
PUBLISHED IN: IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, 2020 1

Low Latency Friendliness for Multipath TCP
Yannis Thomas, Merkourios Karaliopoulos, George Xylomenos and George C. Polyzos

Mobile Multimedia Laboratory & Department of Informatics
School of Information Sciences and Technology
Athens University of Economics and Business

Patision 76, Athens 10434, Greece
e-mail: {thomasi, mkaralio, xgeorge, polyzos}@aueb.gr

Abstract—Efficient congestion control is critical to the oper-
ation of MPTCP, the Multipath extension of TCP. Congestion
control in such an environment primarily aims at enhancing
the cumulative TCP throughput over the available paths, while
preserving TCP-friendliness by fairly sharing the available band-
width with single-path TCP flows in each path. While most
existing multipath congestion control algorithms fulfill the TCP-
friendliness objective in their steady state, their throughput
convergence latency is high, rendering them ineffective for short-
lived flows. We have proposed Normalized Multipath Congestion
Control (NMCC), an MPTCP congestion control algorithm that
achieves TCP-friendliness faster, by normalizing the growth
of individual sub-flow throughput rather than the throughput
itself. As NMCC can become unfriendly when it experiences
sparse congestion events, in this paper we introduce the extended
NMCC (e-NMCC) protocol that caters for TCP-friendliness upon
both throughput growth and throughput reduction epochs. We
analytically characterize e-NMCC in terms of TCP-friendliness
and responsiveness and compare it with alternative algorithms.
Finally, we assess the performance of e-NMCC through experi-
mentation with the htsim simulator and a real Linux implemen-
tation. Our results confirm that e-NMCC accelerates throughput
convergence, thus ensuring TCP-friendliness regardless of con-
nection duration and underlying network conditions.

Index Terms—MPTCP, congestion control, TCP-friendliness

I. INTRODUCTION

The Internet depends on transport layer protocols such as the
Transmission Control Protocol (TCP) [1]–[3] to provide reli-
able end-to-end connectivity while efficiently utilizing network
resources and preventing congestion collapse. Among many
transport protocols proposed since the inception of the Internet,
TCP has prevailed due to its simplicity, its low overhead, and
its ability to adapt to diverse network conditions. Recently, the
widespread availability of path diversity across the Internet,
along with the proliferation of multihomed mobile devices and
datacenter servers, have led to the incorporation of multipath
features to TCP. Such features are expected to improve TCP’s
throughput, enable resource pooling and load balancing, and
enhance its resilience to network failures [4].

Multipath TCP (MPTCP) [5] is an extended version of TCP
that pools multiple paths into a single transport connection,
transparently to applications, aiming to enhance connection
resilience and resource efficiency. One of the most crucial
elements of MPTCP is its congestion control mechanism,
which regulates the amount of data entering the network via
each path. Implementing congestion control in MPTCP is
challenging, as it must address multipath-specific issues, such

as TCP-friendliness, bandwidth aggregation, stability and re-
sponsiveness, in a complicated and dynamic environment [6].

Most congestion control algorithms proposed for MPTCP,
such as the Linked Increase Algorithm (LIA) [7], the Op-
portunistic Linked Increase Algorithm (OLIA) [8] and the
Balanced Linked Adaptation (BALIA) algorithm [8], were
inspired by the fluid model of TCP by Kelly and Voice [9].
They draw upon this model to derive the appropriate amount
of TCP congestion window increase upon receipt of an ACK
and window decrease upon anticipation of a congestion event,
in order to achieve high resource utilization, stability, respon-
siveness and TCP-friendliness. Whereas these algorithms are
effective in the long run, they may take a long time to impose
the intended bandwidth shares across the connection paths.

In practice, this convergence delay may subvert TCP-
friendliness. Recent studies on Internet MPTCP traffic demon-
strate that up to 95% of it is due to short-lived connections
(transporting less that 1 MB) [10]. Web traffic exhibits a sim-
ilar trend, where large video files that previously led to long-
lived flows, are currently split into multiple smaller files for
cacheability and performance [11]. With relatively short-lived
flows, LIA, OLIA and BALIA are unlikely to have enough
time to enter steady state and achieve TCP-friendliness. On
the other hand, even when flows are long-lived, as with large
file transfers, our evaluation results suggest that Linux MPTCP
implementations with LIA, OLIA and BALIA converge rather
slowly. Consequently, regardless of the transfer duration, we
need algorithms that achieve TCP-friendliness quickly.

The Normalized Multiflow Congestion Control (NMCC)
algorithm [12] is a multipath congestion control algorithm
that primarily aims to satisfy this requirement. The distin-
guishing feature of NMCC is that it controls the throughput
growth rate of the sub-flows rather than the throughput itself.
NMCC pursues TCP-friendliness right from the onset of the
connection, by being TCP-friendly during both the Slow Start
and Congestion Avoidance phases. Unlike the other MPTCP
congestion control algorithms, NMCC also simplifies the win-
dow management process. Overall, NMCC offers significant
advantages, such as fast convergence to TCP-friendliness,
enhanced responsiveness to network conditions and high re-
source utilization. However, it can become unfriendly when it
experiences sparse congestion events.

In this paper, we make the following contributions:
• Using the Linux implementation of MPTCP, we provide

experimental evidence that MPTCP with LIA, OLIA and

2 PUBLISHED IN: IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, 2020

BALIA may demand hundreds of seconds until they
achieve TCP-friendliness, thus limiting their friendliness
to long-lived flows.

• We introduce a new algorithm, hereafter called extended
NMCC (e-NMCC), that meets the TCP-friendliness goal
throughout a connection’s lifetime, i.e., at window in-
crease and decrease epochs.

• We characterize the e-NMCC algorithm mathematically,
according to the analysis in [13], and comparatively
explore its TCP-friendliness and responsiveness.

• We assess the performance of the e-NMCC algorithm,
first via a real Linux implementation, and then in various
benchmark topologies through the htsim simulator. We
explore its efficiency in addressing TCP-friendliness, re-
source utilization and load balancing, in comparison with
LIA, OLIA and BALIA. The simulation results validate
our mathematical analysis in a wider range of conditions.

The remainder of this paper is organized as follows. In
Section II we summarize existing work on MPTCP congestion
control, while in Section III we briefly describe the base
implementation of NMCC. In Section IV we introduce the
e-NMCC algorithm that also handles throughput reduction
epochs. In Section V we provide an analytical characterization
of e-NMCC and its properties. In Section VI we experimen-
tally evaluate the TCP-friendliness convergence of e-NMCC
against LIA, OLIA and BALIA, using a real MPTCP Linux
implementation. In Section VII we compare e-NMCC against
LIA in benchmark scenarios using the htsim simulator. In
Section VIII we discuss the integration of e-NMCC with
MPTCP and, finally, provide our conclusions in Section IX.

II. BACKGROUND AND RELATED WORK

A. MPTCP Congestion Control Goals

The revived interest in multipath transport can be traced to
the widespread availability of multihomed devices; MPTCP is
currently available in iOS and Linux, covering both mobile
devices with multiple wireless interfaces and servers with
multiple wired interfaces. On the surface, MPTCP offers the
exact same application-level service as plain (single-path)
TCP. Under the hood, however, it provides the necessary
components to establish and manage multiple sub-flows of data
sent over potentially disjoint paths, also known as routes.

In general, MPTCP establishes multiple sub-flows by in-
troducing multiple TCP handshakes. In the initial handshake,
the users exchange the necessary information for establishing
the first sub-flow, but also advertise their capability to deploy
additional sub-flows via additional IP addresses, that “encode”
additional routes. If no additional routes are available, then
MPTCP falls back to TCP. Otherwise, a TCP handshake takes
place for each extra IP address, thus allowing the establish-
ment of more sub-flows; sub-flows are individually controlled
through private congestion and flow control primitives, such
as congestion timer and congestion window.

One of the most important components of MPTCP is the
congestion control module that regulates the cumulative and
per sub-flow transfer rates, aiming to maximize throughput
by utilizing the available routes, while avoiding congestion

collapse. Most of the algorithms in the literature, e.g., , [7],
[8], [13]–[16], draw upon the building blocks of TCP, such as
Slow Start, Congestion Avoidance and loss-based congestion
detection [17], modifying them to spread the traffic over
multiple paths. We summarize below the MPTCP congestion
control objectives that are most frequently considered in the
literature and are most relevant to our work.

