
PUBLISHED IN: PROCEEDINGS OF THE ACM/IEEE HOTWOT 2019 1

Keyword-based information retrieval for the WoT
George Xylomenos, Evangelos Zafeiratos, Marios Prokopakis

Department of Informatics
Athens University of Economics and Business

Greece

Abstract—The Internet of Things (IoT) is expected to contain
huge numbers of “things” producing vast amounts of informa-
tion. To turn these raw data to useful services for the Web of
Things (WoT), we have previously proposed KIOT, a keyword-
based scheme for gathering and processing IoT information using
Information-Centric Networking (ICN) techniques. In KIOT data
items, such as sensor readings, can be named with arbitrary sets
of keywords, while users can retrieve all data items matching
a desired set of keywords and (optionally) process them with
arbitrary functions. In this paper we focus on a prototype
implementation of the data retrieval part of KIOT. To maximize
flexibility in diverse settings, our implementation automatically
configures the network and its routing tables, allowing arbitrary
sets of keywords to be used for both data items and queries.
Our implementation can be used on any IoT device supporting
Java, and is also available for large scale testing over emulated
networks using Mininet.

Index Terms—WoT, IoT, ICN, NDN, KIOT

I. INTRODUCTION

The term Internet of Things (IoT) refers to the intercon-
nection of everyday objects, from industrial machinery to
wearable devices, for the purpose of obtaining information and
acting upon it. Due to the large amount of data involved in IoT
applications, both due to the number of available devices and
their continuous production of information, many cloud-based
solutions have been proposed to aggregate and process such
data. However, these solutions require continuous connectivity
to the cloud, impose lengthy response times on applications
and involve large amounts of data transfer. We instead propose
moving (at least part of) that computation to the edge, creating
a Web of Things (WoT) layer to refine the raw data extracted
from devices.

To move processing to the edge, we need methods for nam-
ing data, gathering them for processing and applying functions
to them. Rather than naming data items with URLs, which are
hard to maintain when huge numbers of devices are available,
we instead propose naming only the data, as in Information
Centric Networking (ICN) [1]. In the most prevalent ICN
approach, Named-Data Networking (NDN) [2], data names
are hierarchical. For example, data names could be organized
by location (e.g., /aueb/troias/floor1/...) to help
applications get all data items from a building. This naming
architecture, however, offers limited expressiveness. If an
application wants to gather information by sensor type, for
example temperature, it would prefer to organize names by
type (e.g., /temperature/floor1/troias/...). Ide-
ally, each application should be able to use its own naming
scheme, thus allowing the same IoT devices to be used

for entirely different purposes, rather than trying to fit all
applications into a single naming hierarchy.

To achieve this goal, we have proposed an alternative nam-
ing scheme, KIOT, which uses keywords for data naming [3].
In KIOT, data items produced by an IoT device are described
by an unordered set of keywords such as {temperature,
aueb, troias, floor2}, which could indicate a tem-
perature sensor located at the 2nd floor of the Troias building
of AUEB. With KIOT, queries can use any subset of keywords,
so we can ask for all the temperature readings on the 2nd
floor of all AUEB buildings with the set {temperature,
aueb, floor2}, or for all the temperature readings on
the Troias building with the set {temperature, aueb,
troias}. The KIOT scheme is completely oblivious to the
keywords used and their meaning, only using set operations
to match data with queries. Specifically, if the keywords in a
query are a subset of the keywords in a data item, then the
data item is considered to match the query.

While KIOT also includes the application of functions to
the data items gathered, which involves locating executable
functions and bringing them together with the data to an
appropriate node for execution, our work in that area is still
at the modeling stage [4]. This paper presents a prototype
implementation of the data retrieval part of KIOT, which
involves naming data, discovering the network topology, cre-
ating routing tables, sending queries and gathering responses.
Rather than a simulated model as in [3], we present an
implementation in Java with a practical topology discovery
and routing protocol that requires minimal configuration and
covers many issues involved in actual deployments.

The rest of this paper is structured as follows. In Section II
we provide background information on KIOT and related
work, while in Section III we describe our prototype imple-
mentation. In Section IV we present an initial evaluation of
the performance of our prototype with keyword-based queries.
Finally, we describe ongoing and future work in Section V.

