
IoT Resource Access utilizing Blockchains and
Trusted Execution Environments

Vasilios A. Siris, Dimitrios Dimopoulos, Nikos Fotiou, Spyros Voulgaris, George C. Polyzos

Mobile Multimedia Laboratory, Department of Informatics
School of Information Sciences & Technology

Athens University of Economics and Business, Greece
{vsiris, dimopoulosd, fotiou, voulgaris, polyzos}@aueb.gr

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. Accepted in Global IoT Summit, 17-21 June 2019.

Abstract—We consider IoT resources with a Trusted Execution
Environment (TEE) and propose a model to provide trusted re-
source access that is linked to blockchain payments, ensuring the
integrity and confidentiality of the IoT data. The model is built
on the widely used OAuth 2.0 open authorization framework,
which provides delegated authorization for IoT resources. We
utilize hash-lock and time-lock mechanisms to cryptographically
link trusted resource access, provided by the IoT resource’s TEE,
to authorization grants and blockchain payments. The model is
implemented in the OP-TEE open source port for the Raspberry
Pi that uses ARM’s TrustZone and is evaluated on the Rinkeby
public Ethereum testnet.

Index Terms—delegated authorization, distributed ledgers,
Trusted Execution Environment (TEE), hash-locks and time-locks

I. INTRODUCTION

Blockchains provide a decentralized trust system for exe-
cuting transactions and code. However, trust is only ensured
for data and code confined within the limits of a blockchain
and does not extend to the blockchain’s interaction with the
real world, e.g., calling outside APIs or obtaining external data.
Moreover, a blockchain does not provide confidentiality for the
data it records, since the data is replicated on all blockchain
nodes; however, such replication provides high availability and
transparency, which are important advantages of blockchain
systems. Finally, public blockchains based on Proof-of-Work
(PoW) consensus have a high transaction delay, high energy
consumption, and limited scalability.

Trusted Execution Environments (TEEs) provide a secure
environment for executing code and storing data. A TEE
runs in isolation and in parallel to the normal (or “rich”)
operating system, ensuring the confidentiality and integrity
of code and data. However, because a TEE runs on a single
device, it cannot provide high availability nor decentralized
trust. Combining blockchains and TEEs can enable systems
with the complementary gains of both: decentralized trust and
high availability from blockchains on one hand, and privacy
and trust when interacting with the real world through TEEs
on the other hand. Moreover, combining TEEs from different
manufacturers with blockchain technology can reduce the
reliance on manufacturers building trustworthy TEE hardware,
which has been a key criticism of TEEs. Interestingly, combin-

ing TEEs with blockchains can also provide an environment
for transparently detecting and creating immutable proofs of
manufacturers that build untrustworthy hardware. In any case,
care must be taken when combining TEEs and blockchains
such that their combination does not cancel each other’s
advantages [1], [2], [3].

Blockchains and TEEs can be combined following two
directions. In the first, TEEs can be used to execute blockchain
functionality, such as transaction verification and decentralized
consensus; using TEEs can improve the privacy and trust of
a single node, which in turn can help increase the overall
efficiency and scalability of the blockchain system. This is
the direction investigated in [2], [3], [4], [5], [6], [7], [8],
and by Intel’s Microsoft’s Coco framework [9]. The second
direction utilizes TEEs to provide trust and privacy when
blockchains interact with the real world. For example, [10],
[11], AnyLedger [12], and Weeve [13] investigate TEEs for
developing secure wallets. The works in [14], [15] and Weeve
[13] use TEEs for ensuring the integrity and privacy of IoT
measurements. Another line of work proposes an overlay of
oracles that utilizes TEEs for enabling blockchains to interact
with the real world in a trusted manner [16] or for generating
random numbers [17]. The works in [18], [19] use TEEs for
improving off-chain transactions. We further discuss related
work and identify how it differs from the work in this paper
in Section V.

