QoS requirements. Mul-
tiple studies in the recent literature (e.g., [3, 7, 8, 10, 13])
explore models and algorithms in this direction. Common
to them is the joint treatment of the content caching and
recommendation problems, with the aim to improve the ef-
fectiveness (i.e., cache hit ratio) of content caching at the
network edge. We henceforth refer to this research thread as
the Joint Caching and Recommendation (JCR) approach.

The main motivation for our work has been the remark
that the content demand emerging locally within a small
cell is highly dependent on the users who access the net-
work through that cell and their content preferences. There-
fore, the user association process, controlling how mobile
users are associated with SBSs, could be viewed as another
demand-shaping mechanism.

Most of the studies following the JCR approach assume
that the underlying user association decisions do not take
into account the content demand. This is in line with cur-
rent user association algorithms that typically associate a
device to the cell providing it with the best radio quality.
However, the possibility to also control the association of
mobile users to SBSs, when there are more than one alterna-
tives for it, adds more degrees of freedom and optimization
potential to the JCR approach. Besides which content to
store and which to recommend, we may question how could
mobile users be best associated to SBSs. We refer to this
approach as the Joint Caching, Recommendation and As-
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Figure 1: Illustration of the toy example. Caches
are co-located with MBS/SBSs and serve users with
content of their preference. Users can be associated
only to one SBS in their range or to the MBS. A
recommendation system issues content recommen-
dations to the users in a centralized manner.

sociation (JCRA) approach and employ a toy example to
motivate it.

Toy Example. Figure 1 shows a scenario with two SBSs,
one Macro-cell Base Station (MBS) with a coverage area
that is a superset of the two small cells, and four users. A
user can be associated to only one of the SBSs within her
range, or to the MBS, if none of the SBSs can serve her at
the required quality. In our example, users 1 and 2 are in
the range of SBS1 only, user 4 is in the range of SBS2 only,
while user 3 is within range of both and closest to SBS1. We
consider a content catalogue of six items. Users who are as-
sociated to the MBS can access any of those items through
the cache of a back-end server. On the other hand, caches
that can store up to three items are co-located with the two
small cells. Users generate content requests that are based
on their interests and are served by the associated SBS as
far as the requested content is stored there. A recommenda-
tion system issues recommendations to all four users for two
items that belong to their personal interests. For the sake
of simplicity, we assume here a naive rule for the impact of
the recommendations, namely that recommending an item
to a user boosts the user’s probability of requesting it by
0.05 and not doing so decreases it by 0.025.

Figure 1 includes four user tables and two SBSs tables.
Each SBS table shows the placement of content items in
a specific SBS cache under both the JCR and JCRA ap-
proaches. On the other hand, each user table has four
columns. The second column reports the inherent content
preference distribution of the user over the six items (I1-I6)
presented in the 1st column. The third column presents the
modified content preference distribution when we apply the
JCR approach (the two recommended items are shaded). Fi-
nally, the fourth column illustrates the impact of the JCRA
approach (recommended items are shaded).

Under the JCR approach, we assume that each user is
associated to the closest SBS. Hence, users 1, 2 and 3 are
served by SBS1 so that items I2, I3, I5 are stored in the
SBS1 cache, items I1, I5, I6 are stored in the SBS2 cache,
and the aggregate cache hit ratio for both SBSs is 0.65. On
the other hand, under the JCRA approach, users 1 and 2
are associated with SBS1 and users 3 and 4 to SBS2. SBS1
stores items I2, I3, I5, whereas SBS2 stores I2, I5, I6, with

recommendations being directed to different items. Conse-
quently, the total cache hit ratio grows from 0.62 for JCR
to 0.80 for JCRA.

