
Secure IoT access at scale using blockchains and smart contracts

Nikos Fotiou, Iakovos Pittaras, Vasilios A. Siris, Spyros Voulgaris, George C. Polyzos
Mobile Multimedia Laboratory,

Department of Informatics School of Information Sciences and Technology
Athens University of Economics and Business, Greece
{fotiou,pittaras,vsiris,voulgaris,polyzos}@aueb.gr

Abstract—Blockchains and smart contracts are an emerging,
promising technology, that has received considerable attention.
We use the blockchain technology, and in particular Ethereum,
to implement a large-scale event-based Internet of Things (IoT)
control system. We argue that the distributed nature of the
“ledger,” as well as, Ethereum’s capability of parallel execution
of replicated “smart contracts”, provide the sought after au-
tomation, generality, flexibility, resilience, and high availability.
We design a realistic blockchain-based IoT architecture, using
existing technologies while by taking into consideration the
characteristics and limitations of IoT devices and applica-
tions. Furthermore, we leverage blockchain’s immutability and
Ethereum’s support for custom tokens to build a robust and
efficient token-based access control mechanism. Our evaluation
shows that our solution is viable and offers significant security
and usability advantages.

Keywords-Access control, System and Network Management,
Publish-Subscribe, Distributed Ledger Technologies (DLT),
security tokens, Internet of Things, Web of Things, gateways

I. INTRODUCTION

Blockchain technology is expected to revolutionize and
“democratize” the Internet of Things (IoT) [1], facilitating
alternative communication paradigms and enabling novel
security mechanisms [2]. The solutions presented in this
paper are a step towards this direction: we take advantage of
the distributed nature of blockchains to build a large scale
IoT control system, and we leverage smart contract based
tokens to implement a novel access control mechanism. We
argue that existing approaches lack realism and do not take
full advantage of the possibilities and capabilities of the
blockchain technology. Indeed, related work in this area
either neglects the limitations of the IoT devices, or tries
to introduce new, hard to deploy, blockchain technologies,
or proposes(unrealistic) modifications to existing blockchain
architectures. Similarly, it does not create new solutions
using the new features provided by this novel paradigm,
instead it tries to merely transfer existing techniques into
the new environment. Although, the latter approach may
seem to have some value, it turns out that many of the
existing solutions do not consider the particularities of the
blockchain technology. For example, (public) blockchains
cannot be used for storing secret and sensitive information,
nevertheless, many proposals use blockchains for storing
private user data and business roles and structures.

The work in this paper is concerned with the secure
operation of (large) IoT deployments and is based on the
observation that many blockchain solutions can be used
as event-based systems. With this in mind we design a
blockchain-based architecture that allows users to control
IoT devices organized in “groups” (e.g., turn on the lights
of a smart city). Our architecture, which is built using
the Ethereum blockchain [3], considers the limitations and
capabilities of the IoT devices, as well as the properties
of the blockchain technology. Then, we secure this archi-
tecture by adding a token-based access control solution,
using Ethereum’s custom tokens. This approach has some
significant advantages compared to existing token-based ap-
proaches, with the most important being that it is impossible
for a user to transfer his security tokens to another user. The
contributions of this paper are the following.

• We design a blockchain-based IoT architecture based
on existing technologies and we define its actors and
their interactions

• We design, implement, and evaluate an event-driven
IoT management solution based on Ethereum’s smart
contracts

• We leverage Ethereum’s support for custom tokens to
implement a token-based access control mechanism for
our management system

• We design various extensions to our access control
mechanism that achieve common security tasks

The remainder of the paper is structured as follows:
In Section II we present some background information
of the technologies used in our paper, as well as related
work. In Section III we introduce our blockchain-based IoT
architecture and in Section IV we present a token-based
access control system for this architecture. We evaluate our
solution in Section V and we conclude our paper in Section
VI.

II. BACKGROUND AND RELATED WORK

Blockchain systems are distributed-ledger architectures
where a set of mutually untrusted nodes can agree on
a common view of an indelible, tamper-proof, append-
only ledger. In its basic form, a ledger includes a list of
transactions among users. Users can send new transactions
to the blockchain network and, if these transactions are valid,

they are eventually appended to the ledger by a randomly
selected specialized node referred to as the miner. Advanced
forms of ledgers may also include programs known as smart
contracts. Smart contracts are associated with some “state”
also stored in the ledger. Users can interact with a smart
contract using transactions and they may modify the contract
state.

