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Abstract

We present and experimentally evaluate procedures for efficient IoT data collection while achieving

target requirements in terms of data accuracy, response time, energy, and privacy protection. Different

strategies are considered because different IoT applications can have different requirements. Specifically,

the accuracy-driven strategy adjusts the time period between consecutive measurements following an

additive increase and multiplicative decrease (AIMD) scheme based on a target data accuracy, while the

time-driven strategy adjusts the time period between measurement requests to achieve delay less than

a given maximum delay between consecutive measurements. The energy-driven strategy considers both

the data accuracy and the energy costs for the corresponding measurements. Finally, the privacy-driven

strategy adds noise to measurements using differential privacy techniques. The experimental evaluation

involves real temperature, humidity, and ozone (O3) measurements obtained from three testbeds through

the FIESTA-IoT platform. Our results show that the AIMD adaptation of the measurement period is

robust to different types of measurements from different testbeds, without having any tuning parameters.

Also, the experimental results show the tradeoffs between the target data accuracy and the number of

measurements and between the target data accuracy and the corresponding energy costs. For the privacy-

driven strategy, the results show that the addition of noise to the sensor measurements using differential

privacy has a negligible effect on the aggregate statistics.
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I. INTRODUCTION

The Internet of Things (IoT) will involve a huge number of sensors. Periodically collecting

data from all IoT sensors wastes a significant amount of communication and storage resources,

in addition to a significant amount of energy, which impedes the scalability of IoT systems.
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Moreover, the collected data, or even correlating the collected measurements, may reveal sen-

sitive information related to end-user activities. Naive approaches to (big) IoT data collection

- reflecting the “first collect everything then (try to) analyse everything” paradigm - can also

impede the integration of the IoT and Cloud systems and of the IoT and big data analysis,

since the immense amount of data has implications on the amount of network resources and the

amount of computation resources that are required.

Different IoT applications have different requirements in terms of accuracy, latency, and energy

consumption. For example, an environmental monitoring application can require monitoring of

real world phenomena with some degree of accuracy, while being tolerant to delays in receiving

data updates from the IoT sensors. On the other hand, time-critical applications, such as security

and critical infrastructure management that involve both monitoring and actuation, can have strict

requirements in terms of the delay for IoT sensor nodes to transmit their data to the applications.

Finally, different IoT sensors can have different constraints in terms of battery consumption hence

applications can require a different balance between data accuracy or timeliness and energy

consumption. Motivated by the above, the goal of our work in this paper is to develop and

experiment with procedures for efficiently collecting IoT data while achieving target application

requirements in terms of data accuracy, timeliness, energy efficiency, and privacy protection.

One approach to reduce the amount of IoT data collected is to perform filtering or aggregation

at the sensors or at the edge of the IoT network close to the sensors. However, this might not

always be possible since sensors typically have limited processing and storage resources, and

implementing application policies at edge devices (e.g. gateways) close to the sensors is not

always possible. This is the case with federated IoT systems, such as the platform developed by

the EU-funded Horizon 2020 FIESTA-IoT project1, where the sensors and their access networks

have a different administration than the measurement platform with which applications interact

to request and receive measurements. For the above reasons, in this paper we focus on data

collection procedures that are implemented solely at the receiver-side, i.e. at the applications

requesting IoT data.

In summary, the contributions of the paper are the following:

• We define procedures for efficient data collection that satisfy target requirements in terms

of data accuracy, time, energy, and privacy protection. The data accuracy-driven procedure

1FIESTA-IoT: Federated Interoperable Semantic IoT Testbeds and Applications, http://fiesta-iot.eu/
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adapts the period between measurements using an additive increase and multiplicative

decrease (AIMD) scheme and has no tuning parameters. The time-driven strategy tries to

ensure the timeliness of the last measurement received. The energy-driven strategy jointly

considers the data accuracy and the energy costs. Finally, the privacy-driven procedure is

based on differential privacy techniques.

• We evaluate the procedures with experiments involving real temperature, humidity, and

ozone (O3) measurements, that are obtained from three testbeds over the FIESTA-IoT

platform, which provides uniform access to IoT data from heterogeneous testbeds.

An important feature of the proposed AIMD scheme for adjusting the interval between consecu-

tive measurements in the data accuracy-driven policy is that it does not have tuning parameters,

as other model-based approaches in the literature, which we review in Section IV. Despite not

having tuning parameters, our experimental evaluation shows that the AIMD scheme is very

robust to measurements for different phenomena and from different testbeds.

The remainder of the paper is structured as follows: In Section II we present the overall

architecture of our measurement framework, and describe the four data collections strategies

that it supports. In Section III we present and discuss our experimental results. In Section IV

we present a summary of related work, identifying how the work in this paper differs. Finally,

in Section V we conclude the paper indicating directions of ongoing and future research.