• Throughput aggregation: The ability to aggregate the
transfer rates of the sub-flows to achieve increased cu-
mulative throughput.

• TCP-friendliness: The property of sharing the network
resources fairly with single-path flows [3], expressed as:
“When a multiflow connection competes with a single-
flow connection for the same network resource, the
former must not acquire a larger share of that resource
than the latter.”

• Load balancing: The ability to distribute the traffic load
among multiple paths in order to balance the congestion
level across the network [7].

• Responsiveness: The ability to respond quickly to dy-
namic changes in the network, but not so quickly as to
endanger the stability of the sub-flows [9].

• TCP-friendliness convergence latency: The time needed
to reach TCP-friendliness (while being TCP unfriendly).
Minimizing this latency is critical for the effectiveness of
multipath congestion control.

B. MPTCP Congestion Control Algorithms

The simplest multipath congestion control algorithm for
MPTCP, known as UNCOUPLED, employs sub-flows with
individual congestion windows and independent window man-
agement. This design offers enhanced throughput and fast
adaptation to network conditions, but tends to be overly
aggressive towards unicast connections, thus failing the TCP-
friendliness constraint. To achieve TCP-friendliness, Equally-
Weighted TCP (EWTCP) [14] splits traffic “evenly” among
sub-flows so that it cumulatively grasps the same share of
resources as a TCP connection. However, EWTCP does not
satisfy the load balancing requirement, as the proportional
management of the sub-flows disregards the individual prop-
erties of the dissemination paths.

The COUPLED algorithm [15] was the first to emphasize
the importance of being TCP-friendly, while shifting traffic
to the least congested path so as to enhance load balancing.
It handles the available paths as a pool of resources, aiming
to balance their congestion level and increase utilization.
However, pushing all traffic to the least congested path has
some drawbacks, such as performance degradation with het-
erogeneous paths and poor responsiveness to network changes.

The Linked Increase Algorithm (LIA) [7] was developed to
tackle both TCP-friendliness and responsiveness. LIA pushes
traffic to the least congested path so as to enhance load
balancing, similarly to COUPLED, but also introduces an
aggressiveness parameter that attempts to keep some traffic
in the more congested paths in order to remain responsive.
This parameter is based on two equilibrium conditions: first,
LIA balances the congestion window increases and decreases

PUBLISHED IN: IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, 2020 3

in steady state in order to be stable and, second, it equalizes
the resource shares of MPTCP and TCP at the bottleneck in
order to be TCP-friendly. Demonstrating sufficient friendliness
and resource utilization, LIA soon became the established
congestion control algorithm for MPTCP.

While favoring the least congested path, LIA does not push
traffic exclusively there, thus penalizing overall network re-
source utilization under certain conditions. The Opportunistic
Linked Increase Algorithm (OLIA) [8] extended LIA in order
to enhance resource pooling, while maintaining high respon-
siveness. Specifically, OLIA increases faster the congestion
window of sub-flows with a high transfer rate but relatively
small windows. Moreover, OLIA introduces probing traffic
over the worse paths to achieve sufficient responsiveness.
Nevertheless, recent studies [13] show that OLIA does not
respond well to abrupt load changes. In the same paper, the
Balanced Link Adaptation (BALIA) algorithm is introduced,
a generalization of existing algorithms that strikes a good
balance between friendliness and responsiveness.

Finally, weighted Vegas (wVegas) [16], a delay-based con-
gestion control algorithm inspired by TCP Vegas, uses queuing
packet delay to detect congestion, unlike other proposals which
exploit time-out timers. The main advantage of wVegas is
quick traffic shifting, as it can be more sensitive to network
load changes. However, tuning the algorithm’s sensitivity is
not trivial and the investigation of its behavior is not mature.
For example, the handling of RTT variation in case of rerout-
ing remains unclear. A survey of congestion control algorithms
for multipath transport is presented in [6].

C. Modeling Multipath Rate Control

One of the key pillars in modeling MPTCP is the exploita-
tion of the fluid model analysis by Kelly and Voice [9]. The
fluid model tracks the transfer rate adaptation of a TCP-sender
during the Congestion Avoidance phase, as the sender attempts
to ensure system stability, protocol responsiveness and TCP-
friendliness. It can be related to the window-based congestion
control of TCP so as to deduce a sufficient condition for the
desired amount of window increase or decrease upon receipt
of an ACK or a congestion event, respectively.

For example, following the analysis about connection stabil-
ity [9, Eq. 22], LIA tries to balance the window increase and
decrease in steady state, by modeling them as the product of
event probability times the window modification. For instance,
the window decrease in steady state equals the product of
steady state throughput, segment loss probability and the
amount of the window reduction. To solve the equation, the
authors assume that the segment loss probability is statistically
negligible, a simplification that can lead to poor performance
in error-prone and heterogeneous paths. Indeed, in Section VI
we demonstrate that LIA achieves TCP-friendliness only after
the steady state is reached and under low error-rate conditions.

A second common feature of the fluid model is the omission
of the Slow Start phase, as it is considered a transient state with
no measurable effect on long-term performance. Consequently,
multipath connections are not TCP-friendly for a “brief”
period after they are launched, gradually converging to the

desired fair equilibrium. To the best of our knowledge, only
the long-term TCP-friendliness of MPTCP congestion control
has been evaluated (assuming so-called “long-lived flows”);
the rate of convergence to TCP-friendliness and its correlation
with network conditions has not been explored yet.

We note that protocol responsiveness and protocol conver-
gence to TCP-friendliness are different concepts. The former
refers to the efficiency of shifting traffic among sub-flows
while being TCP-friendly; the latter refers to the time needed
to achieve TCP-friendliness while being TCP-unfriendly. That
“brief” period of imbalance, during which MPTCP is TCP-
unfriendly, can be critical for network stability, affecting how
well MPTCP fares with respect to TCP-friendliness.

D. Long-Term vs. Short-Term TCP-friendliness

The vast majority of previous works on TCP and MPTCP
focus on long-term protocol performance [3], [13], that is,
steady state performance when the system has stabilized.

Studying the TCP-friendliness of MPTCP only in the long-
run follows the legacy analyses of TCP. During the first
studies of TCP’s impact on complex and diverse computer
networks, modeling the properties of such volatile systems
was much harder than modeling a stable system. In order to
mitigate complexity then, significant simplifying assumptions
were made, at the expense of challenging the realism of the
resulting models under some conditions. For instance, the
fluid model in [9] assumes that the RTTs of the network
remain fixed in time, because the network has sufficient
bandwidth and low enough total load that it never sustains
any queues. However, in [18] the authors explore real traces
of TCP connections that show measurable variability of RTT
at the granularity of seconds, and significant variability across
hours. We acknowledge that the long-term approach, where
network performance is stabilized, constitutes a powerful tool
that can provide essential information about the behavior of
the network, but it can also become unrealistic when its
assumptions are violated, e.g., , when network congestion and
RTT are volatile or when protocols do not operate long enough
to enter steady state. For this reason, we consider essential the
investigation of MPTCP before flows are stabilized.

A second common assumption is that the impact of a flow in
the network is proportional to its duration. Short-term flows are
thus considered too brief to affect the network, similarly to the
Slow Start phase of a TCP connection [19], hence fair sharing
cannot be affected by TCP-unfriendly short-term connections.
We argue that the traffic volume of unfriendly flows should be
taken into account when analyzing TCP-friendliness: network
fairness can also be affected by a large number of unfriendly
(even short-lived) flows operating in parallel. The observations
that “mice” flows severely outnumber “elephant” flows in the
current Internet and that users deploy multiple concurrent
connections (Web traffic traces indicate that 50% of users
deploy at least 5 connections in parallel) [11], emphasize the
impact of small, yet numerous, flows, and indicate the need
for pursuing short-term TCP-friendliness.