A popular blockchain architecture that supports smart
contracts is Ethereum [3]. From a high level perspective
Ethereum smart contracts can be regarded as programming
classes and users can interact with the public functions of
those classes using transactions. Smart contracts are stored
in the ledger and they are identified by an address. Moreover,
once they are deployed their code cannot be modified.
Contracts are implemented in a low level Turing-complete
language and they are executed in a “virtual machine”
known as the Ethereum Virtual Machine. Smart contracts can
receive input only from the ledger, other smart contracts, and
the user who invoked them, i.e., smart contracts do not have
access to information and resources outside the Ethereum
blockchain. Some modifications to a smart contract state
can be marked as “events” and end-user applications and
libraries that monitor the Ethereum blockchain can “raise
alerts” whenever a specific type of event occurs.

Ethereum users own (at least) one public-private key pair.
The private key, which is usually protected in a “wallet,” is
used for signing transactions. A user may own an Ethereum
“full node” and interact directly with the blockchain, or he
may relay his transactions through another full node that also
acts as a “remote procedure call (RPC)” server. Each design
choice has its trade-offs: maintaining a full node requires
continuous network connectivity and some non-negligible
storage space for storing the Ethereum blockchain,1 whereas
relaying transactions through an RPC server entails the risk
that the RPC server is offline or it acts maliciously and drops
messages.2

Early attempts to incorporate blockchain technology into
the IoT proposed new blockchain systems. For example,
Dorri et al. [4] designed a blockchain-based smart home
management system. They proposed a custom, blockchain
technology, where the home gateways hold the role of the
miners. Such solutions are hard to be deployed since they
require a “critical mass.” Our approach is built on existing
technologies and can be used with already available libraries
and wallets.

More recent attempts are using blockchain technology and
smart contracts to provide security and access control for
the IoT. Hammi et al. [5] propose a blockchain-based IoT
communication system. They use an Ethereum smart contact
to group IoT devices in “bubbles” of trust. Each bubble is

1The size of the Ethereum blockchain on 28 Feb. 2019 was reported by
https://etherscan.io to be 132GB

2An RPC server cannot act on a user’s behalf, neither can it replay
messages.

managed by a “master” which decides which device can
join the bubble. In order for a device to join a bubble it
must present to the smart contract a “lightweight certificate”
signed by the bubble master. After joining a bubble a device
can communicate with the rest of the bubble members.
The communication can take place only through the smart
contract, which checks if the sending and receiving devices
belong to the same bubble. Novo [6] proposes a blockchain-
based architecture for managing access to IoT devices. The
proposed solution is based on an Ethereum smart contract
where “managers” can define the IoT resources that another
device can access. Gateway nodes, called “management
hubs”, are responsible for handling resource requests by tak-
ing into consideration the policies stored in the blockchain.
Zhang et al. [7] propose a smart contract based access
control system for the IoT. In their construction the ac-
tions a “subject” can perform on an “object,” as well as
the corresponding permissions are recorded in an “access
control contract”. A “register contract” is responsible for
maintaining a mapping from subject-object identifier pairs to
access control contract addresses. An IoT gateway handles
resource requests and is responsible for enforcing the access
control policies defined in the corresponding access control
smart contract. Those solutions follow a similar pattern: they
encode in a smart contract the actions a specific user can
perform to a particular IoT device/resource. Our solution
extends these approaches by considering the token balance
of users in the access control policies. In other words, those
solutions resemble to an access system which is based on
usernames and passwords, whereas our solution resembles a
role-based access control system. Furthermore, by leveraging
the token handling functionalities of the Ethereum platform
our approach enables some novel constructions.

Recently, Hanada et al. [8] explored the potential of smart
contracts for machine-to-machine (M2M) communication.
To this end, they developed and evaluated an IoT application
for automated, M2M, gasoline purchases that uses Ethereum
smart contracts to perform transactions. Our work is also
in this direction. Nevertheless, in addition to merely using
smart contracts to provide message transfer and payments,
our solution supports group communication and access con-
trol.