II. IOT DATA COLLECTION STRATEGIES

Our data collection framework, which we will refer to as BeSmart, implements the following

four strategies:

• Data accuracy-driven: This strategy considers the tradeoff between the data accuracy and

the frequency of measurement requests. Specifically, the frequency of measurement requests

is adapted (temporal adaptation) while maintaining a target data accuracy. This strategy can

be extended when there are many IoT sensors located in the same geographic area: the

collector can exploit the spatial correlation of sensor measurements to adapt the subset of

the sensors from which measurements are requested (spatial adaptation).

• Time-driven: This strategy tries to ensure that the elapsed time since the timestamp of

the last measurement is below some maximum delay; this elapsed time corresponds to the

timeliness of data measurements. For the data collector to select the appropriate time to

request measurements in order to ensure the maximum elapsed time target, the delay from
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the time a request is sent by the collector until the time the response (measurement) is

received must be considered; the latter delay can involve the network delay, the delay of

the IoT measurement middleware, and the delay at the particular IoT testbed where the

sensor providing the data measurements is located.

• Energy-driven: This strategy seeks to maximize the net benefit, which is the gain for a

given data accuracy or timeliness minus the corresponding power consumption. The gain

for a specific data accuracy or timeliness can be expressed using a utility function, while

the power consumption depends on the frequency of measurements.

• Privacy-driven: This strategy targets to preserve end-user privacy by altering the accuracy of

the individually retrieved results, without significantly altering their statistics. In particular,

this strategy will (a) try to minimize the amount of times a specific sensor is requested for

data (using also approaches developed for the data-driven and time-driven strategies), and

(b) add “noise” to the retrieved results using differential privacy techniques.

The above strategies are implemented solely at the receiver-side, i.e. at the data collector (see

Figure 1). This is the only option possible if the sensors cannot implement specific collection

strategies, as is the case with the FIESTA-IoT platform which we consider in our experiments.

Another advantage of the receiver-driven approach is that because sensor nodes typically have

small processing and storage capabilities, the range of strategies they can implement can be

limited. Unlike sensor nodes, the data collector typically has significantly more processing

capabilities.

The architecture of our BeSmart framework is shown in Figure 1. The strategy layer, which

implements the aforementioned four strategies, determines the time period at which measure-

ments are requested from the FIESTA-IoT platform. The FIESTA-IoT platform manages IoT

data from heterogeneous systems and environments and their entity resources (such as smart

devices, sensors, and actuators), and was developed by the EU-funded Federated Interoperable

Semantic IoT/cloud Testbeds and Applications project. FIESTA-IoT enables experimenters to

use a single Application Program Interface (API) for executing experiments over multiple IoT

testbeds that are federated in a testbed agnostic way.

Next, we discuss in more detail the four strategies implemented in our framework: data

accuracy-driven, time-driven, energy-driven, and privacy-driven data collection. These strategies

will be evaluated with measurements obtained from the FIESTA-IoT platform in Section III.
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Fig. 1. BeSmart data collection architecture. The strategy layer determines the frequency of queries to the FIESTA-IoT platform.

A. Accuracy-driven data collection

The motivation for the accuracy-driven data collection strategy is that many applications

require a particular data accuracy, and providing a higher accuracy offers no benefits. Hence,

the goal of this strategy is not to select the period between measurement requests such that

the time series of data measurements have the smallest deviation from the actual sensor values,

which indeed can be the period at which the IoT sensor obtains measurements for a particular

phenomena. Rather, the strategy seeks to reduce the frequency of the measurements, hence reduce

the amount of resources (processing, communication, and storage) necessary for data collection,

while achieving a target data accuracy.

The data accuracy-driven strategy, more specifically, seeks to achieve an accuracy such that

the last measurement obtained differs from the current sensor value by at most a target accuracy;

this target accuracy can be expressed as a simple percentage, e.g. the last measurement differs

from the current sensor value by at most 10%. Of course, only an Oracle with knowledge of all

the future sensor values can achieve the above goal 100% of the time. Figure 2 illustrates when

measurements are requested by the Oracle, which has full knowledge of all future measurement

values. A target data accuracy defines an accuracy interval corresponding to the last measurement

that was obtained. A new measurement is requested whenever the current sensor value is outside

the accuracy interval of the last measurement. Observe from Figure 2 that measurements are
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requested more frequently, i.e. the period between consecutive measurement requests is smaller,

when the measured values change at a higher rate. We will use the Oracle as a benchmark to

compare the performance of the proposed adaptation procedure that we describe next.
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Fig. 2. Given a data accuracy target, which defines an accuracy interval, the goal is to request measurements such that at any

time the current sensor value (continuous line in figure) falls within the accuracy interval of the last measurement. Only an

Oracle can achieve this 100% of the time. The proposed procedure in Algorithm 1 tries to approximate this behavior.