4 PUBLISHED IN: IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, 2020

III. NORMALIZED MULTIFLOW CONGESTION
CONTROL (NMCC)

Normalized Multiflow Congestion Control (NMCC) [12] is a
novel congestion control algorithm for multipath connections.
It offers TCP-friendliness throughout the lifetime of a con-
nection and high resource utilization under various path set-
ups, including disjoint, overlapping and heterogeneous paths.
It differs from alternative designs such as LIA, OLIA and
BALIA, in two main ways: first, it introduces a new approach
towards pursuing TCP-friendliness and, second, it embodies a
new scheme for implementing TCP-friendliness.

a) Pursuing TCP-friendliness: NMCC achieves TCP-
friendliness by normalizing the growth of the transfer rate
rather than the transfer rate of each sub-flow. It exploits the
fact that all connections start at the same state, that is, with
the minimum congestion window, and remain TCP-friendly
as long as their throughput increase rates are equal. NMCC
distributes the throughput increase rate of its fastest sub-flow
across its pool of sub-flows. The TCP-friendliness requirement
is deterministically met upon each window increase epoch,
making NMCC continuously TCP-friendly.

Assume that Ωr and Ω′
r are the standard (or unfriendly) and

TCP-friendly throughput growth rates of sub-flow r, respec-
tively. If Ωmax is the growth rate in the most aggressive single
path connection, the TCP-friendliness constraint demands that∑

r∈S

Ω′
r = Ωmax (1)

NMCC expresses the growth rate of sub-flow r as a function
of its RTT, rr, and its congestion window, wr. Every rr,
the throughput of r increases by 1 MSS/rr in Congestion
Avoidance and by wr/rr in Slow Start, where MSS is the
network’s Maximum Segment Size. Therefore:

Ωr =


1/r2r , in congestion avoidance

wr/r
2
r , in slow start

(2)

b) Implementing TCP-friendliness: NMCC exploits the
well-known bias of TCP against large-RTT connections to
control over-aggressiveness (e.g., see [2]). Instead of adjusting
the congestion window value as in other MPTCP solutions,
NMCC inflates the RTT values used in the calculations. This
greatly simplifies TCP-friendliness in the Slow Start phase.

Specifically, let r′r ≥ rr denote the inflated RTT for sub-
flow r, which results in a slower growth of the congestion
window compared to regular TCP. The actual reduction is
controlled by the friendliness factor m ≥ 1, defined as

r′r = mrr (3)

Therefore, the friendly throughput growth rate, Ω′
r, is

Ω′
r =


1
r′2r

= 1
m2r2r

, in congestion avoidance

wr

r′2r
= wr

m2r2r
, in slow start

(4)

The parameter m is set so that the throughput growth
rate across all sub-flows matches the respective rate in the

most aggressive single-path, Ωmax. As m is the same for
all sub-flows, regardless of their state, it is easy to prove
that Ωr = m2Ω′

r. By substituting Ω′
r with Ωr/m

2 in (1), we
generate a unified formula for estimating m, incorporating sub-
flows in both the Congestion Avoidance and Slow Start phases:

m2 =

∑
r∈S Ωr

Ωmax
(5)

By applying m to the RTT s of all sub-flows, NMCC limits
their throughput growth rate. Therefore, although NMCC
mostly utilizes the sub-flow in the “best” path, it takes into
account all the slower paths, exhibiting good responsiveness.
As a result, NMCC does not require probing to detect load
changes on unused paths unlike LIA, which introduces a
special parameter to keep a moderate amount of traffic over
slow paths, or OLIA, which requires probing.

In addition, NMCC can perform efficiently in heterogeneous
environments, adapting fast to path failures and congestion
bursts. For instance, consider an integrated terrestrial-satellite
network where the propagation delay is 10 ms in the terrestrial
link and 250 ms over the satellite link. When both NMCC
sub-flows are in Congestion Avoidance, then, according to (2),
the throughput growth rates are 1/102 and 1/2502. According
to (5), m = 10079, which results in tiny adjustments to the
throughput growth of the sub-flows, thus allowing NMCC to
effectively grasp the available resources.

IV. EXTENDED NMCC (e-NMCC)

NMCC eliminates TCP-friendliness convergence latency by
fairly distributing the throughput increase among the sub-
flows, thus achieving cumulative throughput growth that is
equal to what would be achievable by regular TCP in the
best path. However, as presented in [12], NMCC considers
TCP-friendliness only when all sub-flows share the same bot-
tleneck1, meaning that all sub-flows will receive a congestion
event (i.e., a retransmission timer timeout or triple duplicate
ACK) when congestion appears. In practice, however, conges-
tion events can be triggered only for a subset of the sub-flows.

To understand the impact of this on TCP-friendliness, con-
sider two connections competing at a bottleneck link, a single-
path connection and a TCP-friendly multipath connection with
two sub-flows on routes with equal RTTs. During a congestion
escalation period, the single-path flow and one of the two
sub-flows may experience a congestion event, thus reducing
their transfer rate to roughly one-half of their current rate. But
since only one sub-flow has noticed the event, the single-path
and the multipath connections will suffer a reduction of 50%
and 25% in their (cumulative) throughput, respectively, hence
diverging from TCP-friendliness. This asymmetry intensifies
with the frequency of congestion events that affect a subset of
sub-flows (a partial congestion event). In the worst case, only
a single sub-flow will experience a congestion event; in the
best case, all sub-flows will do so (global congestion event).

1In that paper, NMCC exploits an in-network assistance module that reports
shared bottlenecks, hence the TCP-friendliness constraint is applied only when
sub-flows share a bottleneck.

PUBLISHED IN: IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, 2020 5

To gain insight into the resulting performance bounds,
we simulate this toy-example (a multipath (MP) connection
with two sub-flows over equal RTT paths and a single-path
(SP) connection competing over one of these paths). Both
connections are left to increase their transfer rate in a friendly
manner and, when the link is full, the flows receive congestion
events that reduce their throughput. We simulate three types
of congestion events: the worst (only partial events), the best
(only global events) and a realistic case, where global and
partial congestion events co-exist and the faster connection
get more congestion events.2 Figure 1(1.a) plots the results
of the worst-case scenario, where only the sub-flow with
the largest congestion window experiences a packet loss and
the MP connection ends up grasping 67% of the resources.
Figure 1(1.b) illustrates the results of the realistic scenario
with partial and global events, where the MP connection
is still too aggressive, grasping 58% of the resources. With
global congestion events only (not shown), the MP and SP
connections equally share the medium, as shown in [12].

A. Modeling throughput reduction

The over-aggressiveness of NMCC during partial conges-
tion events motivates an extension for regulating throughput
decrease under all types of congestion events (partial and
global). Our approach consists of (a) keeping intact the NMCC
part that controls throughput growth, as it delivers fast TCP-
friendliness convergence, but (b) adding the following TCP-
friendliness rule for regulating throughput reduction:

The cumulative throughput reduction of all multipath
sub-flows after any number of contemporaneous win-
dow reductions due to congestion, should be equal
to the corresponding reduction of a single-path flow
over the “best” path.

The path with the highest throughput increase rate, Ωmax, is
marked as the “best” path, serving as the benchmark when the
congestion windows either increase or decrease.

Unlike the deterministic throughput increase per ACK, a
deterministic throughput reduction per congestion event is not
straightforward. We do not know a priori the number of sub-
flows that will be affected by a single congestion event, hence
we cannot estimate the respective cumulative throughput de-
crease so as to instantly equalize the performance of multipath
and single-path connections. Two different approaches can be
used to tackle this problem; a stateful and stateless one.

a) Stateful approach: We estimate the total throughput
reduction of sub-flows over a period of time, by keeping
track of the reductions that took place over an interval tw.
Exploiting the temporal correlation of congestion events from
a shared bottleneck, we could distinguish global from partial
congestion events. More specifically, when a sub-flow receives
a congestion event, it shrinks its window by half, as if this was
a global event, it waits for time tw and, then, checks whether
other sub-flows are also affected by the same congestion event.
If all sub-flows have received a congestion signal (indicating

2When a link is full, a random sample is drawn from a uniform distribution
[0,100) for each sub-flow, and a congestion event is triggered if the sample
is smaller than the bandwidth share of the sub-flow.