III. A BLOCKCHAIN-BASED IOT ARCHITECTURE

We now describe our Ethereum-based IoT architecture (as
the typical smart-contract enabled blockchain architecture).
Our architecture is composed of the following entities:

• The blockchain infrastructure
• A smart contract that generates events
• Full nodes that also act as RPC servers
• IoT devices
• IoT gateways
• Clients that want to control the IoT devices

0xa3c1

RPC Server RPC Server

Client IoT GW IoT GW

IoT Devices

(3) 0xa3c1/Operation

(4) 0xa3c1/Operation

(2) invokeOperation
(URI, TurnOnLights)

(1) watch 0xa3c1/Operation
{OPCode:TurnOnLights,
URI:building6/floor2}

(3) 0xa3c1/Operation

(5) URI, Operation

Figure 1. Our blockchain-based IoT architecture.

Clients and IoT gateways are in control of an Ethereum
blockchain wallet. A client does not have to interact di-
rectly with an IoT gateway (or IoT device), instead all
interactions take place through the blockchain. From a high-
level perspective our architecture is designed as follows.
All device operations are mapped to a function in a smart
contract; every time a client invokes a function (properly)
the smart contract generates the corresponding blockchain
events. These events are received by interested IoT gateways
and eventually result in an operation in the appropriate IoT
devices.

Clients and IoT gateways can be Ethereum full nodes
themselves or they can be connected to the blockchain
through another full node acting as an RPC server. In the
following we consider the latter design option. IoT devices
on the other hand are connected to IoT gateways. In this
section we do not consider any particular governance model;
any IoT gateway may “watch” for (and act upon) events
and any Ethereum user can act as the system client. In the
following section we describe an access control mechanism
where only authorized users can act as a client.

As IoT devices we consider actuators and we assume that
an actuation process can be invoked through an “operation”,
e.g., “turn on the light”.3 Furthermore, IoT devices are
identified by URIs. Following the semantics of CoAP group
communication [9] we consider that an IoT device may
have multiple URIs and a URI may correspond to multiple
devices. The semantics of a URI are application specific, for
instance they may indicate the physical location of a device,
e.g., “buidling6/floor3/room2”. An IoT gateway knows the
URIs and the supported operations of the devices attached to
it (e.g., by using an out-of-band configuration mechanism,
or by using a service discovery protocol–such as [10]).

The main component of our system is a smart contract
whose address is considered well-known. When invoked,
this smart contract generates the appropriate events. An

3Of course, sensors can easily be handled and their operations can be
thought of as “provide me your current data. ”

Ethereum event has a name and some attributes. An RPC
client may request to watch the events produced by a smart
contract by specifying the event name and optionally a
filter over (a maximum of three) “indexable” attributes. In
our architecture we consider a generic event name (i.e.,
Operation) and we specify for each event two attributes: an
indexable called OPCode that encodes the desired operation
and a second one, also indexable, called URIResource that
corresponds to the URI of the device(s) in which OPCode is
applied.4 IoT gateways register to their RPC server to watch
the event Operation of our smart contract and (optionally)
specify filters on the event’s attributes.

Clients simply interact with the smart contract and invoke
the appropriate functions. The main function of our smart
contract is called invokeOperation. This function accepts
two input parameters: an OPCode and a URIResource, and
generates an Operation event whose attributes have the same
value as the function call parameters. Eventually, this event
reaches the IoT gateways that are “watching” for it. In return,
each IoT gateway invokes the corresponding operation at
the IoT devices that are associated with the specified URI.
An overview of our approach is illustrated in Figure 1. In
this figure, there is a client, two IoT gateways, and two
IoT devices attached to each gateway. One of the gateways
starts watching for the Operation event of the smart contract
located at the address “0xa3c1” (step 1). Furthermore, the
gateway requests events to be filtered based on their OPCode
and specifies that it wants to watch only for events in which
OPCode is “TurnOnLights”. At some point a client invokes
the invokeOperation function of the smart contract. It uses
as URIResource a URI that matches the IoT devices of the
aforementioned gateway and as OPCode “TurnOnLights”
(step 2). This transaction results in the creation of an event,
which is propagated to all full nodes (step 3). Furthermore,
it is transmitted to the IoT gateways that are watching for
such events, including our example gateway (step 4). The

4In order to be more precise, since Ethereum does not allow strings to
be indexable, the attribute URIResource holds the hash of the URI.

gateway extracts the URIResource of the event and checks
if it matches any of the IoT devices attached to it. Since
this is the case in our example, the IoT gateway executes
the corresponding operation on the appropriate devices (step
5).