Our goal is to investigate how TEEs in IoT devices can
be utilized together with a blockchain to provide delegated
authorization and trustful access to IoT resources. The pro-
posed model utilizes hash-lock and time-lock mechanisms for
cryptographically linking blockchain payments and authoriza-
tion grants, while the IoT device’s TEE ensures access to the
resource if the linked payment is performed. Hash-lock and
time-lock mechanisms are interledger or cross-chain mecha-
nisms [20], [21]; hence, a TEE can be viewed as a trusted
local ledger, and interledger mechanisms are used to bind
transactions and capabilities across blockchains, distributed
ledgers, and TEEs; see Figure 1.

The OAuth 2.0 delegated authorization framework is a
widely used IETF standard that is currently being investi-
gated for authorization in IoT environments by IETF’s Au-
thentication and Authorization for Constrained Environments

interledger
mechanisms

interledger
mechanisms

Fig. 1. Hash-lock and time-lock interledger mechanisms can be used for
linking transactions across blockchains, distributed ledgers, and TEEs, which
can be viewed as trusted local ledgers.

(ACE) Working Group [22], [23]. The OAuth 2.0 framework
can also be used in cases where centralized management of
authorization policies is advantageous. An important feature
of OAuth 2.0 is that it provides authorization for different
levels of access. OAuth 2.0 mainly defines the format of the
authorization message exchange and the approach presented in
this paper for exploiting TEEs with blockchains can be applied
to the general context of IoT resource access authorization.

In summary, the contributions of the paper are the following:
• We present a model that combines TEEs and blockchains

using hash-locks and time-locks to cryptographically link
authorization grants to payments, and ensure access to
IoT resources.

• We implement the model using the OP-TEE port for
the Raspeberry Pi, which uses ARM’s TrustZone, and
evaluate it using the Rinkeby public Ethereum testnet.

The remainder of the paper is structured as follows: In Sec-
tion II we present some background on delegated authorization
using OAuth 2.0, hash and time-locks, and ARM’s TrustZone
TEE. In Section III we present a model that combines TEEs
and blockchains using hash and time-locks, and in Section IV
we present its implementation and evaluation. Finally, in
Section V we present related work and in Section VI we
present conclusions and our ongoing work.

II. BACKGROUND

In this section we present some background on the OAuth
2.0 delegated authorization framework, hash-lock and time-
lock mechanisms, and ARM’s TrustZone TEE.

A. OAuth 2.0 delegated authorization

OAuth 2.0 is a framework for delegated authorization to
access a protected resource [24]. It enables a third party
application (client) to obtain access with specific permissions
to a resource, with the consent of the resource owner. Access to
the resource is achieved through access tokens, created by an
authorization server. The specific format of the access tokens,
which will be discussed in more detail later, is opaque to the
clients and to OAuth 2.0. The authorization consent by the
resource owner is provided after the owner is authenticated;
however, the authentication procedure is not part of OAuth 2.0.
Authorization is provided for different levels of access, such
as read and write/modify, which are termed scopes, and for a
specific time interval. The OAuth 2.0 authorization flows can
involve intermediate messages exchanged before the access
token is provided by the authorization server. The details of

the authorization flow does not impact the general approach of
the proposed models, hence in our discussion we only consider
the initial client request and the authorization server’s response
containing the access token.

One type of access tokens are bearer tokens. Bearer to-
kens allow the holder (bearer) of the token, independently
of its identity, to access the protected resource. OAuth 2.0
assumes secure communication between the different entities.
Moreover, it assumes that the protected resource is always
connected to the Internet, hence can communicate with the
authorization server to check the validity and scope of the
access tokens presented by clients requesting resource access.
Both of the above two requirements are not always possible
in constrained environments [22].

JSON Web Token (JWT) is an open standard that defines a
compact format to transmit claims between parties as a JSON
object [25]. JWTs can use the JSON Web Signature (JWS)
structure to digitally sign or integrity protect claims with
a Message Authentication Code (MAC) [26]. Hence, unlike
simple bearer tokens, JWT/JWS tokens are self-contained, i.e.,
they include all the necessary information for the protected
resource to verify their integrity without communicating with
the authorization server. Of course, this requires that during its
initialization phase the protected resource is cryptographically
bound with the authorization server.