Fig. 1. NMCC (MP) and single-path (SP) window sizes with either “partial”
(column a) or “partial and global” congestion events (column b); top row
depicts NMCC performance, bottom row depicts e-NMCC performance.

global congestion), then no additional window reduction takes
place. If not (indicating partial congestion), the sub-flow
applies an additional reduction to ensure TCP-friendliness.

The main weakness of this approach is that the protocol
responds “accurately” to congestion with latency tw, thus
potentially affecting its friendliness. In order to accurately
detect global events even in RTT-mismatched paths, the delay
tw should be equal to the maximum current RTT among
all sub-flows, rmax, which also determines the maximum
loss timer among the sub-flows.3 Thereupon, if sub-flow r
experiences a congestion event and it has the highest RTT,
rr = rmax, the impact of tw is expected to be unnoticeable,
since the unfriendly reduction is instant and the friendly
(second) reduction is just one RTT late. If, however, sub-
flow r has an RTT n times smaller than the maximum,
rr = rmax/n, then the impact of tw can be measurable since
the unfriendly reduction is instant but the friendly reduction
is delayed by n · rr; during this period the sub-flow will
be unfriendly. In [10] authors indicate that roughly 86% of
MPTCP connections exhibit less than 50 ms of RTT-mismatch
during connection establishment,4 while approximately 47%
of these RTTs are less than 100 ms. Hence, at least for
40% of MPTCP connections n would be less than 2, thus
mitigating the impact of n. Nevertheless, further analysis and
experimentation is needed to ensure that the stateful approach
takes into account all possible congestion event scenarios.
The e-NMCC protocol therefore adopts the stateless approach
presented below, which is not affected by RTT-mismatch.

b) Stateless approach: We estimate the total throughput
reduction of sub-flows over a period of time, by assuming
that the throughput and the (packet) loss rates of the flows
are relatively stable when the flows are stabilized. We ac-
knowledge that a (TCP) flow converges to its fair share of

3Although the Smoothed RTT is a more accurate representation of the loss
timer, we use the actual RTT in the text for simplicity.

4Roughly 10%, 54.3% and 13.7% of MPTCP connections exhibit 0, less
than 10 and more than 50 ms of RTT-mismatch.

6 PUBLISHED IN: IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, 2020

resources after a few congestion rounds [20]. Thereupon, we
denote the frequency of congestion events for the fastest
single-path flow and for multipath sub-flow r as fsp and
fr, respectively. Likewise, let dsp and dr be the throughput
reduction after a congestion event for the fastest single-path
flow and multipath sub-flow r, respectively. Demanding that
the throughput reduction rates are equalized reduces to:

fspdsp =
∑
r∈S

frdr (6)

where S is the set of sub-flows.
A congestion event moves TCP into Slow Start or Fast

Recovery. In the first case, the congestion window grows
exponentially, reaching the Slow Start threshold very quickly,
whereas, in the second case, the window is directly set to the
Slow Start threshold plus 3 MSS, where MSS is the Max-
imum Segment Size.5 We assume that throughput is reduced
by approximately 50% in both cases, hence the throughput
reduction of the single path connection can be written as:

dsp =
wsp − wsp/2

rsp
=

1

2

wsp

rsp
(7)

and the loss frequency f as the product of the throughput
multiplied by the packet loss rate, p:

f = p
w

r
(8)

We can formally demonstrate the friendliness issue by as-
suming that dr, the throughput decrease of sub-flow r, is
unregulated, thus following (7). Then, we can rewrite (6) as:

psp
wsp

rsp

wsp

2rsp
=

∑
r∈S

pr
wr

rr

wr

2rr
⇒

pspw
2
sp

r2sp
=

∑
r∈S

prw
2
r

r2r
(9)

Now, consider the case where two sub-flows in the congestion
avoidance phase share routes of equal bandwidth, latency and
error rates. Then, according to (5), m2 = 2, hence the sub-flow
window growth rate is halved, as presented in the following:

rr = rsp, pr = psp, wr =
wsp

2
(10)

It is trivial to check that, given (10), condition (9) is not
satisfied, verifying the need to address the unfriendliness issue.

B. TCP-Friendly Throughput reduction

To maintain TCP-friendliness under various types of con-
gestion events, we introduce the threshold factor, mth, a
positive real number (|S| ≥ mth ≥ 1), that regulates the
throughput reduction of a sub-flow during a congestion event,
as follows:

dr = dspmth =
wr − wr/2

rr
mth =

wr

2rr
mth (11)

5In both cases we assume that the RTT remains relatively static, since the
bottleneck is shared by numerous flows.

We can now rewrite (6) , using (11) to express dr, and estimate
the threshold factor, mth, as follows:

pspw
2
sp

r2sp
=

∑
r∈S

prw
2
r

r2r
mth ⇒

mth =
pspw

2
sp/r

2
sp∑

r∈S prw2
r/r

2
r

(12)

The estimation of mth by a multipath sub-flow, requires
knowing wsp, rsp and psp, which express the performance
of a TCP-like flow on the best available path (the one with
the highest throughput increase rate, Ωmax). By definition,
the packet drop rate of the path, being a feature of the
medium, is not affected by NMCC, hence psp = pmax.
The throughput of the single path connection is equal to the
cumulative throughput of the multi-path connection, as a result
of meeting the friendliness constraint during window increase,
hence wsp/rsp =

∑
r∈S wr/rr. Consequently, any sub-flow

can estimate mth via the following formula:

mth =
pmax(

∑
r∈S wr/rr)

2∑
r∈S prw2

r/r
2
r

(13)

This extension mirrors the proportional throughput growth
scheme of NMCC, in that the throughput is most aggressively
reduced when the sub-flows are equally fast. Specifically,
when the connection deploys one sub-flow, then mth = 1,
thus falling back to single path behavior. When |S| identical
sub-flows (running over identical paths) are deployed, then
mth = |S| and the throughput reduction for each sub-flow is
maximized. Finally, as paths get more diverse and a subset
of the sub-flows grasps most resources, mth → 1, hence
throughput reduction is not regulated.

We repeated the simulations of Fig. 1, this time including
the threshold modification factor, mth, in the congestion
control scheme. In the worst-case scenario, multipath (MP)
gains 54% of the resources (see Fig. 1(2.a)), thus improving
friendliness by 13% (compared to Fig. 1(1.a)). In the more re-
alistic scenario, MP gets 49% of the resources (see Fig. 1(2.b)),
thus achieving friendliness and providing preliminary evidence
for the validity of our solution.

Finally, we point out that this extension does not delay the
convergence of the protocol towards TCP-friendliness. The
NMCC connection is TCP-friendly in Slow Start and our
extension is activated only after the first packet loss. At that
time, the sub-flows can estimate the packet drop probability of
the routes, hence (assuming a credible estimation of drop prob-
ability) e-NMCC has converged. We experimentally asses the
convergence latency of MPTCP with e-NMCC in Section VI.

The e-NMCC algorithm is presented below:

ALGORITHM: extended NMCC (e-NMCC)
• For each ACK on path r,

wr ←


wr +

1
wr

Ωmax∑
r∈S Ωr

in congestion avoidance

wr +
Ωmax∑
r∈S Ωr

in slow start
(14)

PUBLISHED IN: IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, 2020 7

TABLE I
(K,Φ) TUPLES FOR DIFFERENT MPTCP MODELS UNDER THE FLUID

MODEL (17)

.

EWTCP COUPLED LIA
MPTCP MPTCP

ks(xs) x2
r/2 x2

r/2 x2
r/2

ϕs(xs) 2α
x2
rτ

2
r

2
τ2
r (

∑
k∈S

xk)
2

Friendliness COUPLED ≻f LIA ≻f EWTCP(α > 1)
Responsiveness COUPLED ≺r LIA ≺r EWTCP(α > 1)

Legend ≻f : “friendlier than” ≺r : “less responsive than”

• For each loss on path r,

ss thresh← wr −
wr

2
·
pmax(

∑
r∈S wr/rr)

2∑
r∈S prw2

r/r
2
r

wr ← 2

V. ANALYTICAL CHARACTERIZATION OF E-NMCC

A. Background

The analytic framework in [13] provides a solid reference
for comparing a broad class of MPTCP algorithms with respect
to their fairness and responsiveness properties. Briefly, the
dynamics of window-based MPTCP algorithms that upon an
ACK on sub-flow r increase its window wr to

wr ← wr + Ir(ws) (15)

and upon a loss event reduce it to

wr ← wr −Dr(ws) (16)

can be captured by the system of differential equations

ẋr = kr(xs)(ϕr(xs)− qr)
+
xr

r ∈ s, s ∈ S

ṗl = γl(yl − cl)
+
pl

l ∈ L (17)

where xs, s ∈ S is the vector of rates in all sub-flows of a
connection, pl and qr are the probabilities of loss at individual
link l and cumulatively in route r, respectively, and yl is the
aggregate traffic rate in link l, as determined by the traffic and
routing matrices. This fluid congestion control model jointly
determines the send rates of multipath connections and the
data loss rates at the network buffers.