IV. TOKEN-BASED ACCESS CONTROL USING SMART
CONTRACTS

Many legacy access control mechanisms implement ac-
cess control using “tokens” that indicate the capabilities
of a client over a resource. However, token management,
security, and semantics interpretation cannot be trivially
implemented, especially in the context of the IoT. For this
reason, in this section we leverage the capability of the
Ethereum blockchain to support custom tokens and we
implement an access control mechanism.

Ethereum has specified a “token standard” called
ERC20 [11]. This standard defines some functions that a
smart contract should implement in order to be treated as
a token (i.e., a new type of coin). Many popular Ethereum
wallets can handle ERC20-based tokens. The core of our ac-
cess control mechanism is built using two of these functions,
namely balanceOf and transfer. The first function returns the
token balance of a user. The second function can be invoked
by a user A in order to transfer some tokens (he owns) to
another user B.

The smart contract of the architecture defined in the
previous section is extended with implementations of the
functions defined by the ERC20 standard. These extensions
can be used for providing access control as follows. Initially
a user that owns the smart contract assigns all tokens to
himself. We refer to this user as the “owner”. The owner
then transfers at least one token to each authorized client. As
a matter of fact, the number of tokens a client owns can be
used as an indication of his role: the more tokens he owns the
more privileged his role. The contract owner can protect an
operation by specifying the roles (i.e., the balance in custom
tokens) of the authorized clients. Therefore, in the simplest
case, an operation can be protected simply by having the
smart contract function checking if the client that invokes it
owns the necessary number of tokens (this check is trivially
implemented using the balanceOf function). We now discuss
some more advanced applications of our approach.

A. Token transfer

In theory, and based on the ERC20 semantics, any client
can transfer some of his tokens to another client using
the transfer function. Of course, this constitutes a security
threat since this way a client authorizes another client–
potentially malicious–to perform an operation. It should be
noted here that this is an existing threat in legacy token-
based access control systems. Fortunately, ERC20 defines
only an “interface” and does not dictate any particular
implementation choice. Hence, in our contract, a client is

allowed to transfer his tokens only to the owner. This transfer
is enabled in order to support functionalities such as “shifts”
where a client is authorized to perform an operation only for
a specific time period (that corresponds to his shift) and then
transfers through the owner his authorization to the client of
the next shift. It should be noted here that off-chain token
transfers are impossible.

B. Clients in probation period

Another interesting capability of an ERC20 compatible
smart contract is that it can modify the token balance of
a user at will. In our mechanism we leverage this feature
to support clients in probation, trainees, and similar roles.
In particular, we allow the owner to define a list of clients
whose balance is decreased by one every time they invoke
an operation. This way these clients are allowed to perform
only a certain number of operations, then the results of these
operations are inspected (out of band), and if everything is
as expected, the clients regain their tokens back.

C. Supervised operations

Using our mechanism, it is possible to define “critical”
functions, that require the “approval” of a client that holds
a more privileged role. In particular, if such a function is
invoked by an underprivileged client, instead of producing
an Operation event, a new type of event is produced called
AuthorizationRequest. This event is handled by a privileged
client, who inspects its fields and acts accordingly, i.e., he
may ignore it, or he may invoke the same function again so
that the Operation event is generated.

D. Two-steps access control

Since the Ethereum ledger is distributed (which is a key
property of blockchain-based systems) any full node (or RPC
client) can learn the token balance of a user without inter-
acting with the corresponding smart contract. This property
enables the definition of additional (possibly finer grained)
access control policies at the IoT gateways. This means that
even if a client is authorized by the smart contract, eventually
his operation may be rejected by some/all IoT gateways.
The access control policies defined at the IoT gateways may
take into consideration, in addition to the role of the client,
other auxiliary information provided by the “real” world,
such as time, location information, other IoT measurements,
etc. Notice that smart contracts do not have access to such
information.

E. Panic button

Our access control smart contract defines a function
that can be invoked only by the owner and it resets the
token balances of all users, returning in essence all tokens
back to the owner. This function can be used in case of
emergency, e.g., in case of a security breach. Additionally,
when invoking this function, the owner can specify the

public key of a user, resetting this way the balance of that
particular user. Using this approach client revocation can
be trivially implemented. Since all transactions are recorded
in the blockchain, it is painless to restore user balances to
their value prior the ”panic button” invocation. Moreover,
the clients whose tokens are revoked have no control over
this process, hence revocation is instantaneous and effective.

