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Abstract—We present and evaluate models that allow clients
to access IoT resources using secure and trusted device-to-
device (D2D) communication, while utilizing smart contracts
to obtain the benefits of blockcain technology. These benefits
include decentralized trust, immutability, transparency, and high
availability. The models consider different network connection
capabilities of the clients and the IoT resources, namely con-
tinuous network connectivity and D2D-only connectivity. We
describe two approaches for utilizing blockchains and smart
contracts in the authorization process: in the first approach,
only hashes of the authorization information are recorded on the
blockchain. In the second approach, a smart contract handles
authorization requests. We implement the approaches using
the OAuth 2.0 delegated authorization framework and evaluate
the implementations on the public Ethereum testnet Rinkeby,
in terms of execution cost, contract creation cost, and delay.
Our evaluation quantifies the tradeoffs of blockchain cost and
smart contract functionality, such as blocking and non-blocking
operation, and the reduction of the transaction cost that can be
achieved when multiple authorization requests are concatenated
in a single transaction.

Index Terms—delegated authorization, blockchains, dis-
tributed ledgers, constrained IoT devices

I. INTRODUCTION

The Internet of Things will involve a huge number of
devices, acting both as consumers of services (or clients) and
providers of services (or resources), which can be sensors or
actuators. Some of these devices will be constrained in terms
of processing, memory, energy, and network connectivity.
Due to their constrained resources, performing authentication
and authorization by the IoT devices themselves will not be
possible in the majority of cases. Additionally, due to the huge
number of devices, there can be significant advantages in terms
of scalability, total cost reduction, and improved security if
the authentication and authorization functionality is offloaded
from the IoT devices to nodes with sufficient processing and
storage resources to handle authentication and authorization
for a large number of devices.

Distributed ledger technologies such as blockchains provide
an immutable ledger offering decentralized trust, transparency,
and high availability. These features can provide advantages
when applied to the IoT [1]. However, not all devices would
be capable of interacting directly with the blockchain and

even if they could, due to security and overall management,
direct interaction with blockchains might not be desirable. The
interaction with a blockchain, similar to the authentication and
authorization functionality, can be offloaded to capable nodes.

The goal of this paper is to present and evaluate different
architectures for providing delegated authorization using smart
contracts that enable clients to use secure and trusted device-
to-device (D2D) communication to access IoT resources.
Clients and IoT resources can have different capabilities in
terms of network connectivity, processing power, and memory.
Secure refers to keeping the authorization information that
needs to be exchanged confidential, whereas trusted refers to
all entities performing the actions intended by their owners.
D2D communication can be provided by technologies such as
bluetooth, WiFi direct, and cellular D2D.

Our realization of the proposed models considers the widely
used IETF standard OAuth 2.0 for delegated authorization,
which is based on access tokens. OAuth 2.0 is being inves-
tigated for authorization in IoT environments by IETF’s Au-
thentication and Authorization for Constrained Environments
(ACE) Working Group [2], [3]. The OAuth 2.0 framework
can also be used in cases where centralized management
of authorization policies is beneficial. An important feature
of OAuth 2.0 is that it provides authorization for different
levels of access, termed scopes. OAuth 2.0 mainly defines the
format of the authorization message exchange, and the models
presented in this paper can be applied to the general context
of IoT resource access authorization.

In summary, the contributions of the paper are the following:
• We present and discuss models for providing secure

and trusted D2D-based IoT resource access based on
smart contracts that consider different network connection
capabilities of the clients and the IoT resources.

• We implement the proposed models in smart contracts
with blocking and non-blocking operation, and with sup-
port for the concatenation of authorization requests.

• We evaluate the implementations on the public Ethereum
testnet Rinkeby, in terms of the execution cost, contract
creation cost, and delay, and quantify the tradeoffs be-
tween blockchain cost and smart contract functionality.

Our previous work [4], [5], [6], [7] assumed that the IoT
resource does not have continuous network connectivity,



whereas the client both has continuous network connectivity
and interacts directly with the blockchain. In the current
paper we consider scenarios where the client doesn’t have
continuous network connectivity and doesn’t interact directly
with the blockchain. Additionally, we investigate non-blocking
operation of smart contracts and concatenation of authorization
requests that were not investigated in our previous work.

