
Bridging the cyber and physical worlds using
blockchains and smart contracts

Nikos Fotiou, Vasilios A. Siris, Spyros Voulgaris,
George C. Polyzos

Mobile Multimedia Laboratory, Dept. of Informatics
School of Information Sciences and Technology
Athens University of Economics and Business
{fotiou,vsiris,voulgaris,polyzos}@aueb.gr

Dmitrij Lagutin
Dept. of Communications and Networking

School of Electrical Engineering
Aalto University

dmitrij.lagutin@aalto.fi

Abstract—We address the limitations of existing information
security solutions when applied to the cyber-physical world. In
particular, we consider the case of Internet of Things (IoT)
actuation and we argue that it is hard to secure such a process.
To this end, we propose a “damage control” approach, where
service time is divided into slots and users perform micro-
service transactions, paying essentially in advance for each one,
corresponding to one service slot. Under these circumstances, in
the case of service disruption, a user, in the worst case, may lose
the amount of money that corresponds to a single micro-service
transaction in a single time slot. We implement our solution by
leveraging blockchain-based smart contracts, off-chain payments,
and one-time Hash-based Message Authentication Code (HMAC)
passwords. Our solution supports IoT devices with limited pro-
cessing capabilities and which are not necessarily connected to
the Internet. Moreover, with our solution, IoT devices do not
interact directly with the blockchain. In fact, they are oblivious
to the use of blockchain technology. They do not store any user-
sensitive information, neither are payments made to or is value
stored on the devices.

I. INTRODUCTION

An interesting aspect of the Internet of Things (IoT) is that
it intertwines the cyber with the physical world, i.e., through
the IoT and by using actuation devices users can alter the
physical world (e.g., turn a light on, charge a device, unlock a
door, make a human heart beat at a specific pace, etc.). On the
other hand, it is hard to verify an actuation process from the
standpoint of the cyber world in a reliable and undeniable way.
For example, consider the case of a “pay to charge” service
for charging electrical vehicles; it is difficult for the entity that
handles the payments to verify that the charging station indeed
worked as anticipated by the users.1

1If a cyber process attempts to determine whether the service has been
provided at the expected level, it will have to rely on information provided
by the involved entities, which however cannot be fully trusted to provide
truthful or reliable data, as they have incentives to misreport. Or, the process
could rely on a trusted third party to report truthfully, however, this approach
negates the decentralised character of the solution we promote in this work.

In this paper, we are concerned with actuation processes
that have a reasonably long duration, which can be divided
into periods with the following properties: the intended process
is the union of the processes during all the periods and the
cost of the service is additive, so that the total cost (or price)
is the sum of the costs (or prices) for the periods. Thus, if
needed, the process can be stopped at the end of each period
and the correct and acceptable payment from both sides would
be the sum for the completed periods. I.e., we consider each
period as a service quantum, indivisible, and we assume that
both sides can determine whether the service quantum was
provided, without further qualifications. This allows the service
periods to be treated separately. An example of a service that
can be reasonably modelled in this way is that of a charging
station charging an electric car (as opposed to unlocking a
door). Users could be charged based on the duration of the
actuation process (e.g., for the duration of the charging) or
in instalments based on the units of energy provided in the
various periods of time (e.g., for each kWh).

Under these conditions we propose a solution that enables
users to pay as they go, i.e., as long as they receive service.
In particular, we divide service time in (small) slots (consider
them equal in time, or price, for simplicity) and the parties
agree on a price per slot (not necessarily monetary). Thus, a
user (pre-)pays for a time slot and if he receives satisfactory
service during the slot, he proceeds with (pre-)paying for
another slot, and so forth. With this approach and in case
of service disruption, a user may in the worst case lose the
amount of money that corresponds to the last single slot.