V. EVALUATION AND DISCUSSION

A. Performance and cost evaluation

We have implemented and tested our proposed solution
in a private Ethereum network, as well as in the Rinkeby
and Ropsten Ethereum testnets. As an IoT gateway we have
used Mozilla’s Thing Gateway5 that implements the Web
of Things standard.6 We implemented clients as JavaScript
web applications using web3.js Ethereum JavaScript API7

and the Metamask Firefox extension.8.
The invocation of an Ethereum smart contract function

creates some computational overhead measured in “gas”
units: the amount of gas “consumed” by a function depends
on the operation’s complexity. Each user declares the price
he is willing to pay per gas unit: the bigger the amount,
the faster the operation will be executed. The fastest an
operation can be executed is ∼14sec. which is the time
required by the Ethereum network to generate a new block.
Hence, users compete each other since they wish to execute
their operation fast but they do not want to get charged
a lot. Currently, the average price of a unit of gas is9

$0.004×10−4. Our construction uses Ethereum’s events and
it is built using a “mapping” type, i.e., a hashtable-like data
structure that maps “keys” to “values”. Our events have two
fields, namely OPCode of type byte and URIResource of
type bytes32 (i.e., a byte array of size 32). Furthermore, our
mapping maps keys of type address to values of type int
and it is used for maintain client’s balance. The primitive
operations required by our smart contract are map search,
creation of a new map entry, and modification of the value
of a map entry. Table 1 shows the cost of these operations
in terms of gas consumption. In addition to these costs, each
transaction has an overhead of 21000 gas.

Operation Cost measured in gas
Send Operation event 2560
Search map 1033
Map entry creation 45938
Map entry modification 6110

Table I
COST OF OUR CONSTRUCTION BUILDING BLOCKS

5https://iot.mozilla.org/
6https://www.w3.org/WoT/
7https://web3js.readthedocs.io
8https://metamask.io/
9As measured by https://ethgasstation.info on 20 Mar. 2019

B. Qualitative and security properties

Our construction leverages the inherent properties of the
blockchain technology. By design, blockchain solutions offer
reliability and robustness, since the “ledger” is replicated in
multiple locations and there is no single point of failure.
Furthermore, blockchain communication protocols and APIs
include message integrity protection, as well as resilience
against replay attacks. Smart contract execution is determin-
istic and cannot be affected by malicious entities. Similarly,
smart contracts cannot be modified, not even by their owners.
As already discussed, invoking a smart contract function
has some monetary cost; this could be an effective defense
against Denial of Service attacks.

As far as our token-based access control is concerned,
it can be observed that it has some intriguing security
properties. Firstly, tokens can only be used by their owners,
and token owners cannot transfer them to other users. Even
if the blockchain keys of a user are compromised, our
construction prevents token transfer (of course the stolen
keys can be used for issuing transactions on behalf of the
victim users). This is a significant advantage compared to
traditional token-based access control mechanisms where,
not only the corresponding tokens have to be secured, but
also a token recipient should be able to verify the binding
between the token and the user who sent it (i.e., additional
mechanisms for detecting stolen tokens should be in place).
In other words, the responsibility (and security) of binding of
tokens to token owners is performed by the blockchain and
it is not the responsibility of each user (which opens security
issues). Furthermore, and as already discussed, blockchains
are an indelible, append-only, and tamper-proof logs, hence,
in case of a security incident or in case of a dispute they can
provide undeniable auditing information. Moreover, our con-
struction offers secure and effective revocation. Ethereum’s
mechanisms guarantee that only an owner can revoke tokens
(providing of course that the owner’s private key is secured),
as well as, that a token revocation has immediate affect.
Finally, since our construction is based on an established
Ethereum standard, libraries and wallets that support it, can
be used for implementing client applications.

Ethereum is composed of a P2P network where all valid
blocks are broadcast to all nodes. In reality, events are
special fields encoded in those blocks, hence the number
of nodes watching for events does not have any impact on
the number of transmitted messages. In other words, if we
take Ethereum infrastructure for granted (or any other similar
architecture) it is costless to build a group communication
application on top of that. Moreover, due to this property,
the network location of the IoT gateways does not have to be
well known, neither have gateways to be reachable through
the Internet.