The variants of MPTCP that are captured by this modeling
framework are mapped to distinct tuples (Ks,Φs), where
Ks(xs) · (kr(xs, r ∈ s) and Φs(xs) · (ϕr(xs, r ∈ s). The
shape of these vectors determine the dynamic properties and
the equilibria of the fluid model in (17) and rank the different
variants with respect to their friendliness and responsiveness.
More specifically, it is shown in [13] that:

• (A.1) EWTCP [14], COUPLED MPTCP [15] and LIA
MPTCP [7] can be mapped to (17), whereas OLIA
cannot. Table I lists the (Ks,Φs) tuples for each protocol.

• (A.2) Under certain assumptions6 an MPTCP algorithm
(K̃, Φ̃) is friendlier than another algorithm (K̂, Φ̂) if
Φ̂s(xs) ≤ Φ̂s(xs)

6For the full details of the modeling framework, see [13].

• (A.3) Under certain assumptions (a subset of those re-
quired for the friendliness comparison) an MPTCP algo-
rithm (K̃, Φ̃) is more responsive than another algorithm
(K̂, Φ̂) if K̃s(xs) ≤ K̂s(xs) and ∂Φ̃s(xs)

∂xs ≤ ∂Φ̂s(xs)
∂xs

• (A.4) There is a fundamental trade-off between the friend-
liness and responsiveness properties. For two algorithms
(K̃, Φ̃) and (K̂, Φ̂), with K̃ = K̂, if one algorithm is su-
perior in friendliness, it will be inferior in responsiveness.
Table I ranks protocols that fit the framework in terms of
friendliness and responsiveness.

B. NMCC positioning

Unfortunately, the framework in [13] is not of much help
in characterizing the e-NMCC algorithm since the response
to packet loss is more involved than what (16) prescribes,
including the error rate of the path, p, and window manage-
ment in Slow Start. However, we can integrate the e-NMCC
algorithm with the framework by assuming that the error rates
of the paths are equal and that all sub-flows are in Congestion
Avoidance. We acknowledge that modeling e-NMCC under
special conditions mitigates the usefulness of this analysis,
but we present it as a part of a cohesive study, which also
includes thorough experimental evaluation, in order to shed
light on the properties of e-NMCC under certain conditions.

Thereupon, in e-NMCC, the window increment Ir(ws) and
decrement Dr(ws) take the form:

Ir(ws) =
2maxk∈S(1/τ

2
k)

w2
r

∑
k∈S 1/τ2k

Dr(ws) =
wr(

∑
k∈S xk)

2

2
∑

k∈S x2
k

(18)

Hence, the fluid model representation of the e-NMCC
algorithm is (Ke−nmcc,Φe−nmcc), with

ke−nmcc
r (xs) =

1

2x2
r

ϕe−nmcc
r (xs) =

2maxk∈S(1/τ
2
k)

∑
k∈S x2

k

x2
rτ

2
r

∑
k∈S 1/τ2k (

∑
k∈S xk)2

(19)

In view of the (K,Φ) values for the three protocols in Table
I, it is straightforward to show that under equal RTTs for all
sub-flows r ∈ s (the case studied in [13]), e-NMCC is equally
friendly with COUPLED, the most TCP-friendly algorithm in
the analysis of [13]. It is straightforward to show that e-NMCC
is friendlier that the least TCP-friendly algorithm, EWTCP:

ϕe−nmcc
r (xs) =

2
∑

k∈S x2
k

x2
rτ

2
r |s|(

∑
k∈S xk)2

< ϕewtcp
r (xs) ∀r ∈ s

(20)
According to the fluid model, the window size is related to
RTT and error rate, hence the window sizes of paths will
be equalized when paths present equal RTTs and error rates.
Under these conditions, we conclude that

∑
k∈S x2

k = x2
k|s|

and in turn:

ϕcoupled
r (xs) = ϕe−nmcc

r (xs) < ϕLIA
r (xs) ∀r ∈ s (21)

The analysis shows that e-NMCC addresses TCP-friendliness
more effectively than LIA when the sub-flows experience

8 PUBLISHED IN: IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, 2020

Fig. 2. Experimental topology for evaluating MPTCP in Linux. Due to space
constraints, we plot only one MPTCP connection and two TCP connections;
in the experiments we deploy four MPTCP and four TCP connections in total.

identical error rate and latency. On the other hand, we cannot
definitely conclude that e-NMCC is the most TCP-friendly
algorithm (and the least responsive) under all conditions. In
what follows, we resort to experimentation to delve deeper
into its friendliness and responsiveness properties.

VI. EVALUATION IN THE LINUX KERNEL

To compare the convergence latency of e-NMCC against
other multipath congestion control algorithms, we con-
ducted experiments using the Linux kernel implementation of
MPTCP.7 For each algorithm, we investigated the correlation
between the convergence latency of MPTCP and several
parameters, such as route propagation delay, bandwidth, error
rate, number of sub-flows and background traffic.

A. Testbed Setup

To avoid biases due to the hardware and software used, we
configured a testbed where the same hardware was used by
multipath and single-path connections. We cloned a virtual
machine (VM) that runs MPTCP v0.91 in Linux kernel
v.4.1.37 and hosted two such clones as MPTCP clients on
the same host machine allocating identical resources to both
VMs (2 CPU cores at 4 GHz and 2 GB of RAM). A third
clone of this VM, acting as the MPTCP server, was hosted by
a different machine, ending up with the topology of Fig. 2.
We configured and assigned IP addresses to these VMs so
that we could establish two sub-flows between each client-
VM and the server-VM, even though MPTCP was enabled in
one client-VM only, as shown in the figure.

In each experiment, we simultaneously initiated 4 iperf8

connections from each client-VM, thus creating 2 single-path
flows and 4 multipath sub-flows over each path. Each run
lasted 30 minutes and was repeated 30 times. We deployed
TCP Reno in the MP-disabled host and MPTCP with one
of the e-NMCC, LIA and OLIA algorithms in the MP-
enabled host. We also tested MPTCP with the (unfriendly)
UNCOUPLED algorithm, where each sub-flow uses the Reno
algorithm (MP-RENO), to establish a performance baseline.

The netem9 tool was used to emulate different propagation
delays, link capacities and packet loss rates. Different config-
urations of these parameters were expected to have an impact
on the convergence time of the congestion algorithms. In the
default configuration, the link capacities were set to 8 Mbps,
the RTT to 100 ms and the error rate to 0%.

7https://www.multipath-tcp.org/
8https://iperf.fr/
9http://man7.org/linux/man-pages/man8/tc-netem.8.html

CISCO’s TREX10 traffic generator was used to simulate
background traffic. TREX generates Layer 4-7 traffic based on
pre-processing and smart replay of real traffic templates. More
specifically, TREX replays numerous connections of different
types, such as HTTPS, DNS and RTP, each type exhibiting
distinct frequency, size and RTT properties. By proportionally
adjusting the launch frequency of the different connection
types, we can vary the volume of generated traffic, while
retaining the characteristics of real traffic templates.

B. Impact of Propagation Delay

We first investigate the impact of path propagation delay
on the convergence of MPTCP. We tested three delay setups,
namely, 10 ms, 100 ms and 200 ms, with equal delays in
both paths. The results are plotted in Fig. 3, where the rows
and columns depict the performance of different algorithms
under different path latencies, respectively. Specifically, each
plot illustrates the average bandwidth share of the MPTCP and
TCP RENO flows, normalized to the overall traffic load, for
every second of the experiment.