In constrained environments, in addition to intermittent or
no connectivity, the communication between the client and the
protected resource is not secure, hence transmitting bearer to-
kens or even self-contained JWTs over such insecure links can
allow other parties to obtain them through eavesdropping. For
this reason in constrained environments Proof-of-Possession
(PoP) tokens are used [23]. PoP tokens include a normal access
token, such as a JWT/JWS, and a PoP key [27]: access to
the protected resource is not possible solely with the access
token; the PoP key is necessary. Hence, the PoP key must
be kept secret and not transmitted in cleartext over insecure
links. Finally, more efficient encoding of access tokens based
on CBOR (Concise Binary Object Representation) is proposed
to reduce the amount of data transferred [23].

B. Hash-locks and time-locks

A hash-lock is a cryptographic lock that can be unlocked
by revealing a secret whose hash is equal to the lock’s value
h. Unlocking a hash-lock can be one of the conditions for
performing a transaction or for executing a smart contract
function. On a single blockchain, a hash-lock can be linked to
an off-chain capability, e.g., message decryption, if the hash-
lock secret is the key that decrypts the message. Hash-locks
can be used on two or more blockchains that support the
same hash function, to link a transaction on one chain to one
on the other chain: if the two transactions have hash-locks
with the same value, then unlocking one would reveal the
secret that unlocks the other; hence, the two transactions are
cryptographically linked through a dependence relation.

Time-locks are locks on a blockchain that can be unlocked
only after an interval has elapsed. The time interval can be

measured in absolute time or in the number of blocks mined
after a specific block. One usage of time-locks are refunds: a
user (payer) can transfer an amount of currency (deposit) to a
smart contract address. The smart contract can have a function,
which typically also includes a hash-lock, for a second user to
transfer the deposit to another account (the payee’s account).
However, if the second user never calls this function, then the
first user’s deposit could be locked indefinitely in the smart
contract’s account. To avoid such indefinite locking of funds,
the smart contract can also include a refund function that
allows the first user to transfer the amount he/she deposited
back to the his/her account; however, this function can be
called only after some time interval, which is the interval in
which the second user must transfer the deposit from the smart
contract account to the payee’s account. The above example
shows how time-locks can be used to allow some functionality
only after some time interval has passed.

Contracts that include both hash and time-locks are referred
to as hashed time-lock contracts (HTLCs) [20]. HTLCs can be
implemented in blockchains with simple scripting capabilities,
such as the Bitcoin blockchain, without requiring the advanced
functionality of smart contracts.

C. Trusted Execution Environment and ARM TrustZone

TEEs provide a secure environment for executing code
and storing data. A TEE runs in isolation and in parallel to
the normal (or “rich”) operating system (OS), ensuring the
confidentiality and integrity of code and data. The TEE system
architecture is defined in [28] by GlobalPlatform, a non-profit
industrial association. An important feature of TEEs is that
they can provide privileged and secure access to peripherals.
Device peripherals can be hardware-isolated from the rich OS
and controlled only by the TEE, thus malware running in the
rich OS cannot access those peripherals.

ARM TrustZone is one example of a TEE following a
System on a Chip (SoC) approach. ARM’s TrustZone intro-
duces a special secure CPU mode alongside the regular (or
normal) mode, thereby establishing the notions of a “secure
world” and a “normal world”. When secure mode is active, the
software running on the CPU has a different view of the whole
system than software running in non-secure mode. In this way,
system functions, such as security functions and cryptographic
credentials, can be hidden from the normal world. ARM’s
TrustZone functionality is defined by the software running in
secure mode, which can range from a slave process to a full op-
erating system, making TrustZone significantly more flexible
than TPM chips whose functionality is hard-wired. TrustZone
differs from Intel’s Software Guard eXtension (SGX), which
is a hardware extension on Intel CPUs, in that the latter
supports multiple secure enclaves in the same system, while
TrustZone supports only one secure world. ARM’s TrustZone
is widely deployed on mobile devices such as smartphones and
micro-controller devices. AMD and Nvidia also have products
supporting TEE. Other related work includes the Keystone

client

AS

Internet

Authorization

Server

IoT resource

with TEE

D2D

Fig. 2. High-level architecture for delegated authorization exploiting an IoT
resource’s Trusted Execution Environment (TEE).

open-source project1 for building TEEs with secure hardware
enclaves based on the RISC-V architecture.