C. Discussion

Despite the advantages of the blockchain technology, it
comes with some costs. As already discussed Ethereum (and
most blockchain systems) involve some monetary cost, as
well as some transaction delay. Unfortunately, and since
Ethereum is still an experimental technology, the mone-
tary cost of transactions fluctuates greatly. Furthermore,
Ethereum operates on the premise that at least half of the
network nodes are honest; having an attacker controlling
more than 50% of the nodes in an unlikely but not impossible
threat. Finally, Ethereum’s ledger is public and anybody can
inspect it. This property constitutes a privacy threat since
it is possible for a thrid party to deduce information such
as, who perform which operation and when, the “roles” of
the users, the introduction of new authorized users, etc.
All these shortcomings can possibly be addressed using
a “permissioned” private blockchain, such as Hyperledger
Fabric.10

In the construction presented in this paper clients interact
with the IoT devices only through the blockchain. Of course
cases where a client interacts directly with an IoT gateway
can be considered. This direct interaction has some advan-
tages, including zero transaction fees and faster response
times. Moreover, and since the Ethereum ledger is replicated
in all nodes, a gateway can still perform token-based access
control. On the other hand, in this case, the gateway should
be able to verify the identity of the client (i.e., his blockchain
public key).

VI. CONCLUSION

In this paper we designed, developed, and evaluated
an IoT access architecture based on smart contracts and
blockchains. Our solution leverages the distributed nature of
the blockchain technology to build an event-based system for
managing IoT devices connected to Web of Things gateways.
Furthermore, we enhanced our architecture with an access
control solution based on custom blockchain tokens. Our
access control solution has some intriguing properties and
presents some important advantages compared to traditional
token-based access control systems. Finally, our Ethereum-
based implementation shows that our solution is feasible and
with low overhead.

Blockchain and smart contracts are an exiting, evolving
technology, with endless possibilities. Hence, our system can
be extended in numerous ways. For instance, our system
can be extended to support an IoT-based sharing economy,
or even auctions over IoT access tokens (e.g., a frivolous
but prosperous use case could be an auction for the token
that can light the Christmas tree of a city). Similarly,
the blockchain can be used for tracking user reputation
or even “score” in a gameficated application. Finally, our
architecture can be extended to support blockchain-based

10https://www.hyperledger.org/projects/fabric

decentralized identifiers, a new technology under standard-
ization with exciting security and privacy properties.

ACKNOWLEDGMENTS

This research was supported by the EU funded Horizon
2020 project SOFIE (Secure Open Federation for Internet
Everywhere), under grant agreement No. 779984. Iakovos
Pittaras was supported by the Athens University of Eco-
nomics and Business Research Center.

REFERENCES

[1] J. Cohn, P. Finn, S. Nair, and P. Sanjai, “Device democracy:
Saving the future of the Internet of Things,” IBM Institute
for Business Value, 2014.

[2] N. Fotiou and G. C. Polyzos, “Smart contracts for the internet
of things: Opportunities and challenges,” in 2018 European
Conference on Networks and Communications (EuCNC), June
2018, pp. 256–260.

[3] G. Wood, “Ethereum: A secure decentralised generalised
transaction ledger,” Ethereum Project Yellow Paper, vol. 151,
2014.

[4] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram,
“Blockchain for iot security and privacy: The case study
of a smart home,” in 2017 IEEE International Conference
on Pervasive Computing and Communications Workshops
(PerCom Workshops), March 2017, pp. 618–623.

[5] M. T. Hammi, B. Hammi, P. Bellot, and A. Serhrouchni,
“Bubbles of trust: A decentralized blockchain-based authen-
tication system for iot,” Computers and Security, vol. 78, pp.
126 – 142, 2018.

[6] O. Novo, “Blockchain meets iot: An architecture for scalable
access management in iot,” IEEE Internet of Things Journal,
vol. 5, no. 2, pp. 1184–1195, April 2018.

[7] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart
contract-based access control for the internet of things,” IEEE
Internet of Things Journal, pp. 1–1, 2019.

[8] Y. Hanada, L. Hsiao, and P. Levis, “Smart contracts for
machine-to-machine communication: Possibilities and limi-
tations,” in 2018 IEEE International Conference on Internet
of Things and Intelligence System (IOTAIS), Nov 2018, pp.
130–136.

[9] A. Rahman and E. Dijk, “Group communication for the
constrained application protocol (CoAP),” IETF, RFC 7390,
2014.

[10] C. Amsuess, Ed., “CoRE resource directory,” IETF, RFC-
draft, 2019.

[11] V. Vogelsteller and B. Vitalik, “ERC-20 to-
ken standard,” Tech. Rep., 2015. [Online]. Avail-
able: https://github.com/ethereum/EIPs/blob/master/EIPS/eip-
20.md