Furthermore, we consider a realistic setup where a device
has limited computation power, it is not connected to the
Internet, but it has local connectivity, e.g., using Wi-Fi Direct,
Bluetooth, or NFC to communicate with its users, and it cannot
(or will not) handle payments. Our solution is based on a
semi-trusted third party, referred to as the Authorization Server
(inspired by OAuth 2.0 [1]) and leverages blockchain-based
smart contracts, off-chain micropayments, and one-time Hash
based Message Authentication Code (HMAC) passwords [2].

A. Background

A blockchain is an append-only ledger of transactions
replicated throughout a network. Transactions are validated
by a number of network nodes and are added to the ledger

Workshop on Decentralized IoT Systems and Security (DISS) 2019
24 February 2019, San Diego, CA, USA.
ISBN
https://dx.doi.org/10.14722/diss.2019.23002
www.ndss-symposium.org

upon consensus, assuring this way that no single entity has
control over the ledger. A smart contract is a replicated
application that “lives” in the blockchain. Users can interact
with a smart contract by sending transactions to its “address”
in the blockchain. For any interaction with a smart contract, all
operations are executed by the blockchain, in a deterministic
and reliable way. Smart contracts can verify blockchain user
identities and digital signatures and they can perform a number
of operations. The code of a smart contract is immutable
and it cannot be modified even by its owner or creator.
Moreover, all transactions sent to a contract are recorded in
the blockchain. Blockchains and smart contracts are considered
a “democratic” way for maintaining transactions [3] and are
envisioned to provide novel security mechanisms [4] for the
IoT. Our solution has been built using Ethereum [5] smart
contracts.

Various solutions related to our work have been recently
proposed. Lundqvist et al. [6] built a Bitcoin-based system for
micropayments between IoT devices. Their system assumes
that IoT devices “understand” the Bitcoin protocol and they
can interact with the Bitcoin blockchain. This may be a strong
assumption for many IoT devices. In our work IoT devices
are completely oblivious to the blockchain. Furthermore, the
scripting capabilities of Bitcoin are limited, compared to an
Ethereum-based smart contract. For this reason, their solution
requires more interactions with the blockchain. Similarly,
Huang et al. [7] propose a Bitcoin-based system for outsourc-
ing computations to Fog devices, Zhang et al. [8] propose
a similar system for outsourcing computations to a Cloud
system, and Król and Psaras [9] implement a micropayment
system that enables IoT devices to offload resource-heavy
computations to Edge devices. Various research efforts pro-
pose off-chain payment channels using trusted hardware. For
example, Lind et al. [10] propose a payments channel based on
trusted hardware. Similarly, Bentov et al. [11] leverage trusted
hardware to implement a real-time decentralized “currency
exchange”. Our solution does not require any special execution
environment. In our previous work [12] we used the concept
of the authorization server to enable a user to pay for an IoT
service using blockchain technology, but we did not consider
off-chain transactions nor micropayments. In this paper we
focus on actuation processes and off-chain micropayments.

B. Contributions

With this paper we are making the following contributions:

• We limit the cost that the disruption of an actuation
service has to a user to a predetermined amount. This
amount can be pre-agreed between the two parties.

• We provide fast, blockchain-based micro-payments
to constrained IoT devices, incapable of performing
public-key encryption, or (directly) participating in the
blockchain, or storing blockchain-related secrets.

• We enable “payment delegation” allowing users not
owning blockchain credentials to perform payments,
up to a specific, pre-configured amount, for a specific
service.

• We support many-to-one payments, enabling multi-
ple users, authorized by a single entity that owns
blockchain credentials, to pay for a service.

• We build a presently feasible solution that relies on
existing, already deployed technologies.

II. SYSTEM OVERVIEW

Our system considers the following entities: an actuation
device, referred to as the IoT device or simply the device, a
client interacting with the device, and an Authorization Server
(AS), which is in charge of authenticating clients and autho-
rizing them to access devices. In order to better understand our
system entities and their interactions, throughout the paper we
consider the use case of a car charging service. In this use case,
charging stations hold the role of the device and cars hold the
role of the client. A car can initiate the charging process only if
it gets authorized by an AS managed by the charging station’s
owner. Cars (or car owners as we will see) pay the AS through
a blockchain. The entity that performs the payments is the
owner of a blockchain wallet. Charging stations are oblivious
about the payment process, they are disconnected from the
Internet, and they can interact directly only with a car using
Wi-Fi Direct, Bluetooth, or NFC.