III. DELEGATED AUTHORIZATION UTILIZING
BLOCKCHAINS AND TEES

The high-level architecture of the proposed model is shown
in Figure 2. Authorization for IoT resources is outsourced to
an authorization server (AS), which can provide authorization
for multiple IoT resources. Resource access is provided by
a device with a TEE, which supports integrity and confiden-
tiality. Depending on the specific type of TEE technology,
different restrictions can exist. For example, ARM’s TrustZone
supports a single secure enclave, whereas Intel’s SGX can
support multiple enclaves.

Figure 2 shows that the client device and the AS interact
with the blockchain, whereas the IoT resource does not
have continuous network connectivity. The client accesses the
IoT resource directly using device-to-device communication.
Moreover, because the device-to-device link is insecure, the
client and IoT resource need to establish a shared secret key to
secure their direct link; this is achieved using PoP tokens that
were discussed in Section II-A. Note that remote attestation of
the IoT resource can still be performed in periods where the
IoT resource has network connectivity. Alternatively, remote
attestation can be performed on-demand, using the client
as an intermediate node, similar to how the client is the
intermediate node between the IoT resource and the AS for
the authorization procedure described below.

We assume that the client, the AS, and the resource owner,
have an account (public/private key pair) on the blockchain.
The client will use his account to pay for accessing the
IoT resource. A client’s deposit, assuming the authorization
procedure is smoothly completed, will be transferred to the
resource owner’s account. Finally, the AS has an account
to send transactions in order to set up a Hashed Time-Lock
Contract (HTLC) as we discuss below.

Figure 3 shows the messages exchanged among the client,
the AS, and the IoT resource. We assume that service dis-
covery during which the IoT resource is discovered and the

1https://keystone-enclave.org/

Client deposit

Client

HTLC with hash h: client deposits amount that is

transferred to resource owner when secret s is submitted

s

After step 8, payment is

transferred to resource

owner account

Blockchain
Resource

Get s

EPoP(s)

7.

6.

8.

9.

EPoP(h), EKResource(s)

h=Hash(s)

Request

EKResource(PoP), PoP, token, price

1.

2.
EPoP(Request, token), EKResource(PoP)

h, EKResource(s)

3.

4.
5.

AS

Normal OAuth2/ACE

message exchange

Hash(EKResource(PoP), PoP, token, price), h

10.

Fig. 3. Message exchange for access to the IoT resource with a TEE. The Trusted Application running in the TEE is responsible for generating the secret s,
computing its hash h = Hash(s), and ensure that the client provides the true secret to obtain resource access (Step 10).

identification of the AS that handles authorization requests
for the IoT resource has already occurred and is not shown
in Figure 3. The AS that handles the authorization requests
can be discovered by sending an initial unauthorized resource
request message to the IoT resource [23] or through a QR code
located on the IoT resource. Steps 1 and 2 include the normal
OAuth 2.0 message exchange between the client and the AS.
According to OAuth 2.0, the communication between the
client and the AS is secured using TLS, hence the information
exchanged in Steps 1 and 2 are secured. After these two steps,
the client has obtained the PoP key with which it can establish
a secure link with the IoT resource. This is possible since the
client also receives from the AS and forwards to the IoT device
over the device-to-device connection the PoP key encrypted
with the secret key KResource that the IoT resource shares with
the AS; sharing of a secret key between the AS and the IoT
resource can be performed during the resource’s initialization.
In Step 3, the client forwards the encrypted PoP key to the
IoT resource along with the access token. The above procedure
is followed because, as shown in Figure 2, the IoT resource
does not have continuous network connectivity but only D2D
connectivity. On the other hand, if the IoT resource had
continuous network connectivity, then it could alternatively
obtain the PoP key directly from the AS. As shown in Figure 3,
interaction of the client and the IoT resource can still be
performed using device-to-device communication, even if the
IoT resource had continuous network connectivity.