Confirming our intuition, e-NMCC and MP-RENO connec-
tions are not affected by network latency, converging very fast
to friendliness and unfriendliness, respectively. LIA, OLIA and
BALIA on the other hand, exhibit high convergence latency
times that reach 600 s and 1300 s, under 10 ms and 200 ms
latencies, respectively. As expected, increasing network delay
leads to increased convergence time, since congestion feed-
back is more frequent for lower latency paths. While LIA
and OLIA are TCP-friendly in the long run (BALIA is over-
aggressive), they do not achieve fairness until some minutes
into a session, thus being unfriendly for connections that last
less than 600 s. Finally, the resource utilization is roughly 1%
more than MP-RENO for all four friendly algorithms.

C. Impact of Link Bandwidth

We next investigate the impact of link bandwidth on MPTCP
convergence. We tested three setups with the same transfer rate
in both paths, 4, 8 and 16 Mbps, and equal delays. Figure 4
shows the results (the 8 Mbps case is in column b of Fig. 3).

We observe that e-NMCC is not affected by the amount of
available bandwidth, as it converges to its steady state as fast
as MP-RENO in both narrow and wide links. However, LIA,
OLIA and BALIA are struggling in narrow links, exhibiting
unfriendliness for roughly 1400 s, 800 s and 1100 s, respec-
tively, until their bandwidth share is stabilized. By design,
MPTCP is slightly more aggressive in wide links, as MP-
RENO gains more than its theoretical perfect share (0.66%).
This explains the relative over-aggressiveness of OLIA and e-
NMCC. However, BALIA is again noticeably over-aggressive,
grasping 56% of the bandwidth in wide links. Finally, although
we repeated each experiment 30 times, the graphs for narrower
links indicate more fluctuation, implying that the increased
flow competition in narrow links challenges convergence. The
resource utilization under all four friendly algorithms is 1-2%
more than what MP-RENO achieves.

10https://trex-tgn.cisco.com/

PUBLISHED IN: IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, 2020 9

Fig. 3. MPTCP performance in a LAN testbed with two disjoint paths, different congestion control algorithms (rows 1-5) and propagation delays (columns a-c).

D. Impact of Packet Loss
We then investigate the impact of uniformly distributed path

losses on MPTCP convergence. We tested three setups with
the same path packet drop rates, namely, no loss, 0.0001% and
0.1%. Figure 5 shows the results (the no loss case is in column
b of Fig. 3). We observe that e-NMCC is not affected by the
error rate, as it converges to its steady state as fast as MP-
RENO in all cases. In contrast, LIA and OLIA deviate most
from their fair share in the beginning of the experiment with a
small packet drop rate, although their convergence time is not
altered with regard to the zero loss scenario. On the other hand,
all algorithms adapt instantly to their steady state under more
frequent losses, since frequent losses accelerate the detection
of network condition changes, allowing the algorithms to
adapt rapidly. However, note that both LIA and OLIA are
consistently less aggressive than needed, getting 47% and 48%
of the bandwidth, respectively. Conversely, e-NMCC is slightly
over-aggressive (53%), while BALIA achieves perfect sharing.
In the case of 0.1% drop rate, the resource utilization under
all friendly algorithms is 1-2% more than what MP-RENO
achieves. With the 0.0001% drop rate, the resource utilization
of MP-RENO is roughly 10% less than the friendly algorithms,
implying that over-aggressiveness can penalize performance
when congestion events occur less frequently.

E. Impact of Heterogeneous Paths
We next investigate the impact of path heterogeneity on

the convergence of MPTCP. We tested three setups with

heterogeneity in terms of bandwidth, error rate or propagation
delay. Figure 6 shows the results when error rates (column
a) and RTTs (column b) vary across paths; the results with
different bandwidths are similar to column b of Fig. 3. In both
setups e-NMCC converges as fast as MP-RENO. In contrast,
on paths with different error rates LIA, OLIA and BALIA
converge much slower to their steady state, requiring roughly
400 s, 900 s and 800 s until their throughput is stabilized.
In paths with different RTTs, LIA, OLIA and BALIA present
even slower convergence, taking approximately 1000 s to reach
steady state. Finally, the resource utilization is roughly 1%
more than MP-RENO for all friendly algorithms.

F. Impact of Background Traffic

We then investigate the impact of background traffic on the
convergence of MPTCP. We evaluate MPTCPs performance
under three different levels of congestion, namely, when TREX
traffic constitutes approximately 80%, 40% and 20% of the
available bandwidth.11 Given that TREX does not perform
congestion control, hence the TREX traffic is unresponsive
to network congestion, we deploy real TCP flows along with
MPTCP ones in order to make the race for resources realistic.

Figure 7 shows the results in the three setups. We first
notice that convergence is faster when the background traffic
volume is higher, causing higher error-rates and less room

11TREX traffic is highly dynamic, presenting frequent bursts. The indicated
percentages represent the maximum seen ratios during the experiments.

10 PUBLISHED IN: IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, 2020

Fig. 4. MPTCP performance in a LAN with two disjoint paths, different
congestion control algorithms (rows 1-5) and transfer rates (columns a-b).

for connections to compete; the same correlation is observed
in Fig. 5. The convergence of e-NMCC is almost instant
(compared to RENO) in all setups. When TREX traffic is low
(column a), LIA and BALIA require approximately 600 s to
stabilize, while OLIA converges roughly after 300 s. With
regard to friendliness accuracy, LIA and OLIA grasp less than
their fair share of resources when moderate background traffic
is generated (Fig. 7(a-b)), thus performing poorly compared to
TCP; this issue was not met in previous setups. MPTCP with
NMCC grasps slightly more resources than TCP (up to 57%)
regardless of the background traffic volume.

G. Impact of a Third sub-flow

Finally, we investigate the impact of a third route on the
convergence of MPTCP. We extended our testbed by adding a
third network interface at each node in order to deploy a third
sub-flow. We tested three setups with different configurations.
Figure 8 shows the results when paths are identical (column a),
when latency varies (column b) and when bandwidth varies
(column c) across paths. The results of column a differ
from the equivalent setup with two paths (Fig. 3(b)), thus
showing that both the accuracy and convergence of MPTCP
friendliness are affected by the third route. The convergence of
MPTCP with MP-RENO is slower, requiring roughly 500 s,
and even more unfriendly, taking roughly 75% of resources,
thus showing that MPTCP can become unfriendly regardless of
congestion control. In all setups, we observe two consecutive

Fig. 5. MPTCP performance in a LAN with two disjoint paths, different
congestion algorithms (rows 1-5) and packet drop rates (columns a-b).

performance phases for all friendly algorithms; in the initial
phase, TCP increases its bandwidth share, while, in the later
phase, MPTCP increases its share. The phase transition hap-
pens roughly simultaneously for all algorithms, transitioning
the soonest and the latest in the setup of column c and a,
respectively. In all setups, the transition takes place faster
for e-NMCC, showing that it responds faster than the other
algorithms in this setup too. With regard to friendliness, the
benchmark algorithm, MP-RENO, is 10-15% more aggressive
that its theoretical performance, hence we can not safely
conclude that e-NMCC is unfriendly due to getting 10-20%
more resources that its prefect share.

H. Discussion of results

Our evaluation yielded interesting results about the accuracy
and the speed at which the different algorithms achieve TCP-
friendliness. In general, these results confirm that friendliness
towards single-path connections is respected by LIA, OLIA,
BALIA and e-NMCC, but the schemes vary considerably as
to how fast they reach it.

First, we point out that the Linux MPTCP implementa-
tion inherently introduces some convergence latency. Even
MP-RENO that does not include any friendliness mechanism
requires several seconds to enter the steady state. Second, we
found that e-NMCC converges as quickly as possible, in the
sense that it reaches stability simultaneously with MP-RENO
in all experiments, except for when three sub-flows are de-
ployed. In the last case, e-NMCC delivers friendliness instantly

PUBLISHED IN: IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, 2020 11

Fig. 6. MPTCP performance in a LAN with two disjoint paths, different
congestion control algorithms (rows 1-5) and heterogeneous paths in terms of
error-rate (column a) and RTT (column b).

but becomes unfriendly after roughly 400 s. Third, LIA, OLIA
and BALIA converge to TCP-friendliness considerably more
slowly than e-NMCC, the respective lag ranging from roughly
200 s (Fig. 3(a), 4(b)) up to 1000 s (Fig. 3(c), 4(a)). Their
performance is better over fat links with low propagation delay,
deteriorating noticeably as paths get narrower and longer.
However, all algorithms converge instantly when both paths
include high error-rate links (Fig. 5(b)) since the frequent con-
gestion events enable faster estimation of the path properties.