Since the value of future measurements is not known, the Oracle cannot be applied in practice.

Instead, we propose a procedure to adapt the time period between consecutive measurement

requests based on the last measurement and the measurement when the period was last adapted,

whose pseudocode is shown in Algorithm 1. Initially, the time period between measurement

requests is equal to some small value, which can be the interval in which the sensor produces

(or obtains) its measurements, that we will refer to as unit interval (line 9 in Algorithm 1). The

time period T between consecutive measurements is increased by one unit interval (line 15),

i.e. it increases linearly, if the current measurement is inside the accuracy interval based on

the measured value when the interval T was last adapted (checked in line 15). If the current

measurement is outside this accuracy interval, then T is reduced to half its value (line 17), i.e.

it decreases multiplicatively.

The above additive increase and multiplicative decrease (AIMD) procedure resembles the

AIMD adaptation of TCP’s congestion window. However, the AIMD procedure is used to adapt

a very different quantity: in TCP the AIMD procedure adapts the number of segments that can be

sent without having received an acknowledgement. In our proposal the procedure adapts the time

period between consecutive measurement requests. Moreover, the motivation for the additive
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Algorithm 1 Procedure for adapting the time period between measurement requests
1: Variables:

2: T : period between consecutive measurement requests

3: i: measurement request number

4: k: measurement request number when period was last modified

5: Mi: measured value returned for request i

6: A← q: target accuracy, e.g. q = 0.1 for 10% accuracy

7: Algorithm:

8: i← 1 and request first measurement M1

9: T ← 1

10: k ← 1

11: loop

12: Wait until time T has elapsed since last measurement request

13: i← i+ 1 and request new measurement Mi

14: if Mi ∈ [(1−A) ·Mk, (1 +A) ·Mk] then

15: T ← T + 1

16: else

17: T ← T/2

18: k ← i

19: end if

20: end loop

increase is that the procedure slowly tests larger periods between consecutive measurements,

while the reduction to half is conservative to avoid requesting measurements too far apart, hence

having measurements that deviate from the actual sensor values. A key feature of the proposed

AIMD adaptation of the measurement period is that it is not based on some data model and

involves no tuning parameters.

B. Time-driven data collection

The time-driven data collection strategy tries to ensure that the time a new measurement is

received minus the timestamp of the last measurement is below some maximum delay. This

elapsed time corresponds to the timeliness (or freshness) of data measurements. If there was no

response delay from the time a measurement request is sent to the IoT measurement platform and

the time that the response to the request containing the measurement is received, then it would
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be sufficient to send measurement requests with a period equal to the target maximum delay.

In reality, if the time-driven strategy seeks to achieve a maximum delay T from the timestamp

of the last measurement, then the next measurement request should be sent earlier than T by

an amount that depends on the average and the distribution of the IoT measurement platform

response times. This will be experimentally investigated in Section III.

C. Energy-driven data collection

The energy-driven strategy seeks to maximize the net bene?t, which is taken to be the difference

between the utility that is achieved for some data accuracy minus the power consumption for

the corresponding measurements that are necessary to achieve that data accuracy. The utility for

a speci?c accuracy depends on the application requirements. Typically, applications can require

a specific target data accuracy, and providing a higher accuracy offers no benefits. This results

in the utility curve for accuracy higher than the specific target data accuracy being flat, as we

discuss in Section III-C.

D. Privacy-driven data collection

This strategy targets to preserve end-user privacy by altering the accuracy of individual

measurements but at the same time achieving “adequate accuracy” in the accumulated results.

This is achieved by adding “noise” to the retrieved results using differential privacy [1].

The goal of differential privacy is to allow the extraction of statistics for a population of users

without revealing any information about particular individuals. This is achieved with the addition

of some “noise” to the statistics extraction process. The type and amount of noise added is such

that the contribution of a single individual to the calculated statistics is not “significant.” Hence,

differential privacy guarantees that the output of the statistics calculation process is only slightly

impacted by the contributions of a single individual. However, extracting information about a

group of users in a privacy preserving way provides only partial security: a provider should still

be trusted to collect and maintain user-provided sensitive information. This is not necessary if

noise is added at the source during the data collection phase and not during the data processing

phase. A trivial approach for implementing this functionality is the so-called “survey based on

random responses” [2]. In a nutshell, with this approach, if a user is asked a question that can be

answered with a “Yes” or “No,” (for example, “Is your access network congested?”), then she

flips a fair coin, in secret, and answers the truth if it comes up tails. Otherwise she flips another
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coin in secret and answers “Yes” if it comes up tails or “No” otherwise. This approach allows

users to retain very strong deniability, while at the same time the real ratio of “Yes” answers

can be accurately estimated using 2 · (Y − 0.25), where Y is the portion of “Yes” responses.