The remainder of the paper is structured as follows: In Sec-
tion II we discuss some motivating use cases and in Section III
we present some background on delegated authorization using
OAuth 2.0 and the advantages from utilizing blockchains
and smart contracts for authorization in IoT environments.
In Section IV we present different architectures for D2D-
based IoT resource access that utilize blockchains, considering
different network connection capabilities of the client and
the IoT resource. In Section V we present the message
exchange between the entities involved, and in Section VI we
present the implementation and the evaluation of the proposed
models. Finally, in Section VII we present related work and
in Section VIII we present conclusions and our ongoing work.

II. USE CASES

Next we discuss some motivating use cases which involve
clients and IoT resources with different network connection
capabilities, and different processing and storage resources.

The first use case involves electronic door locks (IoT
resources) in the rooms of a hotel or an apartment that is
rented on a short-term basis. The door lock can be opened
using a digital key (access token), which a client sends directly
to the lock through D2D communication, e.g., bluetooth. A
person seeks to reserve a hotel room or rent the apartment
for some number of nights. The person sends a request from
his/her smartphone (client) to the authorization server (AS)
that handles authorization requests for the door lock. The same
AS can handle the authorization for many door locks. The AS
sets up a blockchain contract to receive the payment for the
requested number of nights. The client can make the payment
through some proxy, or client authorization server (CAS).
Once the AS verifies that the price for resource access has been
paid, the AS provides the client with the necessary credentials
to unlock the door for the duration of the requested stay. In this
use case the electronic door lock is a constrained IoT resource:
it has only bluetooth connectivity for receiving the access
token from the client. The client can be a smartphone, which
is a device with continuous network connectivity that can also
communicate with the door lock using D2D communication
to provide the access token to unlock the door.

The above use case can be extended if the person staying
in the hotel is accompanied by a second guest who also wants
to be able to open the room’s door. However, instead of using
a smartphone, the accompanying guest wants to use his/her
smart watch. To achieve this, the first person’s smartphone
can send a copy of the access token, and possibly other
authorization credentials, to the accompanying guest’s smart
watch. In the extended use case, both the client (smart watch)
and the door lock are constrained devices without continuous

network connectivity; despite not having network connectivity,
the smart watch and door lock can communicate in a trusted
manner using D2D communication to transfer the access token
that unlocks the door. Furthermore, we assume that neither
the smart watch nor the smartphone, despite being capable,
interacts directly with the blockchain. Instead, the interaction
with the blockchain is performed through a proxy, the CAS,
which operates on the behalf of the clients.

The second use case we consider involves purchasing
items from a smart vending machine. We assume that the
smart vending machine has continuous network connectivity.
However, it does not interact directly with the blockchain. A
person can purchase items from the vending machine through
his/her smart wristband. In this case, the client (wristband) is a
constrained device while the IoT resource (vending machine)
is not constrained in terms of network connectivity. As in
the first use case, we again assume that neither the client
nor the IoT resource interact directly with the blockchain.
The client with constrained network connectivity must interact
with a proxy, the CAS, operating on its behalf, to perform
the payment (on the blockchain) for the item purchased and
obtain the necessary access credentials that will allow the
client to obtain the purchased item. It is interesting to note
that in this use case the client (smart wristband) has only D2D
communication capability, but can communicate with its proxy
(CAS) through the connected IoT resource. Of course, all the
above communication and transactions must be performed in
a secure and trusted manner.

III. BACKGROUND

Next we provide some background on delegated autho-
rization using OAuth 2.0 and the benefits from utilizing
blockchains for authorization in IoT environments.

A. Delegated authorization using OAuth 2.0

OAuth 2.0 is a framework for delegated authorization to
access a protected resource [8]. It enables a third party
application (client) to obtain access with specific permissions
to the protected resource, with the consent of the resource
owner. Access to the resource is achieved through access
tokens, which are created by an authorization server (AS).
The specific format of the access tokens, which are discussed
below, is opaque to the clients and to OAuth 2.0. The consent
for authorization by the resource owner is provided after the
owner is authenticated. Alternatively, authorization requests
can be accepted automatically by the AS, based on policies
defined a priori by the resource owner [3]. Authorization can
allow different access levels, called scopes, and for a specific
time interval. The OAuth 2.0 authorization flows can involve
intermediate messages exchanged before the access token is
provided by the AS. However, the details of the authorization
flow does not impact the general approach of the proposed
models, hence in our discussion we only consider the initial
client request and the AS’s response with the access token.