II. BACKGROUND AND RELATED WORK

While our naming scheme is more flexible than the hierar-
chical naming of NDN, our design intends to be compatible
with NDN as far as possible, to allow interfacing wide-area
NDN networks with IOT networks using KIOT. To this end,
we borrow the basic communication model of NDN which
consists of sending Interest packets to ask for a specific data
item and responding with Data packets holding the matching
content. Our nodes also rely on a Forwarding Information
Base (FIB) which serves as a routing table, allowing Interests



2 PUBLISHED IN: PROCEEDINGS OF THE ACM/IEEE HOTWOT 2019

to be forwarded towards the appropriate data items, and a
Content Store (CS) which allows data items from previous
queries to be cached so as to answer new queries faster.
However, our messages and data structures use encoded sets
of keywords rather than the hierarchical names of NDN.

On the other hand, KIOT does not employ the Pending
Interest Table (PIT) of NDN which stores information on for-
warded Interests. NDN uses the PIT to return Data messages
to the source of the matching Interest and to ensure that at
most a single Data is returned in response to an Interest. In
KIOT we overlay a logical tree over the network, where all
Interests originate at the root and all Data are returned there.
As our eventual goal is to process the Data returned, we expect
multiple Data packets to be returned in response to a single
Interest. Furthermore, rather than expecting a specific number
of Data items to be returned as in [5], we intentionally leave
open the number of returned Data items, relying on timeouts
to limit the waiting time for responses to an Interest. The
rationale is that we should not need to know the exact number
of (say) temperature sensors in a building in order to ask for
its average temperature.

The KIOT scheme for representing keywords was inspired
by TagNet [6], an ICN architecture using tags to name content
items at the global level. TagNet proposed representing sets
of tags as Bloom filters [7]. KIOT uses the same idea, but
while in TagNet a query matches a data item if the tags
in the request are a superset of those in the data item, in
KIOT a query matches a data item if the keywords in the
request are a subset of those in the data item. This allows
the FIBs in KIOT to be very simple, since a node can simply
summarize the keywords of all its children by merging the
Bloom filters representing their keywords in a new Bloom
filter. Furthermore, while TagNet uses multiple trees for Data
routing, in KIOT only a single logical tree is used, therefore
Data routing is trivial: nodes always pass Data to their parent.

III. THE KIOT IMPLEMENTATION

In this section we describe the parts of the KIOT architec-
ture [3] that have been included in our prototype implemen-
tation, explaining how the initial design has been adapted for
implementation purposes.

A. Name Encoding

The KIOT naming scheme is based on using an arbitrary set
of keywords to represent each data item and each query, for
example, {temperature, aueb, troias, floor2,
mmlab}. We say that a data item matches a query when the
keyword set of the query is a subset of the keyword set of
the data item. As keywords are application dependent and the
KIOT network is oblivious to them, we need a space efficient
and generic way of encoding keyword sets that allows sets
to be created, merged and tested for membership. Following
TagNet [6], we decided to use Bloom Filters (BFs) [7] to
represent the keyword sets, as BFs are fixed sized bitmaps
supporting quick implementations of all the desired operations.

Initially, all bits of a BF are zero, representing an empty
set of keywords. To insert a keyword into a BF, the string

representation of the keyword is hashed by a number of hash
functions, each of which returns a certain bit position to be
set to one. To add a keyword to an existing set, we set to
one all the bit positions set to one either in the original BF or
in the BF of the new keyword, that is, we perform a bitwise
OR between them. The same method (bitwise OR) is used to
merge larger sets. To test whether a keyword is part of a set,
we create a BF for the keyword and see whether all the bits
set to one in that BF are also set to one in the BF of the set.
This is implemented by performing a bitwise AND between
the two BFs and checking the result for equality with the BF
for the keyword. The same method can be used to determine
whether a set is a subset of another set.

While the BF approach is a simple way to encode arbitrary
keyword sets into a fixed size bitmap, its probabilistic nature
makes it prone to false positives, that is, answering that an
element is in a set when it is not. This means that the bits set
to one corresponding to that keyword may have been set in
the BF due to the insertion of other elements. The probability
of this happening depends on the size of the BF in bits, the
number of hash functions used and the number of elements
inserted into the BF; generally, for a specific BF size, the
probability grows as more elements are added into the BF,
therefore the BFs need to be sized based on the expected
number or keywords used by an application so as to ensure a
low false positive probability. On the other hand, BFs do not
suffer from false negatives, that is, if an element is part of a
set, then we will never get the response that its BF is not a
subset of the BF of the set.