For our privacy-driven strategy we use the RAPPOR protocol. The RAPPOR protocol [3] is an

extension of the random responses approach, developed by Google and used in Google Chrome

for collecting user statistics. This protocol extends the random response approach as follows:

(i) it enables questions that can be asnwered with multiple responses, and (ii) it protects user

privacy even if the same question is asked many times. The RAPPOR data collection process

is extremely lightweight, hence it can be implemented even in constrained devices. The basic

idea behind RAPPOR is that whenever a user is asked a question, she is provided with a set

of possible responses. For each possible response the user plays a variation of the “random

response” game. Eventually the user responds with a bit vector of size equal to the responses’

set: a bit in the vector set to 1 means that the corresponding response is selected by the user

as one of the answers to the question. Due to the randomness of the response process, a user

may select multiple responses or none of the responses. Furthermore, a selected response may

or may not correspond to the user’s real answer.

The RAPPOR protocol requires an adequate number of responses in order to provide accurate

results. In the context of our work, RAPPOR would require multiple sensor measurements to

achieve average value calculation close to the “real” one. For this reason, RAPPOR is not ideal

when high accuracy is required and there is a small number of sensor measurements (e.g.,

measuring the temperature of a single room using two temperature sensors). On the other hand,

RAPPOR is tuneable and considers an accuracy/privacy trade-off. In particular, whereas in the

simple random response game, a user flips a fair coin, in secret, and answers the truth if it

comes up tails, using RAPPOR, bias can be added to this coin, hence the probability that a user

answers the truth can be increased (better accuracy, less privacy) or decreased (better privacy,

less accuracy).

Moreover, and as we discuss in the following section, the effectiveness of RAPPOR is affected

by the number of possible answers a user can give to a question. So, in that case, it is up to the

solution designer to decide the desired level of accuracy. For example, in this paper we want

to measure the average temperature of an area. In order to minimize possible responses, we

rounded sensor measurements to the closest integer, since each decimal digit increases 10 times

the number of possible answers.
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III. EXPERIMENTS

In this section we present experiments for the data accuracy-driven and the privacy-driven

data collection strategies. Our experiments consider measurements of different data types (phe-

nomena), namely temperature, humidity, and ozone (O3) concentration, and three testbeds:

SmartSantander, FINE, and Tera4Agri testbeds, whose measurements are obtained through the

FIESTA-IoT platform. The SmartSantander testbed is a large-scale smart city deployment located

in Santander, northern Spain. The FINE testbed is located in the city of Heraklion on the island

of Crete, Greece. The Tera4Agri testbed is located on a farm in the Apulia region, Italy.

A. Accuracy-driven data collection

Figure 3 shows the temperature measurements for the Oracle, which has knowledge of the

future temperature values, and the AIMD adaptation procedure, for two data accuracy targets:

10% and 20%. The Oracle requests measurements based on the knowledge of future temperature

values as discussed in Section II-A and shown in Figure 2. At time periods where the graph

for the Oracle and the AIMD adaptation procedure is horizontal, measurements are requested

only at the beginning of the corresponding period. Hence, measurements are requested when

the graph increases or decreases. Observe in Figure 3 that the measurements for the Oracle,

compared to those for the AIMD adaptive scheme, are farther from the actual sensor values

but still within the target accuracy interval; this is expected since the Oracle tries to reduce the

number of measurements while allowing the maximum deviation of the measurements from the

actual sensor values to be equal to the target data accuracy. Comparing Figure 3(a), which was

obtained for target data accuracy 10%, with Figure 3(b), which was obtained for target data

accuracy 20%, we observe that a larger data accuracy results in fewer measurements for both

the Oracle and the AIMD adaptation procedure.

Figure 4(a) shows that the AIMD adaptation procedure can follow the varying trend of the

temperature quite well, even though the values of the temperature exhibit periodicity and non-

stationarity. Figure 4(b) shows the adaptation of the measurement period of the AIMD procedure,

illustrating its additive increase and multiplicative decrease behavior. Finally, Figure 4(c) shows

that the magnitude of the deviations for the AIMD procedure, i.e. the relative difference of the

measured values compared to the sensor value when the measured values are outside the target

accuracy, is typically less than 10%.
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(b) Accuracy target=20%

Fig. 3. Measurements with the Oracle and the AIMD adaptation procedure for two target accuracies: 10% and 20%. Comparison

of the two graphs illustrates the tradeoff between the target data accuracy and the number of measurements.

Table I quantifies the gains in terms of the reduced number of measurements of the Oracle

and the AIMD adaptation procedure, for a 96 hour time window that includes a total of 1147

temperature values with an interval of approximately 5 minutes between consecutive values.