The authentication problem in an environment that includes
constrained devices is a challenging and multifaceted one, and
any scheme will have multiple trade-offs out of necessity. For
example, the client, device, and the AS need to be in contact
with each other at some point of time. The important question
is: which communication should be minimized? Inclusion of
blockchains introduces yet another optimization angle, since
a scheme should consider the cost of blockchain transactions
and smart contracts. Finally, a scheme should consider various
options when it comes to payment flexibility (e.g., one-to-
one payments, many-to-many) and to security, such as what
is the window of tolerable losses from both the device and the
client? Our solution minimizes the communication between
the device and the AS, making it suitable for cases where the
device and the AS do not have constant network connectivity.
Furthermore, with our constructions we support one-to-one and
many-to-one payments. Finally, our solution tries to minimize
client losses and supports zero losses for the devices that offer
the actuation service.

From a high-level perspective our system operates as
follows. A client (or a client owner) makes a “deposit” to
a smart contract in order to use an actuation service. Then,
it requests from an AS an “one-time password” that can be
used for invoking the actuation process for a time slot. This
password in provided in exchange to a “payment receipt”. The
payment receipt can be used by the AS to claim from the
smart contract (part of) the deposit. If a client needs more
passwords, it produces more receipts, and the process goes
on. Our solution has the following properties

• A deposit is claimed using only a single payment
receipt, even in the case of many-to-one payments.
This minimizes the interactions with the smart contract
and makes the smart contract implementation simpler
(avoiding this way possible implementation or appli-
cation logic mistakes).

• Payment receipts are provided off-chain. Furthermore,
the generation and validation of a receipt involves
only the calculation of a digital signature, whereas
the generation and evaluation of an one-time password

2

Contract

Device

Client

Setup("Device", deposit, timeout)

signclient(amount)

signclient(2*amount)

signclient(3*amount)

signclient(n*amount)

...

close(signclient, n*amount)

pay(n*amount)

pay(deposit n*amount)

Fig. 1. A payment channel that can be used for off-chain payments.

involves the calculation of a keyed-hash message
authentication code. Hence, this process is fast and
therefore small time slots can be used (minimizing
the losses in case of service disruption).

• A device and an AS have to be pre-configured with
a shared secret key. No further interaction is required
between these two entities.

• The communication channel between a client and a
device does not have to be secured (as opposed to the
communication channel between a client and an AS).

• Except from the validation of an one-time password,
a device does not have to perform any other operation
with respect to our solution.

III. SYSTEM DESIGN

A. Notation

In our system an entity may have a public-private key pair.
We denote the public key of an entity A with PA. Furthermore,
the digital signature of a message M using the private key of
an entity A is denoted by signA(M). By definition, given
a public key PX and a digital signature signX(M), any
entity (including a smart contract) can verify that the digital
signature has been generated by the owner of PX . Our system
also relies on symmetric encryption and keyed-Hash Message
Authentication Code (HMAC): the encryption of a message M
using a (symmetric) key key is denoted by Ekey(M), whereas
the HMAC of M using key is denoted by Hkey(M).

B. Preliminaries

Our system is based on two constructions, namely payment
channels and distributed authorization using HMAC-based
one-time passwords. In the following we introduce these two
concepts.

Authorization
server

Device

Client
auth_req (device, credentials)

Epsk(sk), token, counter

auth_granted (Epsk(sk), sk, token)

psk

Hsk(counter++)

Hsk(counter++)

Fig. 2. Distributed authorization and hmac-based one-time passwords.