1.1 Related Work
There is a growing interest in using recommender sys-

tems as demand shaping tools for network-related goals.
Works [5, 7] consider generic network settings, while [2, 3,
13] consider wireless environments with wireless SBSs and
static [2, 3] or mobile [13] users. However, neither of these
studies considers association or routing decisions. Authors
in [10] consider P2P systems and account for the dissemi-
nation cost of content. In [2,3,5,7,8], the authors explicitly
recommend content to users to shape demand distributions,
while in [13] they consider scenarios where alternative con-
tent is delivered or recommended to users after a request
for non-cached content. The impact of recommendations
is experimentally described in [8] and mathematically mod-
eled in [2, 3]. These works consider recommendations as
a demand-shaping tool that can be engineered under con-
straints as to how much they distort personal preferences.
In [5], the authors draw on the PageRank model to pro-
vide sequential recommendations to users under given cache
placement. The application in [7] retrieves YouTube videos
that are thematically relevant to requested content and, at
the same time, cached at the server, and recommends them
to users. Their results suggest that a ”recommendation win-
dow”, such as that in [3], could yield significant cache hit
ratio improvements.

Despite the similar network setting, our work significantly
differs from the studies described above. In particular, these
studies focus on optimizing content placement by taking
joint decisions either on (i) content caching and recom-
mendation, or (ii) by simply optimizing recommendations
for given cache placement. Our work takes a first step in
exploring the resulting performance gains when all three de-
cisions about content caching, content recommendation, and
user association are jointly controlled.

2. SYSTEM MODEL
Our model considers SBSs and an MBS that work in con-

junction forming a two-layer heterogeneous network. Each
SBS can serve a set of mobile users within its range, while
the MBS can serve the users within range of any SBS. The
mobile users generate content item requests by accessing a
Content Provider platform (e.g., Netflix). We assume that
all SBSs are equipped with caches that can store content
items provisioned by the Content Provider platform. A user
can be either associated to one SBS or the MBS. The as-
sociation of a user to an SBS is the preferred alternative
since it can exploit the capacity and caching capability of
the SBSs more efficiently, preserving the radio resources of
the macro cell. Nevertheless, a user can always associate
with the MBS, as a fallback solution, when the association
to an SBS is not feasible. A centralized recommender sys-
tem issues recommendations for content items to the users.
Its aim is to shape the content demand across the different
SBSs and boost the effectiveness of content placement deci-
sions. We assume that user locations fall within the range
of at least one SBS, and that user demands are stationary
stochastic processes in the time intervals between two deci-
sion epochs.
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Content demand and placement. We consider that a
content catalog I is made available to mobile users U . The
items of the catalog are classified into one or more thematic
categories and have different sizes Li, i ∈ I in bytes. The
content items have different sizes, ranging from large entire
movie files to small advertisements. We use Li to denote
the size of item i in bytes.

Moreover we make the following assumption:

Assumption 2.1 (Resource Limitation) Each SBS has
limited service capacity and each SBS co-located cache has
finite storage capacity.

Replicas of each content item i ∈ I may be stored in any
set of the SBS caches, besides the MBS cache, depending on
the actual caching decisions. We denote as Sc the storage
capacity of each SBS c ∈ C and measure it in bytes. At
any point in time, each cache c stores a finite set of files,
referred to as the cache placement Pc. On the other hand,
we assume that the back-end server cache M has enough
capacity to store copies of the entire catalog.

Each user is characterized by a preference distribution
that expresses her inherent preferences for each content item.
This distribution can be extracted by taking into account the
user preferences and the thematic categories each item is re-
lated to. In our work, we assume that the system is aware
of this distribution, i.e., each user u is described by a con-
tent preference distribution, pu(i), i ∈ I, with

∑
i∈I

pu(i) = 1,

which captures her original preferences over all items.

Recommender System. We consider a time slotted sys-
tem and assume that content demand predictions are made
once every time slot. User inherent preferences change slowly
within a time slot but they are significantly affected by the
recommendations.

Assumption 2.2 (Impact of Recommendations) If we as-
sume that item i adequately matches user’s u preferences,
the recommendation of item i to user u boosts its request
probability.