When the IoT device receives the access token, it verifies
its validity. If the access token is formatted as a signed JWT,
then this verification involves checking the signature included
in the JWT token. Alternatively, if the IoT resource had con-
tinuous network connectivity, then it could use introspection to

communicate with the AS in order to verify the access token
and the corresponding access rights that it allows [23].

After verifying the access token, the IoT resource generates
a secret s and computes its hash h = Hash(s), which
will be used in the hash-lock of the payment contract. In
Step 4, over the secure communication channel it established
with the client, the IoT resource sends the hash h and the
secret s encrypted with the secret key KResource that the IoT
resource shares with the AS. After receiving the hash h and
EKResource

(s), the client forwards both to the AS in Step 5.
In Step 6, the AS creates a hashed time-lock payment on the
blockchain. The hash-lock is the same h that the AS received
from the resource through the client, while the price is what
the AS sent to the client in Step 2. Additionally, in Step 6
the hash of the authorization information the AS sent to the
client in Step 2 is also submitted to the blockchain; in the
case of disputes, this hash is a non-repudiated receipt of the
information that the AS sent to the client.

Note that after Step 6, due to the transparency of trans-
actions stored on the blockchain, the client can verify that
the payment contract hash is the same as the value h that it
had received from the IoT resource. Additionally, the payment
contract also has a time-lock, hence the client deposit and
disclosure of the secret s by the AS, which we discuss below,
must occur within a maximum time interval; the time-lock
allows either parties (client or AS) to abort the procedure, if
the other party has delayed taking the action on its part. Hence,
there is no need for trust between the client and the AS.

The client deposits the price for resource access to the
blockchain contract in Step 7. The deposit is not transferred
directly to the resource owner’s account, but to the payment
contract’s account which acts as an escrow service. The deposit

is transferred to the resource owner’s account only when the
AS reveals to the contract the secret s that unlocks the hash-
lock; note that it is necessary that the hash function algorithm
used at the IoT resource for computing the hash is the same
as the hash function in the blockchain contract. If the AS does
not reveal the secret s within the time defined by the contract’s
time-lock, then the client can submit a refund request for the
deposit to be returned to the client’s account; hence, by jointly
using hash-locks and time-locks, the payment contract is a
Hashed Time-Lock Contract (HTLC) [20] and the two actions,
client deposit and AS revealing the secret s, either both happen
or neither of the two happens, i.e., they are atomic. If the above
events occur smoothly, then the secret s would be revealed
on the blockchain. Hence, the client can obtain the secret s
in Step 9 and send it to the IoT resource in order to obtain
access (Step 10). Note that once the secret s is revealed on the
blockchain anyone can obtain it; however, the secret alone is
not enough to gain access to the IoT resource since both the
access token and the PoP key are required.

Since the secret and hash were produced in the IoT re-
source’s TEE and access to the resource is also provided
through the TEE, knowledge of the secret s, together with the
access token and PoP key, ensure that the client can access
the IoT resource according to the scope defined in the access
token. From a high-level perspective, the TEE can be viewed
as a trusted local ledger. The proposed model uses hash-
locks and time-locks, which are interledger mechanisms that
enable atomic cross-chain trading or atomic swaps [21], to
cryptographically bind authorization grants and access through
a TEE with blockchain payments. Using the same interledger
mechanisms for cryptographically linking transactions on dif-
ferent blockchains, distributed ledgers, and TEEs, which are
viewed as a local trusted ledger, allow for simplicity that can
provide higher security and efficiency.

IV. EVALUATION

Our implementation of the IoT resource is based on the
OP-TEE (Open Portable Trusted Execution Environment)
open source port for the Raspberry Pi2, which uses ARM’s
TrustZone. OP-TEE follows the GlobalPlatform TEE system
architecture [28]. The secure world TEE runs the Linux OP-
TEE operating system. The module providing the IoT resource
access runs as a Trusted Application in the OP-TEE OS and
performs the security operations that include generating the
secret s, computing its hash h = Hash(s), and verifying that
the client provides the true secret s to obtain resource access.
The module for providing the IoT resource’s service is also
executed in the TEE; this ensures3 the IoT data’s integrity
and confidentiality and that the IoT resource will provide the
intended service to the client if the latter provides the true
secret s. A Client Application running in the normal world
uses GlobalPlatform’s TEE client API to communicate with
the Trusted Application.