Both the Oracle and the AIMD adaptation procedure reduce the number of measurements by

over 90%, i.e. more than 90% of the measurements produced by the sensor did not need to

be collected, while still maintaining the target data accuracy. In particular, for 10% target data

accuracy, with the AIMD measurement period adaptation procedure only 86 out of the total 1147

temperature values are requested (7.5%), which is very close to the number of measurements

requested with the Oracle, which is 68 (5.9%). Moreover, the gains increase when the target
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TABLE I

TEMPERATURE, SMARTSANTANDER, 96 HOUR TIME WINDOW, TOTAL # OF SENSOR VALUES: 1147

Target Oracle AIMD adaptation

accuracy

10% measurements: 68 (5.9%) measurements: 86 (7.5%)

deviations: 56 (4.9%)

20% measurements: 9 (0.8%) measurements: 48 (4.2%)

deviations: 2 (0.05%)

data accuracy increases from 10% to 20%, i.e. the data accuracy becomes less stringent. The

percentage of measurements which are outside the target data accuracy interval for the AIMD

adaptation procedure is 4.9% and 0.05% of the total number of sensor values (1147), for a target

data accuracy 10% and 20%, respectively; this means that, for a 10% target data accuracy, only

56 out of the 1147 temperature values (4.9%) were outside the 10% accuracy interval of the last

measured value. For a 20% target data accuracy, only 2 out of the 1147 (0.05%) temperature

values were outside the 20% accuracy interval. On the other hand, since it has knowledge of

future temperature values, which of course in practice is not possible, the Oracle can request

measurements such that they all differ from the actual sensor values by at most the target data

accuracy.

Next we consider measurements for the same metric, temperature, obtained from the FINE and

Tera4Agri testbeds. Table II quantifies the gains in terms of the reduced number of measurement

requests for temperature measurements obtained from the second testbed, FINE, whose temper-

ature sensors provided measurements every 10 minutes. Compared to the results in Table I, the

number of measurements for both the Oracle and AIMD adaptation procedures is higher, but the

gains are still significant: the AIMD procedure achieves over 80% reduction of the total number

of measurements for a 10% target data accuracy, with only 5% deviations. The gains in terms

of the reduced number of measurements are in terms of the highest rate at which the sensor

produces measurements, which is different for different testbeds. Table III quantifies the gains for

temperature measurements obtained from the third testbed, Tera4Agri, whose temperature sensors

provided measurements every 17 minutes. Table III shows that the number of measurements

for both the Oracle and AIMD adaptation procedures is higher than both the SmartSantander

and FINE testbeds. This occurs because in the Tera4Agri testbed sensors provide temperature
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TABLE II

TEMPERATURE, FINE, 96 HOUR TIME WINDOW, TOTAL # OF SENSOR VALUES: 628

Target Oracle AIMD adaptation

accuracy

10% measurements: 48 (7.6%) measurements: 109 (17.4%)

deviations: 32 (5.1%)

20% measurements: 22 (3.5%) measurements: 66 (10.5%)

deviations: 29 (4.6%)

TABLE III

TEMPERATURE, TERA4AGRI, 144 HOUR TIME WINDOW, TOTAL # OF SENSOR VALUES: 500

Target Oracle AIMD adaptation

accuracy

10% measurements: 110 (22%) measurements: 178 (35.6%)

deviations: 74 (14.8%)

20% measurements: 75 (15%) measurements: 137 (27.4%)

deviations: 61 (12.2%)

measurements every 17 minutes, compared to approximately 10 minutes for the FINE testbed

and 5 minutes for the SmartSantander testbed. A larger interval between consecutive sensor

measurements results in the temperature values of consecutive measurements differing more.

The larger interval between sensor measurements for the Tera4Agri testbed (17 minutes) was

also the reason we considered a larger 144 hour time window in Table III.

Table IV quantifies the gains in terms of the reduced number of humidity measurements.

The AIMD procedure again achieves significant gains by reducing the number of measurements

requested by more than 85%, compared to the case where all measurements produced by the

sensor are requested. The results in Table IV also illustrate the tradeoff between data accuracy

and number of measurements, for both the Oracle and the AIMD adaptive procedure. Observe

that the difference in performance of the Oracle and the AIMD procedure is larger for the

humidity measurements than for the temperature measurements, as can be seen in Table I; this

is because the humidity changes more abruptly compared to the temperature for the time window

in which the experiments were performed. A similar dependence, but due to the interval where

sensors in different testbeds provided measurements, was observed above for the temperature.
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TABLE IV

HUMIDITY, SMARTSANTANDER, 96 HOUR TIME WINDOW, TOTAL # OF SENSOR VALUES: 977

Target Oracle AIMD adaptation

accuracy

10% measurements: 34 (3.5%) measurements: 134 (13.7%)

deviations: 51 (5.2%)

20% measurements: 11 (1.1%) measurements: 56 (5.7%)

deviations: 52 (5.3%)

TABLE V

O3, SMARTSANTANDER, 96 HOUR TIME WINDOW, TOTAL # OF SENSOR VALUES: 1063

Target Oracle AIMD adaptation

accuracy

10% measurements: 30 (2.8%) measurements: 82 (7.7%)

deviations: 53 (5%)

20% measurements: 8 (0.8%) measurements: 49 (4.6%)

deviations: 12 (1.1%)

Table V quantifies the gains for ozone (O3) concentration measurements. This table shows that

the reduction of the number of measurements achieved with the proposed AIMD procedure is

significant: over 92% reduction of the measurements requested by the sensor for 10% accuracy

and over 95% for 20% accuracy.