One type of access tokens are bearer tokens. Bearer tokens
allow the holder (bearer), independently of its identity, to



access the protected resource. Bearer tokens are the default
for OAuth 2.0, which assumes secure communication between
the different entities based on TLS (Transport Layer Security).
OAuth 2.0 also assumes that the protected resource has con-
tinuous network connectivity, hence can communicate with
the AS to check the validity and scope of the access tokens
provided by the clients. Meeting the above two requirements
is not always possible in constrained environments [2].

JSON Web Token (JWT) is an open standard that defines
a compact format for transmitting claims as JSON objects
[9]. JWTs can use the JSON Web Signature (JWS) structure
to digitally sign or integrity protect claims with a Message
Authentication Code (MAC) [10]. Hence, unlike simple bearer
tokens, JWT/JWS tokens are self-contained, i.e., they include
all the necessary information for the protected resource to
verify their integrity without communicating with the AS.
The JWT format is also considered by the W3C Credentials
Community Group for Verifiable Credentials which can be
combined with Decentralized Identifiers or DIDs [11]. A more
efficient encoding of claims, which is derived from JWTs but
is based on CBOR (Concise Binary Object Representation),
is the CBOR Web Token (CWT) [12], [3]. CWTs reduce the
amount of data that needs to be sent to constrained IoT devices
and can be extended to create and process signatures, MACs,
and encrypted data [13]. The implementation of the models
presented in this paper adopts the CWT format.

In constrained environments, in addition to limited connec-
tivity, the communication between the client and the protected
resource is not secure, hence transmitting bearer tokens or self-
contained JWTs/CWTs over such insecure links make them a
target for eavesdropping. To avoid this, Proof-of-Possession
(PoP) tokens are used in constrained environments [3]. PoP
tokens include a normal access token, such as a JWT/CWT,
and a PoP key [14]: access to the protected resource requires
both the access token and the PoP key, which can be used to
secure the link between the client and the protected resource.

If the client is a constrained device, some of the authoriza-
tion functionality must be performed on behalf of the client
by a proxy, the client authorization server (CAS) [15]. In the
models we present in the next section, we will consider that the
CAS, in addition to implementing the authorization functions,
also interacts with the blockchain on behalf of the client.

B. Delegated authorization utilizing blockchains and smart
contracts

The advantages from combining authorization based on
frameworks such as OAuth 2.0 with blockchains and smart
contracts are the following:

• Blockchains can immutably record hashes of the infor-
mation exchanged during authorization and cryptograph-
ically link authorization grants to payments and other IoT
events recorded on the blockchain. These records serve
as indisputable receipts in the case of disagreements.

• Smart contracts can encode authorization policies in an
immutable and transparent manner. Policies can depend
on payments or other IoT events.

• Smart contracts run on all nodes of a blockchain, hence
sending resource access requests to smart contracts can
protect against DoS attacks that involve a very high
resource request rate.

In the models presented below we assume that the CAS, the
AS, and the resource owner have an account (public/private
key pair) on the blockchain. The CAS will use its account to
pay for the client’s access to the IoT resource. Initially, the
CAS will deposit the amount for resource access to a Hashed
Time-Lock Contract (HTLC) [16], as we discuss below. The
deposit is transferred to the resource owner’s account when
the AS reveals a secret that corresponds to the hash-lock.
The same secret is used by the CAS to obtain the necessary
authorization credentials that the client needs in order to access
the resource. If the AS does not provide the secret within some
time interval, the CAS can submit a refund request to return
the deposit to its account.

IV. D2D-BASED IOT RESOURCE ACCESS USING SMART
CONTRACTS

In this section we present models for access authorization
using blockchains that consider different network connection
capabilities of the client and the IoT resource:

• The IoT resource does not have continuous network
connectivity, but only D2D connectivity, whereas the
client requesting resource access has continuous network
connectivity. This combination corresponds to the elec-
tronic door lock use case discussed in Section II, where
a smartphone is the client.

• Both the client and the IoT resource do not have con-
tinuous network connectivity, i.e., they both have only
D2D connectivity. This combination corresponds to the
electronic door lock use case, where now the client device
is a smart watch (or wristband).

• The client has only D2D connectivity, whereas the IoT re-
source has continuous network connectivity. This combi-
nation corresponds to the smart vending machine use case
discussed in Section II, where the IoT resource (smart
vending machine) has continuous network connectivity
and the client is a smart wristband (or watch) with only
D2D connectivity.