In our model especially, we assume that the content request
distribution is a convex combination of the distributions pu,
which reflects the inherent preferences of the users, and ru,
which reflects the impact of the recommender system. In
particular, the content request distribution is given by

du(i) = wu · ru(i) + (1− wu) · pu(i) (1)

for each of the R items that are recommended to user u, and
by

d̃u(i) = (1− wu) · pu(i) (2)

for each one of the (|I|−R) items not recommended to user
u. The recommendation weights wu in (1) and (2) express
the importance user u attaches to recommendations and in
practice can be found from historical data, e.g., as in [6, 8].

Although the issued recommendations are normally ex-
pected to follow exactly the users’ preferences, we allow
them to deviate from exactly matching the preference dis-
tribution. Hence, the recommended items may not be the
top R items in the user preferences since the recommender
system may also take into account the caching decisions and
network conditions in determining the items to recommend.

Nevertheless, the issued recommendations should not devi-
ate too much from the user preference distribution, other-
wise the system will cause dissatisfaction to the users. In
order to address the user dissatisfaction concerns, we intro-
duce the term ”Quality of Recommendations” (QoR) and
make the following assumption:

Assumption 2.3 (QoR guarantee) The personalized rec-
ommendations that are issued by the system to users must
satisfy certain quality guarantees, i.e., not deviate from the
original user preferences beyond a well-specified quality thresh-
old.

One example of implementing the QoR guarantee is the
model in [2]. The two relevant model provisions are:

• the introduction of the recommendation window Wu,
setting a bound on the preference value for items that
could be recommended instead of the nominally rec-
ommended R most preferred items;

• the preservation of the ranking order by recommended
items, i.e., the provision that the order of items in the
recommendation list follows the order of items in the
inherent content preference distribution of the user.

An extended discussion about both the recommendation
window and the trade-offs that its size implies is presented
in [2].

User-Cache Association. At any given time slot, each
user u ∈ U is located within the range of a different subset
of SBSs. We define as N (u) the ”neighborhood” of user u,
i.e., the set of cells user u can be associated with. However,
a user can only be associated to one SBS or the MBS, hence
having access to either one of the SBS co-located caches
or the larger server with the whole content catalog that is
accessible through the MBS. Each SBS has limited service
rate. We assume that this rate is split among all user devices
associated with it so that their QoS requirements can be
satisfied.

Assumption 2.4 (QoS guarantee) The association of a
user to a certain SBS should guarantee the minimum QoS
that the user has acquired from the Content Provider plat-
form.

In our approach, we assume a minimum downlink data rate
should be guaranteed to each user, based on acquired prod-
uct (e.g., 720p, 1080p etc.). Consequently, the number of
platform users that can be associated to an SBS is limited
since a congested SBS would not be able to satisfy the spec-
ified QoS requirements. The association of user u ∈ U to
a certain SBS c ∈ C, at a guaranteed service rate, gener-
ates association cost bcu for the SBS. The number of users
that an SBS can serve is determined by the aggregate as-
sociation cost, which should not be higher than Bc, for all
cache-enabled SBSs c ∈ C.

The association cost is strongly related to the physical
distance of the user to the associated small cell. In fact, a
more distant user generates higher association cost in terms
of transmit power for the SBS, network interference or even
power consumption (for her own device). Then, bcu cor-
responds, for instance, to the power that SBS c assigns to
the device of user u for achieving a downlink data rate that
satisfies the QoS requirements of that user.
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3. PROBLEM FORMULATION AND
ANALYSIS

3.1 Problem formulation
The objective of the joint caching, recommendation, and

association (JCRA) problem is to maximize the portion of
total demand that can be satisfied by all SBS caches. This
can be measured through the aggregate cache hit ratio among
all SBS caches

H =

∑
u∈U

∑
i∈Pcu

xuidu(i) + (1− xui)d̃u(i)∑
u∈U

∑
i∈I

xuidu(i) + (1− xui)d̃u(i)
, (3)

where {xui} is a set of binary decision variables, with xui = 1
if item i is recommended to user u and xui = 0 otherwise. cu
is the SBS co-located cache user u is associated with and Pcu

denotes the placement of items in SBS co-located cache c. As
we highlighted also in section 2, maximizing H is beneficial
for both the network performance and the users’ QoS.