B. Time-driven data collection

The time-driven strategy tries to ensure that the elapsed time since the timestamp of the

last measurement is below some maximum delay, which corresponds to the timeliness of data

measurements. To achieve this maximum delay target, the time a new measurement is requested

depends on the delay from the time a measurement request is sent to the FIESTA-IoT platform

and the time that the response to the request is received. A sample of this response time is

shown in Figure 5(a), while the corresponding cumulative distribution function (CDF) is shown

in Figure 5(b). Although the average FIESTA-IoT response time is small, approximately equal to

0.47 seconds, the response time can result in values which are above 5 seconds; such values may

impact time-critical applications, which motivate the importance of a time-driven data collection
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TABLE VI

NUMBER OF MEASUREMENTS EXCEEDING TARGET DELAY (T = 8 S) AND AVERAGE INTERVAL OF MEASUREMENT

REQUESTS FOR DELAY-DRIVEN STRATEGY

D Delay violations Average measurement interval (s)

Avg + 0.25 · StdDev 107 (12.7%) 7.43

Avg + 0.5 · StdDev 57 (6.8%) 7.33

Avg + 1.0 · StdDev 43 (5.1%) 7.12

Avg + 1.5 · StdDev 29 (3.5%) 6.91

Avg + 2.0 · StdDev 23 (2.7%) 6.70

strategy. The delay values did not follow a known distribution, and for this reason below we

perform a measurement-based investigation for the tradeoff between the number of measurements

obtained with a specific measurement interval and the percentage of measurements that exceed

the maximum target delay.

To achieve a target delay T from the timestamp of the last measurement until the time the

next measurement is received, the request for the next measurement should be sent after time T

minus some amount D that depends on the average and distribution of the FIESTA-IoT platform

response times. However, due to the variability of the response times, we cannot ensure that all

measurements are received with the target delay. Table VI shows the number of measurements

that are received with a delay above the maximum target delay for different functions of D,

namely D = Avg + a · StdDev for a = 0.25, 0.5, 1, 1.5, and 2; where Avg and StdDev is

the average and standard deviation of the delay measurements, respectively. The results were

obtained with the delay measurements for the 3.5 hour window shown in Figure 5, which

included a total of 840 delay values. The delay D is estimated using all delay values prior to a

particular measurement. As expected, the second column in Table VI shows that if measurements

are requested earlier, i.e. the value of a is higher, then the number of measurements that are

received in violation of the target delay are fewer.

According to the above time-driven data strategy, the time interval of measurement requests

can be adapted, based on the estimate of D. Figure 6 shows the interval of measurement requests,

for a target delay of 8 seconds and D = Avg + 1.5 · StdDev. The figure shows that the time

interval of measurement requests converges after a few hundred measurement requests.

The third column in Table VI shows the average interval of measurement requests for different
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estimations of D, when the target delay is 8 seconds. Comparison of the second and third columns

in Table VI quantifies the tradeoff between the number of measurements that exceed the target

delay and the interval of consecutive measurement requests, which determines the total number

of measurements inside a time window and the corresponding energy consumption: requesting

measurements at a smaller interval, 6.7 rather than 7.3 seconds (8% smaller), reduces the number

of measurements exceeding the maximum target delay from 6.8% to 2.7%. Moreover, the relative

gains from the reductions of delay violations versus the increase of the number of measurements

is higher for smaller values of a: an increase of a from 0.25 to 0.50 results in a 1.3% increase

of the number of measurements while the target delay violations are reduced by 47%. However,

an increase of a from 1 to 2 results in the same reduction of the percentage of delay violations,

but with a 6% increase of the number of measurements.

C. Energy-driven data collection

The energy-driven strategy seeks to maximize the net benefit, which is the difference between

the utility for a specific data accuracy minus the power consumption for the measurements that

are necessary to achieve this data accuracy. We consider the case of applications that require

a target data accuracy and providing a higher data accuracy does not offer any benefits. The

utility for such applications corresponds to the curve labelled “U(accuracy)” in Figures 7(a) and

7(b). Specifically, the utility in Figure 7(a) corresponds to an application which is indifferent to

data accuracy values below 0.1 (i.e. 10% data accuracy). On the other hand, the utility for data

accuracy above 0.1 decreases; hence, there is a “knee” at data accuracy equal to 0.1. Figure 7(b)

corresponds to an application which is indifferent to data accuracy values below 0.2 (i.e. 20%

data accuracy).