In addition to whether a device (client or IoT resource) has
continuous network connectivity or only D2D connectivity,
a second dimension for capabilities is whether the device is
constrained in processing and memory. A device without pro-
cessing and memory constraints can perform asymmetric key
cryptographic functions, while a device that is constrained can
perform only symmetric key functions. Hence, processing and
memory constraints influence the type of access tokens that
can be used, and in particular the type of integrity verification
that will be incorporated in the JWT/CWT token: if the device
is capable, then signatures using public/private keys can be
used. On the other hand, if the device is constrained, then
MAC integrity verification must be used.

In all three scenarios presented below there is a client
authorization server (CAS) and an authorization server (AS)
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Fig. 1. The client has continuous network connectivity while the IoT resource
has only D2D connectivity. The client acts as an intermediate node that
forwards messages between the IoT resource and the AS, which handles
authorization requests on behalf of the resource. The client AS (CAS) interacts
with the blockchain and the AS on behalf of the client.

that handle requests and responses on behalf of the client and
IoT resource, respectively [15]. The CAS and AS also handle
interactions with the blockchain, in order to link authorization
grants to blockchain payments. To take actions on behalf of the
client and resource, the CAS and AS must have the consent of
the client owner and the resource owner; one way to provide
such consent is through verifiable credentials [11], which is
more general than considering that the client and resource
owners control the CAS and AS, as assumed in [15].

During their initialization, both the client and the IoT
resource establish with the CAS and AS, respectively, shared
keys to be able to securely communicate over insecure D2D
links and/or through intermediate nodes. If a device, either
the client or the IoT resource, is constrained in terms of
processing, then during its initialization it must establish a
common secret key with the CAS or the AS. This shared
secret key is used to add MAC integrity verification to the
messages exchanged between the client and the CAS, and
between the AS and the IoT device. If the client or IoT
resource has sufficient processing to perform asymmetric key
cryptographic functions, then the CAS or the AS, respectively,
can use public key cryptography to sign messages. Note that
if the IoT resource has continuous network connectivity, then
instead of using signed or MAC integrity protected access
tokens, simple access tokens can be used; in this case, the
IoT resource can use introspection to verify the validity and
scope of the access token [8], [3].

To ensure that the client or CAS interacts with the le-
gitimate AS responsible for handling authorization requests
on behalf of an IoT resource, a trusted binding between
the IoT resource’s URI and the AS’s URL or the smart
contract address handling authorization requests (for the two
approaches discussed in Section V-A) is necessary; this can be
achieved by using a registry service residing on the blockchain.

A. Connected client and disconnected IoT resource

In the first model we discuss, the client has continuous
network connectivity whereas the IoT device does not have

CAS
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IoT 
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Fig. 2. Both the client and the IoT resource have only D2D connectivity.
Prior to requesting access, the client must obtain the authorization credentials
from the CAS. Once it has the credentials, the client can request access to the
resource using D2D communication, without requiring synchronous network
connectivity or simultaneous D2D connectivity with the CAS.

continuous network connectivity, but only D2D connectivity.
This case was investigated in our previous work [4], [5], [6],
[7]; however, in the current paper we assume that the client
does not interact directly with the blockchain, Figure 1.

Because the client does not interact directly with the
blockchain, the CAS performs blockchain transactions on
behalf of the client. The client can send authorization requests
to the CAS, which handles the exchange of authorization
messages with the AS and interacts with the blockchain. The
goal of this interaction is to link authorization grants with
blockchain payments. Specifically, the CAS obtains the neces-
sary access token and PoP key from the AS only if it performs
the blockchain payment, on behalf of the client. When the CAS
receives the authorization credentials, it forwards them to the
client. The client can then use the credentials to request service
from the IoT resource. As we will see in more detail when
we discuss the message exchange, when the client requests
access to the IoT resource, the client acts as an intermediate
node that forwards messages between the IoT resource and
the AS, which handles authorization requests on behalf of
the IoT resource. Specifically, the AS accepts authorization
requests from the CAS and provides authorization credentials
once it verifies that the appropriate blockchain payment has
been performed. As shown in Figure 1, a single CAS and AS
can handle multiple clients and IoT resources, respectively.