In terms of TCP-friendliness consistency, e-NMCC exhibits
fewer deviations across different setups compared to LIA,
OLIA and BALIA. Specifically, e-NMCC is slightly more
aggressive than single-path TCP in all scenarios, grasping
roughly 5% more resources than the perfect share. This mild
over-aggressiveness is an inherent characteristic of e-NMCC
when deployed in disjoint paths (where friendliness is not
an issue). Thereby, it normalizes the performance of the
fastest available path, a non-fixed characteristic over prolonged
periods, and gains a slight performance advantage due to
path diversity. On the other hand, the performance of LIA,
OLIA and BALIA varies across experiments, being faster
than single-path in some scenarios (Fig. 4(b)) and slower in
others (Fig. 4(a)), indicating that their friendliness scores are
sensitive to network conditions. Under sensible error rates,
BALIA is the most accurate (albeit, slow) algorithm, splitting
the network resources evenly. When background traffic is
considered, LIA and OLIA are overly friendly (Fig. 7(a-b)).

Fig. 7. MPTCP performance in a LAN with two disjoint paths, different
congestion control algorithms (rows 1-5) and different volumes of background
traffic (columns a-c).

VII. EVALUATION WITH THE htsim SIMULATOR

We next compare e-NMCC with LIA, NMCC, and MP-
RENO (UNCOUPLED) in five benchmark scenarios from
LIA’s evaluation [7] using the same simulator, htsim.12 As ht-
sim focuses on congestion control, ignoring packet scheduling,
it is lightweight and simulates large flows quickly, an impor-
tant property when studying performance in steady state. The
benchmark scenarios investigate MPTCP behavior in terms of
TCP-friendliness, resource utilization and load balancing.

Each scenario was repeated 500 times and each run lasted
1000 s; we consider only the final 200 s, to assess the
connections in steady state. The htsim simulator uses a coarse
grained Retransmission TimeOut (RTO) estimation, therefore
we consider only flows with non-frequent timeouts, as oth-
erwise timeouts would be incorrectly grouped in time. The
congestion events reported by htsim are 99% triple duplicates
and 1% timeouts, even though timeouts typically outnumber
triple duplicates in the Internet [20]. The frequency of triple
duplicates is expected to magnify the friendliness issue of
NMCC (Section IV), since Fast Retransmit controls congestion
in a more timely manner, preventing global congestion events.

A. TCP-friendliness

The first topology (see [7, Fig. 1] and Fig. 9(a’)) uses a
single bottleneck to investigate resource sharing between a

12OLIA and BALIA are not implemented in htsim.

12 PUBLISHED IN: IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, 2020

Fig. 8. MPTCP performance in a LAN with three disjoint paths, different
congestion control algorithms (rows 1-5), identical paths (column a) and paths
differing in latency (column b) or bandwidth (column c).

multipath (with two sub-flows) and a single-path connection.
We replicated the experiment and found that e-NMCC exhibits
perfect sharing, grasping 50% of the available resources, while
LIA is slightly more aggressive, grasping 53%, as shown
in Fig. 9(a); the results also validate the conclusions of the
analysis in section V. NMCC exhibits the expected over-
aggressiveness due to partial congestion events, thus getting
60% of resources (global congestion events are roughly 50% of
total events). We repeated the experiment for link throughputs
of 200-1000 packets/s, without measurable differences.

B. Resource Utilization

The second topology (see [7, Fig. 4] and Fig. 9(b’)) uses
two mismatched paths to explore resource utilization by the
multipath connection, which competes with a single-path con-
nection on each path. All algorithms achieve 100% resource
utilization but offer different levels of friendliness: e-NMCC
gets 53% of the resources on the widest path, LIA gets 52%,
NMCC 59% and MP-RENO 59%. The results are presented
in Fig. 9(b), where flow throughput is normalized to the
bandwidth of the widest path. NMCC performs similarly to
MP-RENO for two reasons: first, the RTT of the narrow path is
ten times the RTT of the wide path, hence m ≃ 1, and, second,
disjoint paths, by definition, generate partial congestion events.

The third topology (see [7, Fig. 2] and Fig. 9(c’)) uses
three links of capacity C to evaluate resource utilization as a

result of choosing the least-congested path. Specifically, three
multipath connections are deployed, each having one sub-flow
through one link and a second one through the other two
links, so that each link is used by three sub-flows. Ideally,
each multipath session should use only the least congested
path (the single link) and get a cumulative transfer rate of
C, instead of using the two links shared by the other sub-
flows, which would lead to a transfer rate of only 2C/3.
Figure 9(c) shows the throughput of each sub-flow normalized
to C. The results indicate that the algorithms do not maximize
resource utilization, but LIA performs slightly better than e-
NMCC, which performs sightly better than NMCC and MP-
RENO, scoring 81%, 79%, 77% and 77%, respectively. While
this under-utilization is the core motivation for OLIA [8], the
importance of pushing traffic exclusively to the “best” path is
debatable, as it can lead to poor responsiveness [13, Fig. 4]
and penalize performance in datacenters [7].

C. Load balancing

The fourth topology (see [7, Fig. 3] and Fig. 9(d’)) uses
four parallel links with different capacities to estimate the
load balancing efficiency of the multipath algorithm. Three
multipath connections are deployed, each competing with
two different multipath connections on two different links.
Ideally, the connections will balance congestion across all
links and perform similarly, achieving a cumulative capacity
of C. Figure 9(d) illustrates the performance of the three
connections normalized to C. e-NMCC utilizes 98% of the
network resources, while the other algorithms reach 100%.
The slight performance degradation occurs at the connection
using the widest paths, thus achieving better load balancing (st.
deviation of multipath connections’ performance is 12%, 14%,
15% and 17% for e-NMCC, LIA, NMCC and MP-RENO
accordingly), at the cost of lower resource utilization.

Finally, the fifth topology (see [7, Fig. 7] and Fig. 9(e’))
is a torus with five parallel links, again used to assess load
balancing efficiency. Each link is used by two sub-flows from
different connections, but one link is considerably narrower.
The multipath connections must balance congestion in all links
and perform similarly. The results are presented in Fig. 9(e),
which illustrates the throughput of the five flows normalized
to the fastest single-path measured. In all cases, resource
utilization is at 100% but throughput is not perfectly equalized,
as the connections sharing the narrow link differ from the
average, with the standard deviation being 9%, 9%, 12% and
15% for e-NMCC, LIA, NMCC and MP-RENO, respectively.

D. Discussion of results

The results of the simulations in the benchmark topologies
indicate that the TCP-friendliness goals of e-NMCC are met
under various conditions, with efficient resource utilization and
load balancing. We observe that e-NMCC is slightly better
than LIA (and every other algorithm in our evaluation) in
sharing the bottlenecks, since it tackles friendliness nearly
perfectly (Fig. 9(a)), but it exhibits a minor resource un-
derutilization compared to LIA (2% less in Fig. 9(c)) due
to not pushing all traffic in the least congested path, while

PUBLISHED IN: IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, 2020 13

Fig. 9. MPTCP performance in the benchmark topologies of [7]. Figures
illustrate the instant bandwidth share of multipath (MP) and single-path (SP)
connections normalized to the overall network capacity, unless otherwise
stated. Figure (a) examines TCP-friendliness, (b)-(c) resource utilization and
(e)-(d) load balancing.

offering similar load balancing with LIA (Fig. 9(d,e)). This
behavior is reasonable, since e-NMCC is designed to offer
instant and accurate TCP-friendliness, instead of using only
the “best” path. Therefore, e-NMCC is friendly to single-path
flows throughout the entire connection lifespan, as it exploits
all paths proportionally, thus offering enhanced responsiveness
and high performance, even in cases of RTT-mismatch [12].