Let {yic} and {zcu} be two sets of binary decision vari-
ables, with yic = 1 if item i is cached in cache c and yic = 0
otherwise; zcu = 1 if user u is associated to BS c and zcu = 0
otherwise. Then, our objective is to solve the following max-
imization problem:

max
y,x,z

∑
u∈U

∑
c∈C

∑
i∈I

yiczcu(xuidu(i) + (1− xui)d̃u(i)) (4)

s.t.
∑
i∈I

yicLi ≤ Sc, ∀c ∈ C (5)

∑
u∈U

bcuzcu ≤ Bc, ∀c ∈ C (6)

∑
c∈N (u)∪M

zcu = 1, ∀u ∈ U , (7)

zcu = 0, u ∈ U , c ∈ C \ N (u) (8)

xui = 0, ∀i /∈ Wu, u ∈ U , (9)∑
i∈I

xui = R, ∀u ∈ U (10)

yic, xui, zcu ∈ {0, 1}, u ∈ U , i ∈ I, c ∈ C, (11)

Constraints (5) and (6) reflect the cache storage and service
cost constraints for each cache, respectively. Constraint (7)
captures the fact that users will be either associated with an
SBS in their neighbourhood or to the MBS and constraint
(8) indicates that users can receive content only from SBSs
in their neighbourhood. Constraints (9) and (10) ensure
that the content items recommended to each user are al-
ways within her recommendation window and that exactly
R items will be recommended to her, respectively. Finally,
constraint (11) denotes the binary nature of the decision
variables yic, xui and zcu.

3.2 Special Cases and Complexity Analysis
As we already illustrated through our toy example, the

JCRA approach exhibits greater optimization potential than
JCR or any other approach that does not involve joint de-
cisions over all three caching, recommendation and asso-
ciation. However, due to the intractability of the JCRA
problem, we approach and prove the hardness of the JCRA
problem through three special cases.

Table 1: Notation table
Notation Context
I,U , C Items, Users, SBS co-located caches
M Back-end server cache
pu Inherent content preference distribution of

user u
ru Probability distribution due to

recommendation
du Content item request probability distribution

of user u (recommended items)

d̃u Content item request probability distribution
of user u (non-recommended items)

R Number of recommended items
Wu Recommendation window of user u
N(u) Set of caches that user u can be associated to
bcu Cost of associating user u to cache c
Bc Maximum aggregate association cost that

cache c can handle
Sc Storage capacity of cache c in bytes
Pc Items placement in cache c
H Aggregate cache hit ratio

i) Fixed user associations: We assume that a Content
Provider has control over the placement of content items to
the caches co-located with the SBSs and the recommenda-
tions issued by its platform. On the other hand, the associ-
ation of users to the SBSs and MBS is performed indepen-
dently by a Mobile Network Operator that associates the
users in content-agnostic manner.

Proposition 3.1 Under fixed user association decisions, the
JCRA Problem is NP-Complete.

Proof. When we fix the variables zcu, constraints (6)
and (8) of the JCRA Problem trivially hold and the JCRA
problem reduces to the JCR problem, which is shown to be
NP-Complete [2].

ii) Fixed content recommendations: The underly-
ing assumption is that the Content Provider does not nudge
users towards requesting cached content but rather issues
recommendations that match the users’ inherent content
preferences.

Proposition 3.2 Under fixed content recommendation de-
cisions, the JCRA Problem is NP-Hard.

Proof. We can prove the JCRA Problem NP-hardness
by generalization. When we fix the content item recom-
mendations, i.e., the values of the variables xui, it is xui =
1,∀i ∈ Wu, ∀u ∈ U and xui = 0,∀i /∈ Wu, ∀u ∈ U . the con-
straints (9) and (10) of the JCRA Problem trivially hold.
The JCRA Problem reduces to a problem that is itself a gen-
eralization of the Generalized Assignment Problem (GAP).
Fixing the caching decision variables yic, we can map the
users and SBSs in our case to the jobs and agents, respec-
tively, in GAP. Since GAP is an NP-Hard combinatorial op-
timization problem [1], the special case of the JCRA Prob-
lem where recommendations are fixed is NP-Hard too.

iii) Fixed cache placements: When we fix the content
placement at the SBS co-located caches, the system only is-
sues recommendations and associates users to SBSs. This
scenario becomes relevant when the content is cached ac-
cording to prediction of demand over longer time scales but
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shorter-term demand variations (e.g., due to users’ high mo-
bility) are addressed by the joint content recommendation
and user association decisions.