B. Disconnected client and disconnected IoT resource

Next we discuss the case where both the client and the IoT
resource are constrained devices. As in the previous scenario,
the authorization requests for the IoT resource are handled by
the AS and the authorization requests on behalf of the client
are handled by the CAS, Figure 2. Moreover, both the CAS
and the AS directly interact with the blockchain. The client,
prior to communicating using D2D with the IoT resource, must
obtain the necessary authorization credentials (access tokens
and PoP keys) from the CAS. This may be achieved at any
point prior to the time the client requests resource access,
during which the client has intermittent connectivity to the
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Fig. 3. The client has only D2D connectivity while the IoT resource has
continuous network connectivity. The IoT resource acts as an intermediate
node that forwards messages between the client and the CAS, which handles
authorization requests on its behalf.

CAS using D2D communication. Once it has obtained the
authorization credentials, the client can request access to the
IoT resource through its D2D communication link, without
requiring synchronous network connectivity or simultaneous
D2D connectivity with the CAS. The communication between
the CAS and the AS to request resource access on behalf of
the client and to obtain the authorization credentials after the
corresponding blockchain payment is the same as the message
exchange in the previous scenario.

C. Disconnected client and connected IoT resource

In the third model the client is disconnected while the IoT
resource has continuous network connectivity. As in the model
of the previous subsection, the CAS submits authorization
requests to the AS and interacts with the blockchain on behalf
of the client. The client communicates with the CAS using
the connected IoT device as an intermediate node. The AS is
responsible for handling authorization requests on behalf of
the IoT resource, Figure 3.

The CAS and AS interact as in the first two models. Once
the CAS obtains the authorization credentials, which include
the access token and PoP key, it must transfer these to the
client before the client requests service from the IoT resource;
this transfer is performed through the connected IoT resource.

Because the IoT resource has continuous network connec-
tivity, it can use introspection to verify the validity and scope
of the access token [8], [3]. Hence, unlike the first two models,
the access token does not need to contain a signature or a MAC
for verifying its authenticity.

V. MESSAGE EXCHANGE

In this section we present the message exchange between
the various entities, namely the client, IoT resource, CAS, AS,
and blockchain.

A. CAS-AS message exchange

We present two approaches for the message exchange
between the CAS, which operates on behalf of the client, and
the AS, which operates on behalf of the IoT resource. In the

first approach, the authorization requests and responses are
communicated directly between the CAS and the AS. In this
approach the blockchain is used only to record hashes of the
authorization information exchanged between the CAS and the
AS and to link blockchain payments to authorization grants.
The motivation for recording hashes of the authorization in-
formation exchanged between the CAS and the AS is that they
serve as indisputable receipts in the case of disagreements.

In the second approach, authorization requests and re-
sponses go through a smart contract, which is owned by the
resource owner. Because smart contracts are executed by all
blockchain nodes, a blockchain provides a secure execution
environments with high availability. This offers higher protec-
tion against DoS attacks, compared to the first approach where
access requests are sent directly to the AS. Moreover, in the
second approach a smart contract can be used to transparently
record prices and other authorization policies defined by
the resource owner. Examples include permitting access to
specific CASes/clients, determined by their public keys on the
blockchain, and adding dependence of access authorization on
IoT events that are recorded on the blockchain. An additional
advantage achieved by allowing a smart contract to handle
authorization requests is that the smart contract can securely
bind the IoT resource with the AS responsible for providing
authorization grants for that resource.

The two approaches are similar to the message exchange in
our previous work [6], [7], where however the authorization
message exchange occurred between the client and the AS; the
client was assumed to have continuous network connectivity
and could interact directly with the blockchain. An additional
contribution of this paper is that, in Section VI, we evaluate
different smart contract implementations that can be realized
for the scenarios presented in Section IV: a non-blocking
implementation that allows multiple authorization exchanges
to be conducted in parallel and an implementation that allows
the CAS and the AS to request and respond to multiple
concatenated authorization requests that are included in a
single message and transaction.

1) Linking authorization grants to blockchain payments
and recording hashes of authorization information: With
this approach the initial communication between the CAS
and the AS occurs as in the normal OAuth 2.0 framework,
Figure 4. However, instead of the AS providing the CAS with
authorization credentials after consent is given by the resource
owner, the authorization credentials are disclosed only after the
payment for resource access is recorded on the blockchain.

Specifically, in Step 1 the CAS sends on behalf of the
client to the AS a request for accessing the IoT resource.
The AS generates a random PoP key which it sends to the
CAS1 together with the PoP key encrypted with the secret key
KAS−resource shared by the AS and the IoT resource, which
is set during the IoT resource’s initialization2; the client will

1The communication link between the CAS and the AS is secured, hence
the PoP key cannot be leaked through eavesdropping.