1) Payment channel: A payment channel is a construction
that allows a client to make a “deposit” for a device to a smart
contract. That device can claim (a portion of) this deposit by
presenting an appropriate “payment receipt.” Payment receipts
are generated by the client and provided to the device off-
chain. Furthermore, a payment channel includes a timeout after
which a client can request his deposit back. In the following we
present a “typical” smart contract-based payment-channel con-
struction. This process is illustrated in Fig. 1. This construction
assumes “powerful” devices, i.e., devices capable of interacting
with a blockchain and trusted to maintain a blockchain wallet.

A payment channel is set up by a client who provides
to the smart contract the public key of the device that can
claim the deposit, the amount of the deposit, a nonce that
will be included in the payment receipt, and a timeout. When
the channel is set up, the corresponding amount of funds is
transferred from the client to the smart contract. Afterwards,
the client may send payment receipts to the device. A payment
receipt is signed by the client and includes an amount and
the channel-specific nonce. The device always keeps the latest
valid payment receipt and accepts a new one only if (i) the
amount included is bigger than the one in the latest receipt
(but less than or equal to the deposit), (ii) the nonce and
the signature are valid, and (iii) the payment channel is still
“open”.

A device can claim the amount included in the last receipt
simply by sending it to the contract before the channel closes.
Upon receiving a receipt, the contract transfers the correspond-
ing amount to the device and the remainder of the deposit
is transferred back to the client. At this point the payment
channel closes. A smart contract has to verify that (i) the nonce
included in the receipt is correct, (ii) the signature is valid, (iii)
the signature has been generated by the client that created the
channel, (iv) the amount included in the receipt is less than or
equal to the deposit, and (v) the device that sent the receipt
is owner of the public key specified by the client during the
channel set up. Since the channel is closed after a payment and
provided that a client uses a unique nonce for each channel,
it is not possible to double spend a receipt.

2) Distributed authorization and HMAC-based one-time
passwords: It is not uncommon for devices to not be capable
or trusted to perform client authentication and/or authorization.
In these cases, a distributed authorization protocol (such as
OAuth 2.0 [1]) can be used. By using such a protocol, an

3

Authorization
server

DeviceClient

auth_req(device, credentials)

Epsk(sk,ck,counter), token
auth_granted(Epsk(sk,ck,counter), sk, token)

Hck(counter++)

Hck(counter++)

signclient(price)

signclient(2*price)

Hck(counter++)

Hck(counter++)

Fig. 3. Our simple construction.

authorization server (AS) authenticates and authorizes a client
on behalf of a device and generates a token that can be used
by the client for accessing the device. Furthermore, the AS can
provide clients with keying material for generating “one-time
passwords” (OTP) that can be used for subsequent interactions
with the device. In the following, we give a high-level overview
of a system that uses OAuth 2.0 based authorization and
HMAC-based one-time passwords [2] (illustrated in Fig. 2).

In this setup, the communication channel between the de-
vice and the client is unprotected, whereas the communication
channel between the AS and the client is secured (e.g., using
TLS). Furthermore, the device and the AS have a pre-shared
secret key, denoted by psk. A client requests authorization
from an AS by providing its credentials and the identifier
of the device it wants to access (e.g., a URL). If the client
can be authorized, the AS generates a token (whose format is
application specific) and a session key (sk). Then it sends the
token, sk, and Epsk(sk) back to the client. The client sends to
the device Epsk(sk), the token, and a counter. SK can be used
for encrypting all subsequent messages. The OTP used for all
subsequent messages is calculated simply by increasing the
value of the counter by one and by calculating Hsk(counter);
note that the device can also calculate this value and validate
the password.

IV. CONSTRUCTIONS

We now describe our constructions. Remember that the
device (i.e., the charging station in our use case) is not
connected to the Internet and it is unaware of the existence
of the blockchain.