B. Network model
In KIOT, routing always takes place over a single tree, with

its root being the border gateway with other networks. All
Interests originate from the root and propagate towards the
leaves, and all Data items sent in response need to be returned
to the root. This means that each node only needs to know
which of its links lead to the root in order to return results.
To locate data items, each data item is labeled with a BF that
indicates the keywords it is associated with, and each node
in the tree maintains a FIB entry for each of its downstream
links, that is, a BF indicating what content items are available
via this link. Each node reports to its parent that it has access
to data items represented by a BF produced by merging the
BFs of its children and any locally produced data items.

In our implementation, network nodes are divided into three
classes:

• Leaf Nodes are IoT devices producing named data via
their sensors which are only aware of their parent (specif-
ically, its IP address). The data produced by each sensor
are associated with a set of descriptive keywords, which
are encoded in a BF called a BF-Keyword. A union of
all the BF-Keywords made available by a node form the
BF-Catalog, which is a BF describing all the contents
of the node. For example, when using BF filters of
size 8 bits, a leaf node may have information about
temperature (BF-Keyword: 01001000) and humidity (BF-
Keyword: 01000001), so its BF-Catalog will have the
value 01001001.



PUBLISHED IN: PROCEEDINGS OF THE ACM/IEEE HOTWOT 2019 3

• Interior Nodes are network devices used to interconnect
their parent node with their children nodes, allowing
the root to communicate with the leaves even in large
networks. Interior nodes, in addition to the IP address of
their parent, contain a FIB with two entries per child: the
BF-Catalog of the child and the IP address of the child.
Interior nodes merge the BF-Catalogs of all their children
to produce their own BF-Catalog, which is propagated to
their parent.

• The Root Node is simply an interior node without a
parent, serving as the entry point to the network . It should
be noted that the root node does not create queries itself,
receiving them from an external entity (an application or
another gateway node). In addition to a FIB, the root node
maintains some state about each query issued, in order to
match it against the data returned (see Sec. III-D).

Note that, for simplicity, in our prototype implementation we
assumed that sensors are only attached to leaf nodes.

C. Network Configuration

In an actual IoT setting, very large numbers of nodes may
exist, therefore it is important for configuration to take place
automatically as far as possible, as new nodes enter the system
and old nodes go out of service. If the network is wireless,
then each node may potentially be in radio reach of many other
nodes, creating a mesh of feasible connections. To simplify
routing, KIOT overlays a tree on top of that mesh.

Imposing a tree over an arbitrary topology requires each
node to automatically find its place in that tree and attach itself
to other nodes. To achieve this, our implementation requires
that each node added to the network is configured with its level
on the tree, which is 1 for the root and n > 1 for any other
node. This only requires a rough awareness of the structure
of the network; for example, in a campus we could have level
1 for the root, level 2 for building gateways, level 3 for floor
gateways, level 4 for wing gateways and level 5 for actual
IoT devices. In addition, each leaf must be configured with
the keywords describing each of its data items, so as to create
their BF-Keywords. The rationale is that after setting up a
rough outline of the network, new IoT nodes will just need
their keywords and level to be added to the network.

Every node entering the system initially tries to locate
a parent so as to become part of the tree; later on, other
nodes may become its children in the same manner. The
configuration protocol relies on the following messages:

• Parent messages: Every node except the root node tries
to locate a suitable parent armed only with its level on
the tree. Each node sends a broadcast MSG PARENT
message with its IP address and tree level which, in a
wireless network, will reach all nodes within transmission
range. Each node receiving this message can decide if it
is a potential parent for that node, depending on its tree
level, which must be one less than the level reported by
the new node. Each potential parent responds with an
MSG PARENT ACK indicating its IP address and its
number of children. The new node can then select its
parent using one of two policies:

– Load Balancing: This policy tries to equalize the
number of children, thus balancing the tree. In this
policy, the new node chooses as a parent the node
with the fewest children; if many nodes are tied, one
is chosen randomly.

– Delay Minimization: This policy tries to reduce
the delay in answering queries, by minimizing the
Round-Trip Time (RTT) between nodes. In this pol-
icy, the new node measures the RTT between sending
and receiving the parent response, and chooses as a
parent the node with the lowest RTT.