2If the resource has sufficient processing, then the AS can use asymmetric
cryptography and encrypt the PoP key with the resource’s public key.
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Fig. 4. CAS-AS message exchange when authorization requests are sent
directly to the AS. Hashes of the authorization information are recorded on
the blockchain, which provide indisputable receipts in case of disagreements.
Disclosure of authorization credentials is linked to blockchain payments.

later use the PoP key to establish a secure D2D communication
link with the IoT resource. Also, the AS sends to the CAS
the access token encrypted with a secret s, i.e., Es(token),
the hash h = Hash(s) of the secret s, and the price for the
requested resource access. The secret s is a secret randomly
generated by the AS and is required for the CAS to decrypt
Es(token) and obtain the access token; the AS will reveal
the secret s once it confirms that the payment for resource
access has been committed on the blockchain. Communicating
the price from the AS to the CAS allows different levels of
resource access to be offered for different prices.

In Step 3, two hashes are submitted to the blockchain: the
first is the hash of the token that the AS will reveal to the
CAS once payment has been confirmed. The second is the
hash of three items: EKAS−resource

(PoP ), the PoP key, and
Es(token); the second hash serves as proof of the authoriza-
tion information that is exchanged using OAuth between the
AS and the CAS. Note that the above authorization exchange
does not ensure that the access token the client obtains from
the AS indeed allows access to the IoT resource.

Also, in Step 3 a hashed time-lock payment is initiated on
the blockchain, which allows the CAS to deposit the requested
price (Step 4). This amount will be transferred to the resource
owner’s account if the secret s (hash-lock) is submitted to the
contract by the AS (Step 5) within some time interval. If the
time interval is exceeded, then the CAS can request a refund of
the amount it deposited. Once the secret s is revealed, the CAS
can get s from the blockchain (Step 6) and decrypt Es(token),
thus obtaining the access token. After Step 6, the CAS has
all the credentials that are necessary for the client to request
access from the IoT resource.

2) Smart contract for handling authorization requests:
Unlike in the previous approach where the CAS and the AS
communicated directly, in the approach discussed next the
interaction is through the smart contract, which corresponds
to Steps 1 and 2 in Figure 5.

In response to the authorization request it received from the
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Fig. 5. CAS-AS message exchange when a smart contract handles authoriza-
tion requests. Authorization information is exchanged through the blockchain.
As in the approach of Figure 4, disclosure of authorization credentials is linked
to blockchain payments.

CAS, in Step 3 of Figure 5 the AS sends to the smart contract
the PoP key encrypted both with the secret key shared by the
AS and the IoT resource, EKAS−resource

(PoP ), and with the
CAS’s public key, EPKCAS

(PoP ). Recall that in the previous
approach the PoP key was sent from the AS to the CAS over
a secure communication link, hence encrypting the PoP key
with the CAS’s public key was not necessary.

As in the first approach, a hash time-locked payment is en-
abled, allowing the CAS to deposit the amount corresponding
to the resource access price (Step 4). The amount is transferred
to the resource owner’s account if the secret s that unlocks the
hash-lock is revealed (Step 5). Once revealed, the CAS can
obtain the secret s (Step 6), together with the other necessary
authorization credentials that will allow the client to access the
protected resource. If the blockchain is public, then s can be
read by anyone, hence everyone can obtain the access token.
However, the access token cannot be used alone, since the PoP
key is also required for accessing the resource. Nevertheless,
if privacy of the access token is important, then the secret s
can be encrypted using the CAS’s public key PKCAS and the
hash-lock set to h = Hash(EPKCAS

(s)).

B. Client-CAS and client-IoT resource message exchange

The message exchange between the client, the CAS, and the
IoT resource when the IoT resource does not have continuous
network connectivity is shown in Figure 6. Note that this
message exchange applies both to the case where the client
has continuous network connectivity and to the case where
the client has only D2D connectivity. Initially the client
communicates with the CAS by sending a message with its
intent to access the IoT resource (Step 1). After receiving the
request from the client, the CAS performs either of the two
message exchanges presented in Section V-A. Next, in Step 2
the client receives the authorization credentials from the CAS
and in Step 3 it sends its access request to the IoT resource.