A. Simple construction

In this section we consider the case of a single car (client)
that uses the charging station. The car is also the blockchain
wallet owner. The car establishes a payment channel indicating
that the authorization server (AS) can claim the deposit (i.e.,
it includes the public key of the authorization server during
channel set up). Then, the car proceeds with the authorization
protocol described in the previous section. However, in our

construction, we make the following modifications: in addition
to the session key sk, the AS generates an additional key, i.e.,
the counter key (ck). Moreover, the AS encrypts ck and the
counter with the pre-shared key psk (note that only the device,
i.e., the charging station, and the AS know this key). Finally,
an OTP is generated by calculating Hck(counter). Hence, the
car cannot generate the required OTPs by itself, instead it relies
on the AS: in order for the AS to generate the next OTP the
car must provide a valid payment receipt.

This construction is illustrated in Fig. 3. As it can be seen
in this figure, the client exchanges two payment receipts for
two OTPs, hence it uses the device for two time slots. The last
payment receipt can be used by the AS to claim its money.

B. Payment delegation to a single entity

We now extend the previous construction and we consider a
car (client) which is not trusted to have access to a blockchain
wallet. Instead, its owner is responsible for setting up the
payment channel and for making the initial deposit. However,
the car should be able to generate valid payment receipts. For
this reason, we consider that the car has a public-private key
pair used for signing payment receipts. Furthermore, the public
key of the car Pcar is included in the payment channel setup.
When the payment channel is closed, the contract, instead of
verifying that the payment receipt has been signed by the entity
that created the channel, it verifies the the receipt has been
signed by the owner of Pcar. All other operations are not
modified.

C. Payment delegation to multiple entities

Our final construction enables many-to-one payments. In
particular, it considers multiple clients, also not trusted to have
access to a blockchain wallet, belonging to the same owner. In
terms of our use case, this construction enables multiple cars
owned by the same entity (this can be for example a car rental
company) to use multiple charging stations, administered how-
ever by the same AS. This construction faces two challenges:
(i) how to configure the payment channel with the public keys
of the cars that are allowed to generate payment signatures,

4

Authorization
server

ClientA

signclientA(price*2)

Hck(counterA)

signclientX(price)

signclientA(price*2)

signclientB(price*3)

Last receipt?

signclientX (price)

ClientB

signclientB(price*3)

Hck(counterB)

Last receipt?

signclientA(price*2)

Fig. 4. Many-to-one payments.

and (ii) how to coordinate payment receipt generation among
cars such that using only the last payment receipt the AS can
close the payment channel.

The first challenge can be overcome using a Merkle tree. A
Merkle tree is a binary tree in which every leaf node contains
the hash of a public key (the public key of an authorized car in
our use case) and every non-leaf node contains the hash of its
children. Given the root of a Merkle tree and a Merkle proof,
any entity can verify that (a hash of) a key is included in the
tree in logarithmic time to the number of leaves. An entity can
prove that its key is included in a tree by providing a Merkle
proof, i.e., a list of the siblings of all nodes in the path from its
(leaf) node to the root node (therefore, the number of nodes
required in a Merkle proof is logarithmic to the number of
leaves). With this construction, we extend the payment channel
opening process to include the root of the Merkle tree (instead
of a public key).

For the second challenge we define a simple query-
response protocol that can be used by a client to retrieve from
the AS the last valid payment receipt. We make the assumption
that every new payment receipt increases the amount by
a certain pre-defined value. In more detail, an AS always
maintains the last valid payment receipt; prior to generating
a receipt, a client queries the AS for the last valid receipt,
the AS responds, the client validates the receipt, extracts the
amount, and generates a new one adding to the amount the pre-
defined value. The AS will accept this new receipt–and mark
it as the last valid receipt–if (i) the payment channel is still
open, (ii) the receipt is signed by a client whose public key is
included in the Merkle tree, and (iii) it includes the amount of
the last recorded receipt increased by the pre-defined value. In
order for the AS to perform all these validations, the payment
receipt must also include the Merkle proof. This protocol is
illustrated in Fig. 4. In this example, initially the AS has stored
a payment receipt signed by ClientX . For simplicity (i) we
assume that all payment receipts are valid, and (ii) we omit
the first step of the authorization process during which clients
obtain Epsk(sk, ck, counter). Then, ClientA wishes to access

the actuation device: it queries AS for the last receipt and
the AS responds with the one signed by ClientX . ClientA
validates the receipt, creates a new one that includes a higher
amount and sends it back to the AS. The AS accepts it, marks
it as the last valid receipt and generates the OTP. The same
process is repeated with ClientB . It should be noted that
there can be cases where two (or more) clients request almost
simultaneously the last valid payment receipt. In that case only
one client will generate a valid payment receipt: the other
receipts will be refused and the clients that generated them
will have to re-execute the protocol.