The energy cost in Figures 7(a) and 7(b) is determined by the number of measurements

required for achieving the specific data accuracy. The energy cost curves were produced by

running multiple data accuracy-driven experiments for accuracy values ranging from 0.05 to 0.3,

with the data accuracy increasing in steps of 0.025. The only assumption made for the energy

results is that the energy consumption is a linear function of the number of measurements.

The benefit in the figure is determined by the difference of the utility for different data accu-

racies minus the corresponding energy consumption for the number of measurements requested

from the FIESTA-IoT platform, while taking into account the percentage of measurements that

were inside the target data accuracy. Subtracting the cost from the utility to obtain the benefit
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would typically require converting cost units to utility units through some relative unit cost

factor. Interestingly, the results presented in this section are independent of this relative cost

factor. This is due to the fact that the “knee” of the utility curve is for data accuracy values

where the energy cost increases slowly as the data accuracy becomes smaller. In general, this

result occurs as long as the slope of the cost curve is smaller than the slope of the utility curve

for data accuracy values close to the “knee” of the utility curve. Based on our measurements,

this is always the case for the shape of the utility curve considered in this section and shown in

Figures 7(a) and 7(b), and for data accuracy values above 5%, which are considered realistic.

The results in the figure show that, for the specific utility shape considered where the utility

is flat up to some data accuracy value and then starts to decrease (i.e. there is a “knee” in the

utility curve), the optimum target data accuracy is equal to the accuracy where the utility starts

to decrease. Interestingly, Figures 7(a) and 7(b) show that this conclusion for the optimum target

data accuracy is independent of the data accuracy value at which the utility starts to decrease,

for the reason identified above. Moreover, this result is independent of the absolute amount of

energy for each measurement, as long as the energy for each measurement is independent of the

rate of measurements, which is equivalent to the assumption mentioned above that the energy

consumption is a linear function of the number of measurements.

The tradeoff between data-accuracy and energy consumption is shown in Figure 8, for both

the Oracle and the AIMD adaptive procedures. This figure shows that the energy gains increase

quickly with increasing target accuracy (i.e. the target data accuracy becomes less tight) when the

accuracy has small values. However, for data accuracy values higher than 0.15, the gains stabilize

at a high value: more than 95% for the adaptive scheme, which is very close to the gains achieved

with the Oracle (98%). It is important to note that, as above, the results in Figure 8 related to

energy gains are independent of the absolute value of the energy consumption, and rely solely on

the assumption that the consumption is a linear function of the number of measurements. Finally,

we highlight the fundamental design difference of the data accuracy-driven strategies proposed

in this paper, compared to other proposals targeting the highest achievable data accuracy that

result in higher energy costs, due to the larger number of required measurements to achieve the

higher accuracy, without a corresponding benefit for the application.
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D. Privacy-driven data collection

The goal of this strategy is to maximize measurements accuracy while maintaining end-

user privacy. In particular, we want to extract averages of measurements without learning the

measurements of each individual sensor. Here we assume that these can be used for extracting

sensitive information about a user. Although the types of measurements provided by the Fiesta-

IoT testbeds do not fit in this category (and probably on purpose), there are use cases that consider

similar types of measurements and at the same time impact end-user privacy. For example, a

system that measures the energy consumption of the buildings of a smart city can be used for

deducing when somebody is in his/her house.

For the evaluation of the privacy-driven strategy we implemented the basic one-time RAPPOR

algorithm, described in [3], and applied it for calculating averages of temperature measurements

performed by sensors in the Smart Santander testbed. We applied the algorithm over the measure-

ments of 70 sensors in order to calculate hourly average temperatures. Each sensor was provided

with a set of possible temperatures and for each element in the set the random responses game

was executed. In particular, each sensor compared its measured temperature with each provided

value and responded whether or not they match. We consider a fair coin, hence the sensor

answers with probability 0.5. the truth, with probability 0.25 Yes, and with probability 0.25 No.

Hence, each sensor could respond “Yes” to some/all/none temperatures and its responses may

or may not include the real measurement. An aspect that affects the accuracy of the calculation

is the size of the set of possible answers. In the following we compare two cases: (i) an oracle

knows the lowest and highest measured temperature, and (ii) we rely on past measurements. In

the first case, the set of possible answers is smaller, and it ranges from the smallest measurement

to the greatest. In the second case, however, the set is grater in order to cover possible variations.

In any case, we are not wishing to focus on how this set is constructed, but instead, we want to

illustrate how the range of possible answers affects accuracy. Figure 9 illustrates2 the distribution

of measurements when the set of possible temperatures is confined to the actual minimum and

maximum temperature, Figure 9(a), and when its boundaries are broader, Figure 9(b).