The message exchange when the client has only D2D
connectivity and the IoT resource has continuous network con-
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client has only D2D connectivity while the IoT resource has continuous
network connectivity (Figure 3). The CAS-AS message exchange can follow
the sequence in Figure 4 or 5.

nectivity is shown in Figure 7. Now, the client communicates
with the CAS that handles authorization requests on its behalf
using the connected IoT resource as an intermediate node.
Note that the communication between the client and the CAS
is secured, since they share a secret key KCAS−client that was
configured during the client’s initialization.

VI. EVALUATION

For the evaluation we used a local Ethereum node running
Go-Ethereum3 that was connected to the public Ethereum
testnet Rinkeby4. Smart contracts were written in Solidity with

3https://geth.ethereum.org/
4https://www.rinkeby.io/

the Remix5 web-based editor. The AS was based on a PHP
implementation of the OAuth 2.0 framework6. The CAS and
AS used Web3.js to interact with the Rinkeby blockchain.

We compare the two approaches presented in Section V-A:
the first records hashes of the authorization information on the
blockchain (Figure 4) and the second involves a smart contract
handling authorization requests (Figure 5). For each of the two
approaches we compare four implementations: The first is the
baseline implementation where the smart contract operates in
a blocking mode where only one authorization request can
be handled at a time (“1 req” in Figure 8(a)). The second
implementation also operates in a blocking mode, but each
message includes three authorization requests (“3 reqs con-
catenated” in Figure 8(a)), which are sent by the same CAS;
similar to the requests, we assume that the responses are also
concatenated, which means that the authorizations are handled
by the same AS. The third implementation operates in a non-
blocking mode, allowing more than one authorization requests,
each in a separate message, to be ongoing at the same time
(“1 req” in Figure 8(b)). Finally, the fourth implementation
operates in a non-blocking mode, as the previous - third -
implementation, but each message includes three authorization
requests (“3 reqs concatenated” in Figure 8(b)). The “3 reqs
separate” columns in Figures 8(a) and 8(b) correspond to the
case where three authorization requests and their responses are
sent and received separately with blocking and non-blocking
operation, respectively.

Figure 8 shows the execution cost (gas), which quantifies the
amount of EVM (Ethereum Virtual Machine) resources (com-
putation and storage), for each of the above implementations.
Comparison of the corresponding columns in Figures 8(a)
and 8(b) shows that, for a blocking implementation, a smart
contract that handles authorization requests requires approxi-
mately 2.5 times more gas than the approach that records only
hashes of the authorization information on the blockchain. For
the non-blocking implementation, the ratio is larger and close
to 4 times. Figure 8(a) shows that the gas is 88% higher for
the non-blocking implementation compared to blocking when
only hashes are recorded on the blockchain, while Figure 8(b)
shows that it is approximately 190% higher in the case of
a smart contract handling authorization requests. The above
results quantify the higher execution cost for smart contracts
with more functionality.

Comparison of columns “3 reqs separate” and “3 reqs
concatenated” in Figure 8(a) show that, for the blocking imple-
mentations, the gas when three requests and their responses are
concatenated is smaller than the gas when the requests are sent
separately by 56% when only hashes are recorded, and smaller
by 28% when a smart contract handles requests. The gains for
non-blocking, Figure 8(a), are 55% and 18% when only hashes
are recorded and when a smart contract handles authorization
requests, respectively. These results show that concatenation of
requests can provide gains in terms of reduced execution cost;

5https://remix.ethereum.org/
6https://github.com/bshaffer/oauth2-server-php
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Fig. 8. Contract execution cost. The top graph corresponds to the approach
in Figure 4 where only hashes are recorded on the blockchain. The bottom
graph corresponds to the approach in Figure 5 where a smart contract handles
authorization requests.

indeed, the gains are significantly higher for simple contracts
that record only hashes. Additional experiments not shown
due to space indicate that, as expected, the gains are higher
when more requests are concatenated. Specifically, for the non-
blocking implementation, when 9 requests are concatenated
the gains are 67% (higher than the 55% gain when 3 request
are concatenated) when only hashes are recorded and 25%
(higher than the 18% gain when 3 request are concatenated)
when a smart contract handles authorization requests.

Concatenation of authorization requests can be performed
in the space domain, when CASes and ASes handle multiple
clients and IoT resources. Alternatively, concatenation can be
performed in the time domain by aggregating requests received
by a CAS in a time interval, before sending them to the AS.
Such time domain aggregation of requests adds a delay to the
authorization process, which needs to be considered together
with the blockchain transaction time.