With this construction, an AS can claim its money and
close the payment channel by providing to the smart contact
only the last valid payment receipt. Now the contract, instead
of verifying that the payment receipt has been signed by the
entity that created the channel, it verifies that it has been signed
by a client whose public key is included in the Merkle tree.
All other operations are not modified.

V. IMPLEMENTATION AND EVALUATION

We have implemented the presented solution using
Ethereum smart contracts.2 We are using public-private key
pairs that are constructed using the secp256k1 elliptic curve,
i.e., the same elliptic curve used by Ethereum. As an HMAC
function we have selected SHA256 which is well supported by
various libraries and operating systems for constrained devices.
Finally, for constructing the Merkle tree and since a Merkle
proof has to be verified by a smart contract, we are using the
keccak256 hash function, which is currently the recommended
hash function for using inside Ethereum smart contracts. We
have implemented a smart contract, which is deployed in a
local testbed, that realizes the payment channels used in our
three constructions.

The invocation of a smart contract operation creates
some computational overhead to the blockchain network. In

2Source code of our implementation can be found at
https://gitlab.com/mmlab-group/projects/ndss-diss-2019

5

Ethereum, this overhead is measured in “gas” units: the amount
of gas “consumed” by an operation depends on the operation’s
complexity. Furthermore, a user that invokes a smart contract
operation pays a transaction fee which is calculated based on
the consumed gas and the price per gas unit. Currently, the
average price of a gas unit is3 $0.012× 10−4. Table 1 below
illustrates the cost, measured in Ethereum gas, for invoking
each channel operation. The calculation of the cost of the
“close” operation of our second construction considers a two-
level Merkle tree (i.e., four cars); that cost is proportional to
the depth d of the used Merkle tree. In particular the cost
of that function can be calculated using the following formula
36258+d×36, where 36258 is the cost for verifying a payment
receipt and 36 is the cost of calculating a hash function.

First construction
Operation Cost measured in gas
open channel 43700
close channel 36258
Second construction
Operation Cost measured in gas
open channel 50388
close channel 36258
Third construction
Operation Cost measured in gas
open channel 50388
close channel 36330

TABLE I. COST FOR INVOKING SMART CONTRACT OPENING AND
CLOSING PAYMENTS CHANNELS

In order for client to start producing payment receipts
its deposit must be “recorded” in the blockchain. Currently,
this operation in the public Ethereum blockchain requires in
average 14.51 sec.4

Endpoints are implemented using JavaScript. Interactions
with the Ethereum blockchain, digital signatures using the
secp256k1 elliptic curve, and hash calculations are imple-
mented using the Ethereum JavaScript API.5

VI. CONCLUSION AND FUTURE WORK

This paper presented a solution that realizes micro-
payments for actuation services minimizing user loses in
case of service disruption. This solution is based on smart
contracts and blockchains. Smart contracts are used because
they support features required to solve this particular problem,
that cannot be provided (at least easily) by traditional means of
payment. In particular, using blockchains and smart contracts
it is possible (i) to deposit an amount of money that can be
claimed by a third party, and (ii) to authorize a user who
has no relationship with that particular blockchain technology,
to spend this amount for any purpose. Our system leverages
existing technologies and makes realistic assumptions about
the capabilities of the IoT devices. Furthermore, by hiding
all blockchain-specific operations from the IoT devices, we
believe that existing authorization systems (e.g., OAuth 2.0-
based systems) can be relatively easily extended to support
our solution.