Finally, the new node sends an MSG PARENT CHILD
message to its chosen parent to inform it of its decision.

• Advertisement messages: When a node joins the tree, it
starts advertising the data it has available to its parent
node, by sending its BF-Catalog to its parent via an
MSG ADVERTISEMENT message, which is acknowl-
edged by an MSG ADVERTISEMENT ACK message.
The parent updates its FIB by using the BF-Catalog of its
child, and updates its own BF-catalog; if it has changed,
then its also notifies its parent. Whenever a new leaf
node joins the tree, it passes its BF-Catalog to its parent,
which leads to recursively updating all FIBs up to the
root. Advertisements should be repeated periodically to
allow the detection of removed nodes.

D. Queries and Responses

The queries and responses are encoded into Interest and
Data messages that are routed from the root towards the
appropriate leaf nodes and vice versa, using the routing state
presented above. Specifically, we have two types of messages:

• Interest messages: Whenever a query for information
is made, expressed as a BF, the root node generates
a nonce (a random number or a sequence number) to
identify the request and sets a timeout value for the
responses matching that nonce. Then, it adds the nonce
and the requested BF to an MSG INTEREST message
and propagates it towards all of its children whose BF is
a superset of the query’s BF, using the BF and IP address
of each child in its FIB. The same procedure is repeated
by each internal node, until we reach the leaves.

• Data messages: When an Interest reaches a leaf, its BF is
checked against the BF-Keyword of each of its data items,
and any matching data items (that is, those whose BF-
Keyword is a superset of the Interest’s BF) are returned as
MSG DATA messages. These messages contain the data
item, its BF-Keyword and the nonce from the Interest,
and are sent to the leaf’s parent node. Each interior node
simply propagates these messages unchanged towards the
root. The root adds all the Data messages received to
a list for the nonce contained in the message, until the
nonce’s timeout expires. At this point, matching messages
are passed to the querier.

Simply put, each query generates an Interest message which is
duplicated where appropriate so as to explore the tree, and a set
of Data messages to be returned to the root. Since we cannot
know in advance how many Data messages we will receive in



4 PUBLISHED IN: PROCEEDINGS OF THE ACM/IEEE HOTWOT 2019

response to an Interest,1 our implementation uses a timer to
determine for how long we will wait for responses. This allows
having many Interests pending at the same time, possibly
matching the same data items, therefore our implementation
uses the nonce to match each response with the appropriate
query.

We note that as routing state is aggregated towards the
root, the probability for false matches between the BF in an
Interest and a BF in the FIB increases for two reasons: first,
false positives may appear, since when too many keywords are
inserted into a BF it may match keywords never entered into
it; second, nodes higher up in the hierarchy naturally match a
wider range of queries. For example, in a building with two
floors, temperature sensors only in the first floor and humidity
sensors only in the second floor, the BF-Catalog of a node
connected to both first and second floor sensors and passed
to its parent will include the keywords {temperature,
humidity, floor1, floor2}, since its children actu-
ally do contain all these keywords. As a result, a query for
{temperature, floor2} will be received by that node,
as it matches the FIB entry of its parent, but will not be
forwarded further downstream, as it does not match the BFs
of any one of its children. Both types of false positives lead to
redundant Interest messages being propagated, thus creating a
small overhead.

E. Code structure and limitations

The Java implementation of KIOT consists of two basic
modules: the KIOT module, which executes at all network
nodes and IoT devices, and the Guest module, which repre-
sents an application issuing queries or a gateway to an NDN
network; the Guest is attached to the root node of the KIOT
network. The KIOT module configures itself, finds its position
in the network, sets up its routing tables and then handles
Interest and Data messages. Only the Guest and the leaf nodes
are aware of the actual keywords used, since they need to
encode them into BFs; the root and all internal nodes only
deal with BFs. The KIOT module currently consists of 1500
lines of code (excluding comments), while the Guest module
consists of 650 lines of code (also excluding comments), which
are partially shared with the KIOT module. In addition to
being highly configurable (e.g., on the size of the Bloom filters
used), the code is modular in order to allow extensions, as the
currently in progress code execution module.