2https://www.op-tee.org/docs/rpi3/
3The degree to which this is guaranteed depends on the frequency/time that

attestation is performed.

TABLE I
GAS AND DELAY

GAS PRICE=2.5 GWEI. 1 GWEI=$1.1 · 10−7 ON FEB 2, 2019.
Transaction Gas (cost in $) Delay in seconds

Contract creation 473 508 (0.130) -
Set payment information (Step 6) 32 231 (0.009) 13.6

Client deposit (Step 7) 28 287 (0.008) 14.9
Send secret s (Step 8) 41 949 (0.012) 15.0

For the evaluation we used a local Ethereum node running
Go-Ethereum4 that was connected to the public Ethereum
testnet Rinkeby5. Smart contracts were written in Solidity with
the Remix6 web-based editor. The AS was based on a PHP
implementation of the OAuth 2.0 framework7. The AS used
Web3.js to interact with the Rinkeby blockchain.

Table I shows the gas, which quantifies the amount of
EVM (Ethereum Virtual Machine) resources used, for the
contract creation and the three transactions in Steps 6, 7, and
8 of Figure 3. The transactions are submitted with gas price
2.5 Gwei. The creation of the contract has the largest gas cost,
which is one order of magnitude larger than the cost of the
three transactions. Step 8 has higher gas than Steps 6 and 7
because it includes checking that the secret s submitted by
the AS satisfies h = Hash(s). Also, Step 6 has higher gas
than Step 7 because the former submits two hashes to the
blockchain, while Step 7 submits only the deposit, Figure 3.

The transaction delay shown in Table I are the average
values from 20 executions. The 95% confidence interval was
smaller than ±0.7 seconds of the averages shown. Both the
average transaction delay and its standard deviation depend on
the gas price: using a gas price smaller than 2.5 Gwei would
result in both a higher average delay and a higher standard
deviation. As expected, the blockchain transaction delay is
significantly higher than the delay when the client interacts
with the AS, Steps 1 and 2 in Figure 3, and when the client
interacts with the IoT resource, Steps 3 and 4, which are both
less than 0.08 seconds.

V. RELATED WORK

Teechain [19] is an off-chain payment network that uses
TEEs to secure funds in payment channels, without requir-
ing synchronous access to the blockchain as in the case
of payment channels between devices without TEEs. The
work in [18] utilizes TEEs to link off-chain payments with
outsourced computations. Specifically, a client requesting out-
sourced computations verifies the attestation from the TEE
of the executing node before providing an off-chain payment
channel update. With this approach the attestation functionality
is bundled with the payment channel functionality. On the
other hand, the approach in this paper keeps the two functions
distinct, which yields a simpler design, while also allowing
each to be modified independently without affecting the other.
Furthermore, the functions can be performed by different
entities, which offers greater flexibility.

4https://geth.ethereum.org/
5https://www.rinkeby.io/
6https://remix.ethereum.org/
7https://github.com/bshaffer/oauth2-server-php

Prior work has investigated TEEs for data privacy and
integrity. In particular, [10] and [11] investigates TrustZone for
protecting private keys and blockchain headers that are nec-
essary for verifying transactions in a lightweight blockchain
wallet. AnyLedger [12] and Weeve [13] have a similar target.
The works in [14], [15], [13] consider TEEs for ensuring the
integrity and privacy of IoT measurements. In [14], a verifier
performs remote attestation to ensure the trustworthiness of
IoT measurements utilizing ARM’s TrustZone. Another line
of work proposes an overlay of oracles that utilizes TEEs for
allowing blockchains to interact with the real world [16] or
for generating random numbers [17]. The work in [2], [5],
[6] considers an overlay of hardware enclaves to execute and
ensure the confidentiality of smart contracts, while ensuring
integrity and availability based on existing public blockchains
like Ethereum. Related work that utilizes TEEs and blockchain
functionality, such as transaction verification and decentralized
consensus, essentially fusing TEE and blockchain technology,
is investigated in [4], [7], [8] and by Microsoft’s Coco frame-
work [9]. Unlike the above, this paper uses hash and time-
lock mechanisms for cryptographically linking transactions
and functionality in TEEs and blockchains.