The proposed solution utilizes the Ethereum blockchain,
where minimizing the complexity of smart contracts is

3As measured by https://ethgasstation.info on 21 Dec. 2018
4As measured by https://etherscan.io/chart/blocktime on 21 Dec. 2018
5https://github.com/ethereum/web3.js/

very important. A “permissioned” blockchain (e.g., Hyper-
ledger Fabric [13]) would significantly decrease the cost of
blockchain transactions and smart contracts executions. We are
currently considering this alternative. Another topic for future
work is the analysis of how more complex smart contracts
could enhance the system, i.e., in terms of security, flexibility,
or reducing the need for network communication. Finally,
many-to-many payments can be realized, i.e., multiple ASes
accepting payments from multiple clients. In that case, ASes
may maintain a ledger, for keeping up with the payments, and
use an inter-ledger protocol (e.g., ILP [14]) for claiming their
money.

ACKNOWLEDGMENT

The research reported here has been undertaken in the
context of project SOFIE (Secure Open Federation for Internet
Everywhere), which has received funding from EU’s Horizon
2020 programme, under grant agreement No. 779984.

REFERENCES

[1] D. Hardt (ed.), “The OAuth 2.0 authorization framework,” IETF, RFC
6749, 2012.

[2] D. M’Raihi (ed.), “HOTP: An hmac-based one-time password algo-
rithm,” IETF, RFC 4226, 2005.

[3] J. Cohn, P. Finn, S. Nair, and P. Sanjai, “Device democracy: Saving
the future of the Internet of Things,” IBM Institute for Business Value,
2014, (last accessed 30 Aug. 2018). [Online]. Available: http://www-
01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=GBE03620USEN

[4] G. C. Polyzos and N. Fotiou, “Blockchain-assisted information distri-
bution for the Internet of Things,” in Proceedings of the 2017 IEEE
International Conference on Information Reuse and Integration, 2017,
pp. 75–78.

[5] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, 2014.

[6] T. Lundqvist, A. de Blanche, and H. R. H. Andersson, “Thing-to-
thing electricity micro payments using blockchain technology,” in 2017
Global Internet of Things Summit (GIoTS), June 2017, pp. 1–6.

[7] H. Huang, X. Chen, Q. Wu, X. Huang, and J. Shen, “Bitcoin-based
fair payments for outsourcing computations of fog devices,” Future
Generation Computer Systems, vol. 78, pp. 850 – 858, 2018.

[8] Y. Zhang, R. H. Deng, X. Liu, and D. Zheng, “Blockchain based
efficient and robust fair payment for outsourcing services in cloud
computing,” Information Sciences, vol. 462, pp. 262 – 277, 2018.

[9] M. Król and I. Psaras, “SPOC: secure payments for outsourced com-
putations,” in NDSS 2018 Workshop on Decentralised IoT Security and
Standards(DISS), 2018.

[10] J. Lind, I. Eyal, P. R. Pietzuch, and E. G. Sirer, “Teechan: Payment chan-
nels using trusted execution environments,” CoRR, vol. abs/1612.07766,
2016. [Online]. Available: http://arxiv.org/abs/1612.07766

[11] I. Bentov, Y. Ji, F. Zhang, Y. Li, X. Zhao, L. Breidenbach, P. Daian,
and A. Juels, “Tesseract: Real-time cryptocurrency exchange using
trusted hardware,” Cryptology ePrint Archive, Report 2017/1153, 2017,
https://eprint.iacr.org/2017/1153.

[12] N. Fotiou, V. A. Siris, and G. C. Polyzos, “Interacting with the Internet
of Things using smart contracts and blockchain technologies,” in Proc.
of the 7th International Symposium on Security and Privacy on Internet
of Things (SPIoT 2018), 2018.

[13] “Hyperledger fabric home page,” The Linux Foundation,
2018, (last accessed 20 Dec. 2018). [Online]. Available:
https://www.hyperledger.org/projects/fabric

[14] “Interledger protocol,” W3C, 2018, (last accessed 20 Dec. 2018).
[Online]. Available: https://interledger.org/

6