The contract creation cost is shown in Figure 9. Note that
this figure does not contain the contact creation cost for “3
reqs separate”, since it uses the same contract as “1 req”.
The figure shows that the increase of the contract creation
cost for the second approach, where authorization requests
are handled by the smart contract, compared with the simpler
scheme, where only hashes of authorization information are
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Fig. 9. Contract creation cost. The top graph corresponds to Figure 4 where
only hashes are recorded on the blockchain. The bottom graph corresponds to
Figure 5 where a smart contract handles requests. The contract creation cost
for “3 reqs separate” in Figure 8 is the same as the cost for “1 req”.

recorded on the blockchain, is smaller for the non-blocking
compared to the blocking implementation: Comparison of
the corresponding columns in Figures 9(a) and 9(b) shows
that the contract creation cost for smart contracts handling
authorization requests is 36-80% higher than the creation cost
for contracts that record only hashes. An additional conclusion
from the comparison of Figure 9 and Figure 8 is that for
simple contracts that record only hashes and are blocking,
the contract creation cost dominates the execution cost, while
for more complex smart contracts such as the ones handling
authorization requests that are non-blocking, the execution cost
is comparable to the contract creation cost.

Finally, 20 executions of each of the non-blocking imple-
mentations have shown that the average transaction delay when
only hashes of authorization information are recorded on the
blockchain is 44 seconds, with a 95% confidence interval
± 5 seconds; the delay for the blocking implementation
with three separate requests is higher by approximately 29
seconds, due to the serialization that blocking imposes. For
a smart contract handling authorization requests the delay is
58 seconds, with a 95% confidence interval ± 6 seconds. The
above results show that the delay is approximately 32% higher
for the smart contract approach compared to the approach that
records only hashes. This result is expected, since recording



only hashes involves three transactions on the blockchain,
Figure 4, whereas a smart contract handling authorization
requests involves four transactions, Figure 5.

VII. RELATED WORK

The work in [17] presents a blockchain-based authorization
system where authorization proofs can be efficiently verified.
The work in [18] presents a decentralized access control sys-
tem where IoT devices have continuous network connectivity
and interact directly with the blockchain, while [19] presents
a system where policies and access control decisions are
directly recorded on Bitcoin’s blockchain. The work in [20]
presents a smart contract-based system for providing access
control to IoT devices while satisfying access policies in terms
of the minimum time interval between consecutive accesses.
The above works all assume that the IoT device can directly
access the blockchain, which is not possible in constrained IoT
environments. Unlike the above, our work considers different
network connection capabilities of the clients and the IoT
resources, which includes the case where either the client, or
the IoT resource, or both, have only D2D connectivity.

The work in [21] presents a system based on OAuth 2.0
where a smart contract generates authorization tokens, which
a key server exchanges for private keys that allow clients to
access a protected resource. The work of [22] contains a high
level description for using smart contracts with OAuth 2.0 to
allow resource owners to freely select the server that provides
authorization to their resource. In addition to considering
different network connection capabilities for the clients and
the IoT resources, we present two approaches for utilizing
blockchains which have different tradeoffs in terms of contract
execution and creation cost, and smart contract functionality.

Our previous work [4], [5], [6], [7] focuses on the case
where clients have continuous network connectivity and inter-
act directly with the blockchain, while IoT resources have only
D2D connectivity. Moreover, [5] investigates the reduction of
the transaction cost by utilizing private channels which enable
off-chain transactions, and [7] investigates the reduction of the
transaction cost by moving smart contract functionality from
a public blockchain to a private or permissioned blockchain.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented different architectures involving devices
with different network connection capabilities that utilize
smart contracts to provide secure and trusted D2D-based IoT
resource access. Blockchains are used to link authorization
grants to payments and record authorization information. Our
evaluation quantifies the tradeoffs between blockchain cost
and smart contract functionality, such as blocking and non-
blocking operation, and the reduction of the transaction cost
when multiple authorization requests are concatenated in a
single transaction.

Ongoing work is investigating two directions: first, how
smart contract functionality related not only to payments
but also to IoT transactions can be moved to private or
permissioned ledgers to reduce transactions costs and, second,

the trusted interaction of smart contracts with the real world
using decentralized oracles. This is important since as our
results show, the execution cost of smart contracts increases
significantly with higher functionality.
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