In this scenario, constraints (5) of the JCRA problem triv-
ially hold. Moreover, considering the case that the recom-
mender system issues recommendations for the items that
rank top in the user’s content preferences, for every SBS
cache that is association possibility of user u, we can com-
pute the part of her content demand that can be served by
it. To show that the JCRA Problem under fixed caching de-
cisions is NP-Hard, we consider the corresponding decision
problem of this special case.

P1: Association Decision Problem. We use C to denote
the set of SBSs and U the set of users in the system. Under
fixed caching and recommendation decisions, each user has
to be assigned to only one SBS. We consider the set D =
{ku,c(i)}u,c,i that captures the final demand distribution of
all users u for all items i when associated to every SBS c,
including the impact of recommendations. In other words,
each element of D captures the probability for an item i to
be requested by user u when associated to SBS c. Let B
be the set whose elements denote the aggregate association
cost each SBS can handle and b be the set whose elements
denote the association costs for each pair (u, c) of user u
and SBS c. Consider also a real number Q ≥ 0. Then, the
following question arises:

“ Is there any assignment of users to SBSs such that the
association cost constraints are satisfied for all caches and
the aggregate cache hit ratio over all SBSs is higher than Q?
In other words, is there a set of values for all zcu such that∑
u∈U

zcubcu ≤ Bc,∀c ∈ C, and
∑
u∈U

∑
c∈C

zcu
∑
i∈Pc

ku,c(i) > Q?”

Denoting the problem instance by P1(C, U , I, D, B, b, Q),
we can easily see that P1 is in NP .

To show NP-Hardness, we take advantage of the General-
ized Assignment Problem (GAP ) and perform a polynomial
time reduction of it to P1.

Proposition 3.3 GAP ≤L P1.

Proof. Since the cache placement is fixed for every SBS,
the value vuc for associating user u to SBS c is the ag-
gregate cache hit ratio over all cached items, i.e., vuc =∑

i∈Pc
(xuidu(i) + (1−xui)d̃u(i)), where Pc the cache place-

ment of SBS c. Moreover, each user u has a different as-
sociation cost bcu for being associated to SBS c. Finding
the association of users to SBSs under fixed caching deci-
sions and truthful recommendations leads to the solution of
the Generalized Assignment Problem. In particular, we map
users U and SBS co-located caches C of the P1 to the objects
and machines of GAP respectively. Accordingly, we use vuc
and cost bcu for denoting the profit and cost for assigning
user u to SBS c.

Corollary 3.1 Under fixed caching decisions, the JCRA
Problem is NP-Hard.

iv) Complexity of the JCRA problem: From the
analysis in (i)-(iii) we can easily conclude that:

Corollary 3.2 The Joint Caching, Recommendation and
Routing Problem is NP-Hard.

4. OUR HEURISTIC
In this section we present a heuristic scheme that simul-

taneously takes decisions for all three types of decision vari-
ables in the JCRA Problem. The heuristic proceeds in the
three steps that are listed and described in what follows.

Step 1: Associate users to small cells accounting
for their inherent content preferences.

(i) Initially, for each small cell cache c we compute the
maximum potential demand that can emerge for each item
i ∈ I as:

p̂c(i) =
∑

u:c∈N (u)

pu(i). (12)

This formula takes into consideration all users that could
be potentially be served by SBS c. Note that the inherent
content preferences of user u are factored in all SBSs in her
neighbourhood N (u).