In order to test large numbers of KIOT nodes without
actual hardware, we have built an emulation environment using
Mininet2. A set of Python scipts allow setting up a network
topology with appropriate keywords describing each leaf node,
as well as instantiating the network and executing queries on
it, gathering up the results produced and various statistics.

In our current implementation, each leaf can only hold a
single data item (e.g., sensor) and interior nodes do not hold
any data items; these limitations will be removed, since many
IoT devices host multiple sensors and can be used both for

1This would require tracking all available IoT devices, which is impractical
in large networks.

2http://mininet.org/

sensing and data transport. In addition, FIB entries do not time
out, which means that dead children nodes are not detected; we
will eventually make all FIB entries timeout, requiring periodic
advertisements to refresh them, thus ensuring that stale state
is removed. Since advertisements are acknowledged, this will
also allow nodes to detect that their parent is dead, which
can be solved by sending new parent messages. Finally, the
timeouts set for queries in order to wait for responses are
set statically, ignoring the status of the network; in the future
we will introduce adaptive timeouts based on the TCP RTT
estimation algorithm.

IV. EVALUATION

For our initial evaluation of KIOT, we emulated a campus
monitoring system using Mininet to create multiple nodes
running our implementation. In this system, different types
of sensors are spread around buildings. We defined four
categories of tags to characterize each sensor: building
(troias, evelpidon, patision), wing (north,
east, south, west), floor (floor0, floor1,
floor2, floor3) and sensor (light, temperature,
humidity). Each leaf node contained a sensor that was
tagged with a random combination of these four categories,
e.g., {old, north, floor1, temperature}. We
then created a tree by adding to the leaf nodes a root and one
or more intermediate levels, and let the system self-organize
into a tree: each node selected its parent using the load
balancing strategy (see Section III) and the KIOT routing
tables were created. Note that the allocation of nodes in
space was random, that is, nodes were not grouped in space
following their geographic tags (e.g., building, wing and
floor).

Our goal was to compare the number of Interest messages
sent with KIOT, where Interests are only forwarded by a
node to its children matching the BF in the query, against
broadcasting an Interest from the root towards all leaves. The
rationale for broadcasting is that in a large deployment it is
impractical to track all IoT devices; even if we do track the
devices, contacting them via unicast requires also tracking the
current state of the network, since the topology changes as new
nodes are added and old nodes fail. As a result, only broadcast
is guaranteed to reach the matching leaves (by, of course,
reaching all leaves). We did not count the Data messages
returned, as these are exactly the same for both schemes: each
sensor matching a query will return its Data in unicast mode
towards the root, that is, regardless of how many Interests were
sent, if n nodes match the query, then n unicast messages will
be returned to the root.

For the first experiment, we used a 3-level tree, with a root,
3 intermediate nodes and 9 leaf nodes (average degree of 3).
In each repetition of the experiment, we sent 10 queries from
the root, with each query containing 1 to 3 tags from different
categories (for example, {troias, temperature} would
gather all temperature readings from the Troias building).
Each query returned 1 to 4 different results, depending on
the sensors matching the tags in the query, for a total of 21
results across all 10 queries. We repeated the experiment 10



PUBLISHED IN: PROCEEDINGS OF THE ACM/IEEE HOTWOT 2019 5

Fig. 1. Interest messages sent with Broadcast and KIOT in a 3-level tree.

Fig. 2. Interest messages sent with Broadcast and KIOT in a 4-level tree.

times, using in each run the same leaf nodes and the same
queries, but letting the tree self-organize in a different way
each time. Figure 1 shows the number of Interests sent in each
repetition of this experiment. With broadcast, each Interest
must be propagated from the root over all links in the three,
therefore we need 12 messages per query and 120 messages
per experiment, regardless of the tree (an n-node tree will
always have n−1 links). With KIOT we only forward Interests
based on matching BFs, therefore the exact number of Interests
also depends on how the leafs are organized in each run. The
average number of Interests was 41.8 for the 10 queries, or
4.18 per query, on average.

For the second experiment, we used a 4-level tree, again
with an average degree of 3 (root, 3 level 2 nodes, 9 level 3
nodes and 27 leaf nodes). We again sent 10 random queries per
experiment, this time with 2 to 4 tags from different categories.
Each query returned 1 to 3 different results for a total of 16
results across all 10 queries. Figure 2 shows the number of
Interests sent in each repetition of this experiment. With the
4-level tree, we have 39 links, therefore with broadcast we
need 39 messages per query and 390 messages per experiment.
With KIOT, the average number of Interests was 84 for the
10 queries, or 8.4 per query, on average.