VIII. INTEGRATION WITH LINUX MPTCP
e-NMCC can be directly integrated in the Linux kernel, as

TCP (and MPTCP) offers pluggable congestion control via

a special handler interface [21]. The e-NMCC code simply
overrides the handlers estimating the window increase upon
the successful delivery of an ACK and the Slow Start threshold
upon a congestion event. The information required to calculate
m and mth, such as the RTT, congestion window and Slow
Start threshold of the sub-flows, is available to each sub-
flow through the parameters srtt us, snd cwnd and ssthresh
respectively, hence the implementation is direct.13

The primary challenge is converting the normalized window
growth algorithm from RTT-based to packet-based. Assuming
a sub-flow in Congestion Avoidance where the throughput
increase rate with NMCC is

1

r′2
=

1

(mr)2
=

1/m2

r2

the increase of a friendly congestion window is 1/m2 over
the unmodified RTT. Measuring the congestion window, w, in
bytes, TCP grows by MSS2/w bytes, w/MSS times within
an RTT, for an overall growth of 1 MSS. By reducing the
amount of per-ACK increase of a sub-flow to MSS2/(m2w)
bytes, the cumulative increase of e-NMCC within an RTT is
MSS/m2, thus satisfying the friendliness requirement. Hence,
the friendliness factor m can be used to directly control the
growth of the congestion window upon the receipt of an
ACK, thus allowing e-NMCC to be integrated with TCP-like
transport protocols. We similarly adapt the e-NMCC algorithm
to handle the Slow Start phase.

The second challenge is estimating the segment loss proba-
bility, in order to ensure friendliness during partial congestion
events. We can approximate the segment loss probability of
a sub-flow through the max packets out parameter, which
holds the maximum number of on-the-fly packets of the
previous congestion round, thus approximating the maximum
window during that round. Assuming that throughput increases
and reductions balance out in steady state [7, Eq. 2], the
relationship of window size and error rate is w =

√
2/p,

hence we can estimate p as:

p = 2/max packets out2

The pseudocode for estimating mth in Linux MPTCP is
presented in Algorithm 1.

IX. CONCLUSIONS

We have focused on a drawback shared by the probabilistic
multipath congestion control of LIA, OLIA and BALIA,
namely, the long convergence period to TCP-friendliness.
Unlike previous studies dedicated to steady state results, we
monitored the instantaneous performance of the connections
throughout a session, using the real Linux implementation
of MPTCP. In most cases, the convergence latency was on
the order of minutes, questioning the effectiveness of these
algorithms with shorter flows.

The previously proposed NMCC algorithm meets the
TCP-friendliness objective instantly, but may become TCP-
unfriendly when congestion events affect only a subset of

13The source code of e-NMCC for Linux is available at
https://mm.aueb.gr/software.

14 PUBLISHED IN: IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, 2020

Algorithm 1 Estimation of mth upon loss.
1: procedure ESTIMATE A & B
2: A← 0, B ← 0, pmax ← 0
3: for (r ∈ subflows) do
4: rt ← srtt usr
5: wr ← snd cwndr
6: pr ← 2/max packets out

2
r

7: A← A+ wr/rr
8: B ← B + pr ∗ w2

r/r
2
r

9: if pmax < pr then
10: pmax ← pr
11: end if
12: end for
13: mth ← pmax ∗A ∗A/B
14: mth ← max(1,mth) ◃ Avoid over-aggressiveness
15: mth ← min(2,mth) ◃ Avoid infeasible decrease
16: end procedure

the sub-flows. We have, therefore, introduced e-NMCC, which
caters for TCP-friendliness upon both throughput increase and
decrease epochs, thus providing a comprehensive solution.

We characterized mathematically the behavior of the pro-
posed protocol in terms of TCP-friendliness, responsiveness
and utilization. Using the Linux implementation of MPTCP,
we have shown that e-NMCC offers fair resource sharing
timely, accurately, and consistently, thus being effective for
all types of flows, regardless of their duration. Finally, using
the htsim simulator, we explored the performance of e-NMCC
under a set of well-known benchmark scenarios, validating
that TCP-friendliness is enhanced, while resource utilization
and load balancing (in the long-run) are comparable to LIA.

REFERENCES

[1] V. Jacobson, “Congestion avoidance and control,” in Proc. of the ACM
SIGCOMM, August 1988.

[2] T. Henderson, E. Sahouria, S. McCanne, and R. Katz, “On improving
the fairness of TCP congestion avoidance,” in Proc. of the IEEE
GLOBECOM, August 1998.

[3] J. Widmer, R. Denda, and M. Mauve, “A survey on TCP-friendly
congestion control,” IEEE Network, vol. 15, no. 3, pp. 28–37, 2001.

[4] J. Qadir, A. Ali, K.-L. A. Yau, A. Sathiaseelan, and J. Crowcroft,
“Exploiting the power of multiplicity: a holistic survey of network-layer
multipath,” IEEE Communications Surveys & Tutorials, vol. 17, no. 4,
pp. 2176–2213, 2015.

[5] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural
guidelines for multipath TCP development,” IETF, RFC 6182, 2011.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc6182.txt

[6] C. Xu, J. Zhao, and G.-M. Muntean, “Congestion control design for
multipath transport protocols: a survey,” IEEE Communications Surveys
& Tutorials, vol. 18, no. 4, pp. 2948–2969, 2016.

[7] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
implementation and evaluation of congestion control for multipath TCP,”
in Proc. of the USENIX NSDI, March 2011.

[8] R. Khalili et al., “Opportunistic linked-increases congestion
control algorithm for MPTCP,” IETF, Internet Draft, 2015.
[Online]. Available: https://www.ietf.org/archive/id/draft-khalili-mptcp-
congestion-control-05.txt

[9] F. Kelly and T. Voice, “Stability of end-to-end algorithms for joint
routing and rate control,” ACM SIGCOMM Computer Communication
Review, vol. 35, no. 2, pp. 5–12, 2005.

[10] B. Hesmans, H. Tran-Viet, R. Sadre, and O. Bonaventure, “A first look
at real Multipath TCP traffic,” in Proc. of International Workshop on
Traffic Monitoring and Analysis (TMA), April 2015.

[11] S. Ihm and V. S. Pai, “Towards understanding modern web traffic,” in
Proc. of ACM IMC, June 2011.

[12] Y. Thomas, G. Xylomenos, C. Tsilopoulos, and G. C. Polyzos, “Multi-
flow congestion control with network assistance,” in Proc. of the IFIP
Networking, May 2016.

[13] Q. Peng, A. Walid, J. Hwang, and S. H. Low, “Multipath TCP: Analysis,
design, and implementation,” IEEE/ACM Transactions on Networking,
vol. 24, no. 1, pp. 596–609, 2016.

[14] M. Honda, Y. Nishida, L. Eggert, P. Sarolahti, and H. Tokuda, “Multipath
congestion control for shared bottleneck,” in Proc. of the PLFDNeT
Workshop, May 2009.

[15] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley, “Multi-
path TCP: a joint congestion control and routing scheme to exploit
path diversity in the internet,” IEEE/ACM Transactions on Networking,
vol. 14, no. 6, pp. 1260–1271, 2006.

[16] Y. Cao, M. Xu, and X. Fu, “Delay-based congestion control for multipath
TCP,” in Proc. of the IEEE ICNP, October 2012.

[17] M. Allman, V. Paxson, and E. Blanton, “TCP congestion
control,” IETF, RFC 5681, 2009. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc5681.txt

[18] H. Jiang and C. Dovrolis, “Passive estimation of TCP round-trip times,”
ACM SIGCOMM Computer Communication Review, vol. 32, no. 3, pp.
75–88, 2002.

[19] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP through-
put: A simple model and its empirical validation,” ACM SIGCOMM
Computer Communication Review, vol. 28, no. 4, pp. 303–314, 1998.

[20] ——, “Modeling TCP Reno performance: a simple model and its
empirical validation,” IEEE/ACM Transactions on Networking, vol. 8,
no. 2, pp. 133–145, 2000.

[21] S. Arianfar, “TCP’s congestion control implementation in Linux kernel,”
in Proc. of the Seminar on Network Protocols in Operating Systems,
January 2012.