(ii) Once these upper bounds for the aggregate demand at
each SBS c are determined for all content items, we compute
for each user u ∈ U the similarity scu between this aggre-
gate demand distribution and her individual user content
preference distribution:

scu =
∑
i∈I

pu(i) p̂c(i). (13)

(iii) The association of each user u to SBS c is assigned
a utility vcu that combines both the similarity scu and the
association cost bcu:

vcu =
scu
bcu

. (14)

(iv) Finally, users are associated to SBSs by solving an in-
stance of the Generalized Assignment Problem, where users
are mapped to jobs, cells to agents, and each possible assign-
ment (user association) bears a profit scu and a cost bcu. We
solve the resulting GAP with an approximation algorithm,
e.g., the Martello-Toth approximation scheme in [9]. By Ac

we denote the set of users that the algorithm associates to
SBS c.

Step 2: Determine cache placements accounting for
the impact of recommendations. In this step, we derive
cache placements that maximize the cache hit ratio under
the aggregate demand values {p̂c(i)} computed in the first
step.

(i) We first compute the content request probabilities of
users, as if truthful recommendations Rt

u are issued to each
user u, according to equations (1) and (2) for recommended
and non-recommended items, respectively. Note that these
are not the actual recommendations issued to the end-users;
they only serve as intermediate estimates.

(ii) We then solve a 0-1 Knapsack Problem (KSP) for each
SBS. The value vic that item i brings when cached in SBS
c is the aggregate demand probability over all users u ∈ Ac

vic =
∑
u∈Ac

du(i), (15)

and the cost for caching it is its length Li. A Dynamic
Programming algorithm with pseudopolynomial complexity
can be used [9] to solve this 0-1 KSP instance. The rela-
tion of caching and knapsack problems is quite standard in
literature, e.g., [11, 12].

Step 3: Align recommendations with cache place-
ments to boost the aggregate cache hit ratio. As stated
in Section 2, the recommendations that will be issued to
users may deviate controllably from those corresponding to
their implicit content preferences.
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Hence, in this step we adjust the provisional recommenda-
tions determined in step 2, so that for each user u as many
recommended items as possible lie both within the user’s
recommendation window Wu and the cache placement Pc

at the SBS she is associated to.

4.1 Preliminary Results
Our preliminary numerical results show that even a naive

greedy algorithm that takes into account the three problem
dimensions is better by up to 5% than an optimal algorithm
that considers only recommendations and caching. Fig. 2
depicts the performance of our heuristic for an instance of
the problem with |C| = 15 SBSs, |U|=100 users, |I|=300
items and 8 thematic categories. We assume that R = 3
items are recommended to each user, giving each recom-
mended item an equal boost ru(i) = 1/R, which fades out
with R. Note that the maximum considered cache capacity
reaches the 20% of the total content catalog size. Finally,
we generate the recommendation weights wu by sampling a
uniform distribution defined in the interval [0.5, 0.7], in line
with the experimental findings in [8].

We observe that our heuristic outperforms the upper bound
of the JCRP solution, even under very strict storage capac-
ity constraints, i.e., less than 4% of the total catalog size.
Moreover, our heuristic outperforms the reference scheme
even in terms of required storage capacity, in order to ob-
tain a specific cache hit ratio. Although the gains of the
proposed scheme appear to be limited, it is important to
observe that the proposed algorithm exhibits better perfor-
mance than what is feasible when jointly controlling only
the content caching and recommendations.

Figure 2: Aggregate cache hit ratio of our heuristic
vs. upper bound achieved with JCRP [2].

5. CONCLUSION AND FUTURE WORK
In this work, we provided a system framework that jointly

considers caching at the network edge, users requesting con-
tent items and a recommendation system that shapes the
content preferences of users. We formulated the problem of
exercising joint control over the user association to SBSs, the
content caching and the recommendations and showed that
it is NP-Hard. We also proposed a heuristic for the problem
and showed preliminary results about its effectiveness.

Future Work. The main direction of our future work con-
sists in the derivation of smarter algorithms for solving the
JCRA Problem and their approximability analysis. The lat-
ter also involves the asymptotic behavior of the algorithm
as different problem parameters scale up. In addition, we

plan to devise an online version of our heuristic in order to
reap the benefits of jointly controlling the three functions of
the JCRA Problem in highly dynamic environments.
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