It should be clear that KIOT offers large savings compared
to broadcast during the query propagation stage, since in the
3-level treee we need less than 35% of the messages sent
with broadcast, while for the 4-level tree we need less than
22% of the messages sent with broadcast. In a more realistic

network, with nodes placed in space based on their geographic
tags, KIOT would be even more beneficial, as queries would
be sent to smaller parts of the tree. In general, the gains grow
with larger trees and more specific queries, that is, when KIOT
only needs to propagate Interests to small subsets of a tree.
Regarding other costs, setting up the routing tables requires
two messages per link (equal to two broadcast queries), paid
once when the system comes up; whenever a leaf is added,
removed or modified, we need 2 messages per affected link,
possibly up to the root, that is, up to 4 messages for a 3-level
tree and up to 6 messages for a 4-level tree.

V. CONCLUSION AND FUTURE WORK

We have presented an implementation of a keyword-based
scheme for gathering information from IoT systems (KIOT)
that uses ICN principles, enabling a WoT layer to be created
from simpler IoT devices. KIOT uses a highly flexible scheme
for describing arbitrary sets of data which allows powerful
applications to be built in a very natural manner, without
customizing the network for each potential application or
requiring complex network configuration. We explained how
our general design was mapped to an actual implementation
that can auto-configure itself over an arbitrary network with
unknown IoT devices. Our implementation is simple and has
a very small footprint, but it is constantly being extended with
additional features for robustness and flexibility.

Our current work focuses on testing our implementation
in a large scale using more realistic networks emulated with
Mininet, so as to measure its performance and fine tune its
policies and parameters; issues we are working on is balancing
the tree, minimizing response times, adapting the timeout
values to balance responsiveness and completeness of results,
allowing nodes to operate both as data sources and as network
relays and repairing the tree and routing tables as nodes join
and leave the network.

Our future work will add function execution in the network;
we have already implemented a small set of functions to be
executed at the root (e.g., SUM, AVERAGE, etc.), but we
plan to allow arbitrary function execution at any capable node
in the network, following ideas in [8] for function placement.
Further work will focus on selecting function execution points
by jointly taking into account the costs for moving the function
code and the data items to the same node for processing.

ACKNOWLEDGMENTS

This research was supported by the RC-AUEB funded
Original Scientific Publications project under contract ER-
3013-01.

REFERENCES

[1] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopou-
los, X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A survey of
information-centric networking research,” IEEE Communications Surveys
& Tutorials, vol. 16, no. 2, pp. 1024–1049, Second 2014.

[2] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, and R. Bray-
nard, “Networking named content,” in Proc. of the ACM International
Conference on Emerging Networking Experiments and Technologies
(CoNext), 2009, pp. 1–12.



6 PUBLISHED IN: PROCEEDINGS OF THE ACM/IEEE HOTWOT 2019

[3] O. Ascigil, S. R. né, G. Xylomenos, I. Psaras, and G. Pavlou, “A
keyword-based ICN-IoT platform,” in Proc. of the ACM Conference on
Information-Centric Networking (ICN), 2017, pp. 22–28.

[4] G. Xylomenos, G. Pavlou, I. Psaras, and I. Karakonstantis, “Named
functions at the edge,” in Proc. of the IEEE International Symposium
on Computers and Communication (ISCC), 2019.

[5] M. Amadeo, C. Campolo, and . Molinaro, “Multi-source data retrieval
in IoT via named data networking,” in Proc. of the ACM Conference on
Information-Centric Networking (ICN), 2014, pp. 67–76.

[6] M. Papalini, A. Carzaniga, K. Khazaei, and A. Wolf, “Scalable routing
for tag-based information-centric networking,” in Proc. of the ACM
Conference on Information-Centric Networking (ICN), 2014, pp. 17–26.

[7] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice
of Bloom filters for distributed systems,” IEEE Communications Surveys
Tutorials, vol. 14, no. 1, pp. 131–155, First 2012.

[8] M. Król and I. Psaras, “NFaaS: Named function as a service,” in Proc.
of the ACM Conference on Information-Centric Networking (ICN), 2017,
pp. 134–144.