Finally, other works such as [29], [30] investigate
blockchain-based authorization without however considering
TEEs. This is also the case for our previous paper [31] which
investigates authorization based on smart contracts and [32]
which investigates micropayments for IoT resource access.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a model for combining TEEs and
blockchains to provide IoT resource access with a high level
of trust that the IoT resource will provide the intended ac-
cess that is linked to the corresponding payment, while also
ensuring the integrity and confidentiality of the IoT data. The
implementation of the model uses the OAuth 2.0 authorization
framework and the OP-TEE port to Raspberry Pi. Our ongoing
work is investigating using smart contracts on permissioned
ledgers for handling authorization requests, cryptographically
linked with payments performed on a public ledger. We are
also investigating off-chain transactions for resource access in
constrained IoT environments to reduce the contract execution
cost compared to on-chain transactions.

ACKNOWLEDGEMENTS

This research was supported by the EU funded Horizon
2020 project SOFIE (Secure Open Federation for Internet
Everywhere), under agreement No. 779984, and by the Athens
University of Economics and Business Research Center.

REFERENCES

[1] M. Brandenburger and C. Cachin, “Challenges for Combining Smart
Contracts with Trusted Computing,” in Proc. of 3rd Workshop on System
Software for Trusted Execution (SysTEX), 2018.

[2] R. Cheng et al., “Ekiden: A Platform for Confidentiality - Preserving,
Trustworthy, and Performant Smart Contracts,” arXiv:1804.05141v5,
September 2018.

[3] H. Dang, A. Dinh, E.-C. Chang, and B. C. Ooi, “Chain of Trust: Can
Trusted Hardware Help Scaling Blockchains?” arXiv:1804.00399v3,
August 2018.

[4] H. Sawtooth, “Proof of Elapsed Time (PoET) Specification,” 2016. https:
//sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html

[5] M. Bowman, A. Miele, M. Steiner, and B. Vavala, “Private Data Objects:
an Overview,” arXiv:1807.05686v2, November 2018.

[6] R. Yuan et al., “ShadowEth: Private Smart Contract on Public
Blockchain,” Journal of Computer Science and Technology, vol. 33,
no. 3, pp. 542–556, May 2018.

[7] Trias, “Trustworthy and Reliable Intelligent Autonomous Systems,”
White Paper Version 1.0, 2018. https://www.trias.one/whitepaper

[8] M. Ahmed and K. Kostiainen, “Don’t Mine, Wait in Line: Fair
and Efficient Blockchain Consensus with Robust Round Robin,”
arXiv:1804.07391v2, January 2019.

[9] Microsoft, “The Confidential Consortium Blockchain Framework: Tech-
nical Overview,” August 2017.

[10] M. Gentilal, P. Martins, and L. Sousa, “TrustZone-backed bitcoin
wallet,” in Proc. of Fourth Workshop on Cryptography and Security
in Computing Systems (CS2), 2017.

[11] W. Dai et al., “SBLWT: A Secure Blockchain Lightweight Wallet Based
on Trustzone,” IEEE Access, vol. 6, pp. 40 638–40 648, August 2018.

[12] B. Djukic and L. Pieri, “AnyLedger: Embedded wallet for decentralized
IoT,” 2018. www.anyledger.io/whitepaperAnyLedger.pdf

[13] M. Davidsen, S. Gajek, M. Kruse, and S. Thomsen, “Empowering the
Economy of Things,” 2018. https://weeve.network/weeve whitepaper.
pdf

[14] J. Park and K. Kim, “TM-Coin: Trustworthy Management of TCB
Measurements in IoT,” in Proc. of IEEE PERCOM Workshop On
Security Privacy And Trust In The Internet of Things, 2017.