Since the sensor responses are randomized, every time an experiment is repeated the sensor

responses (and hence the calculated average temperature) differ. Figure 10 illustrates the calcu-

2In this paper we include a subset of our results. Interested users are encouraged to use our live demo located at

https://mm.aueb.gr/fiesta/privacy.php
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lated average temperature for a specific hour3 compared to the real average temperature, when

the set of possible temperatures is confined to the actual minimum and maximum temperature

and when its boundaries are broader. The graph shows that the calculated averages are very close

to the real averages, despite the addition of noise.

IV. RELATED WORK

Prior work on data collection in wireless sensor networks has proposed schemes that trade the

quality of the data collected for energy efficiency. This work includes schemes based on models

at the data collector that capture the correlation of data to reduce the number of data queries to

sensors [4], [5], [6]. Some proposals combine pull-based (located at the data collector) and push-

based (located at the sensors) mechanisms for reducing the number of messages [7], [8], [6] or

consider purely push-based update strategies [9]. The data collection strategies investigated in this

paper differ from the above in that they do not rely on models, as in [5], [4], [6], but rather adapt

the period between consecutive measurements based on whether the measurements lie inside a

target data accuracy interval; this is a fundamental difference that makes the strategies proposed

in this paper application-aware, since they take into account the requirements of applications

in terms of their target data accuracy. Moreover, the proposed data collection procedures are

implemented solely at the data collector side (pull-based), hence do not require mechanisms

at the sensor side, which is not possible when the sensor testbeds are not directly accessible

or are under different administrative control, as is the case of the testbeds federated under the

FIESTA-IoT platform.

In addition to the temporal correlation of data measurements, the spatial correlation of mea-

surements from sensors located in the same area can be exploited, as in [10], [11], [12], which

investigate in-network mechanisms for quality-driven sensor cluster construction and estimation

of probabilistic models for capturing the temporal and spatial correlation. As noted above, our

approach differs in that we consider pure pull-based procedures. The work in [13] proposes a

utility-based model for optimally assigning data queries to sensors in a participatory sensing

system, while [14] investigates a quality-driven function to select a fixed number of sensors for

accomplishing a sensing task.

The trade-off between privacy and accuracy is a well studied problem which still attracts

researchers’ attention; see for example [15], [16], [17]. These works try to add as much noise

3The graphs for all other hours follow a similar pattern.
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as possible to the individual sensor measurements, while influencing as little as possible the

aggregate statistics. The contribution of this paper is to evaluate the efficiency of these techniques

using real IoT measurements, which is a different domain than the one differential privacy has

been applied up to now.

V. CONCLUSIONS AND FUTURE WORK

The proposed accuracy-driven data collection procedure employs an additive increase / multi-

plicative decrease (AIMD) adaptation of the time period between consecutive measurements.

Experiments have shown that such an AIMD procedure is highly robust for measurements

of different data types (phenomena), namely temperature, humidity, and ozone, and for mea-

surements from three different testbeds. The AIMD adaptation procedure is able to track the

trends of the values measured in the presence of periodicity and non-stationarity. Moreover,

unlike other data collection schemes, it has no tuning parameters. The experiments for the

privacy-driven strategy have shown that, despite the small number of sensors, the addition

of noise to the sensor measurements using differential privacy has a negligible effect on the

aggregate statistics. Ongoing work is investigating the tradeoff between data accuracy and power

consumption. Additionally, we are combining the adaptation of the measurement period (temporal

adaptation) with the dynamic selection of the subset of sensors to request measurements from

(spatial adaptation); such an approach can yield higher energy efficiency, without sacrificing data

accuracy.
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Fig. 4. Performance of the AIMD adaptation procedure in a 96 hour time window of temperature measurements from

SmartSantander, where sensors provide measurements every 5 minutes. Accuracy target=10%
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Fig. 5. Delay to receive response from the FIESTA-IoT platform. Although the average FIESTA-IoT response time is small,

approximately equal to 0.47 seconds, the response time can result in values which are above 5 seconds.
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Fig. 6. Time interval of measurement requests for the time-driven strategy. The time interval at which measurements are

requested converges after a few hundred measurements.

�

���

���

���

���

�

� ��� ��� ���

����������	���


	
���
�����

�����������

�������

(a) 10% data accuracy

�

���

���

���

���

�

� ��� ��� ���

����������	���


	
���
�����

�����������

�������

(b) 20% data accuracy

Fig. 7. Utility, energy, and net benefit as a function of target data accuracy.
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Fig. 8. Energy gains for different target data accuracy values.
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Fig. 9. Distribution of measurements with and without noise addition with the limits of the possible temperatures (a) equal to

the actual min and max temperature, (b) expanded.
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Fig. 10. Calculated average temperature per experiment.