[15] G. Ayoade, V. Karande, L. Khan, and K. Hamlen, “Decentralized IoT
Data Management Using BlockChain and Trusted Execution Environ-
ment,” in Proc. of IEEE International Conference on Information Reuse
and Integration for Data Science, 2018.

[16] F. Zhang et al., “Town Crier: An Authenticated Data Feed for Smart
Contracts,” in Proc. of ACM SIGSAC Conference on Computer and
Communications Security, 2016.

[17] Oraclize, “A Scalable Architecture for On-Demand, Untrusted
Delivery of Entropy,” 2017. https://www.oraclize.it/papers/random
datasource-rev1.pdf

[18] M. Al-Bassam et al., “Airtnt: Fair Exchange Payment for Outsourced
Secure Enclave Computations,” arXiv:1805.06411, May 2018.

[19] J. Lind et al., “Teechain: Scalable Blockchain Payments using Trusted
Execution Environments,” arXiv:1707.05454v2, December 2018.

[20] Bitcoin Wiki, “Hashed Timelock Contracts (HTLC),”
https://en.bitcoinwiki.org/wiki/Hashed Timelock Contracts

[21] ——, “Atomic cross-chain trading,”
https://en.bitcoinwiki.org/wiki/Atomic cross-chain trading

[22] L. Seitz et al., “Use Cases for Authentication and Authorization in
Constrained Environments,” RFC 7744, IETF, January 2016.

[23] ——, “Authentication and Authorization for Constrained Environments
(ACE) using the OAuth 2.0 Framework (ACE-OAuth),” IETF Draft,
March 27, 2019.

[24] D. Hardt et al., “The OAuth 2.0 Authorization Framework,” RFC 6749,
Standards Track, IETF, October 2012.

[25] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),” RFC
7519, Standards Track, IETF, May 2015.

[26] ——, “JSON Web Signature (JWS),” RFC 7515, Standards Track, IETF,
May 2015.

[27] M. Jones, J. Bradley, and H. Tschofenig, “Proof-of-Possession Key
Semantics for JSON Web Tokens (JWTs),” RFC 7800, Standards Track,
IETF, April 2016.

[28] GlobalPlatform, “TEE System Architecture v1.2,” December 2018.
https://globalplatform.org/specs-library/tee-system-architecture-v1-2/

[29] M. P. Andersen et al., “WAVE: A Decentralized Authorization System
for IoT via Blockchain Smart Contracts,” University of California at
Berkeley, Tech. Rep., December 2017.

[30] D. D. F. Maesa, P. Mori, and L. Ricci, “Blockchain based access control,”
in Proc. of 17th IFIP Distributed Applications and Interoperable Systems
(DAIS), 2017.

[31] N. Fotiou, V. A. Siris, and G. C. Polyzos, “Interacting with the Internet
of Things using Smart Contracts and Blockchain Technologies,” in Proc.
of 7th Int’l Symp. on Security & Privacy on Internet of Things, in
conjunction with SpaCCS, 2018.

[32] N. Fotiou, V. A. Siris, G. C. Polyzos, and D. Lagutin, “Bridging the
cyber and physical worlds using blockchains and smart contracts,” in
Proc. of Workshop on Decentralized IoT Systems and Security (DISS),
in conjunction with NDSS, 2019.

https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html
https://www.trias.one/whitepaper
www.anyledger.io/whitepaperAnyLedger.pdf
https://weeve.network/weeve_whitepaper.pdf
https://weeve.network/weeve_whitepaper.pdf
https://www.oraclize.it/papers/random_datasource-rev1.pdf
https://www.oraclize.it/papers/random_datasource-rev1.pdf
https://globalplatform.org/specs-library/tee-system-architecture-v1-2/

	Introduction
	Background
	OAuth 2.0 delegated authorization
	Hash-locks and time-locks
	Trusted Execution Environment and ARM TrustZone

	Delegated authorization utilizing blockchains and TEEs
	Evaluation
	Related work
	Conclusions and future work
	References

