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Abstract—One of the most discussed features offered by
Information-centric Networking (ICN) architectures is the ability
to support packet-level caching at every node in the network. By
individually naming each packet, ICN allows routers to turn
their queueing buffers into packet caches, thus exploiting the
network’s existing storage resources. However, the performance
of packet caching at commodity routers is restricted by the
small capacity of their SRAM, which holds the index for the
packets stored at the, slower, DRAM. We therefore propose
Object-oriented Packet Caching (OPC), a novel caching scheme
that overcomes the SRAM bottleneck, by combining object-level
indexing in the SRAM with packet-level storage in the DRAM.
We implemented OPC and experimentally evaluated it over
various cache placement policies, showing that it can enhance
the impact of ICN packet-level caching, reducing both network
and server load.

Index Terms—Information-centric networking, ICN, caching.

I. INTRODUCTION

Reducing the redundancy in Web traffic by exploiting caches
to satisfy repeated requests for popular content has long
been an active research topic. Analysis from Cisco argues
that global IP traffic will increase threefold over the next
five years, reaching eventually 1.6 zettabytes per year by
2018 [1]. As a result, considerable investment in network
infrastructure will be needed in order to meet these traffic
demands, unless caching rises up to the challenge. Numerous
research studies examining the character of modern Internet
traffic have indicated that caching has the potential to greatly
reduce network load for a given traffic demand [2]–[4]. Indeed,
Web caches are vital network elements, bringing popular
content closer to the users, contributing to faster data delivery,
and reducing network and server load within ISPs and at large
stub networks.

However, some studies question the effectiveness of Web
caches [5], [6], arguing that redundancy should be detected
at a finer granularity, such as packets, instead of objects.
These designs, also known as packet-level caches, can be
significantly more efficient in eliminating repeated content
transfers. Nevertheless, they present significant scalability and
flexibility issues, such as managing large lookup indexes,
performing per packet lookups at wire-speed, operating in
more than one link and synchronizing lookup indexes.

Most such weaknesses can potentially be addressed by
Information-Centric Networking (ICN) [7]. ICN proposes a
clean slate network architecture where all network operations
concern information itself, in contrast to IP-based networking,

where communication is endpoint-oriented. Most ICN initia-
tives adopt a model of receiver-driven content delivery of self-
identified packets that can be temporarily cached by routers,
allowing routers to satisfy future requests for the same content.
Nevertheless, ICN caching has not yet met these expectations,
receiving criticism for its efficiency [8], [9], based on the
debatable performance superiority of distributed in-network
caching over independent caches at the network edge, as well
as on the questionable support for packet-level caching by
today’s hardware.

In this paper we introduce Object-oriented Packet Caching
(OPC), a novel packet-level caching scheme for ICN architec-
tures. OPC is designed to improve the performance of ICN
packet caches by increasing the usable caching capacity of
commodity routers, without requiring additional storage re-
sources. Furthermore, OPC addresses the looped replacement
and large object poisoning effects, two common issues with
packet caches that can highly penalize the performance of ICN
in-network caching.

The remainder of this paper is organized as follows. In
Section II we review work in packet-level caching and the
issues raised by it in an ICN context. In Section III we explain
how OPC works and how it addresses these challenges. In
Section IV we present an evaluation study of OPC, showing
the gains achieved. We conclude and discuss future work in
Section V.

II. RELATED WORK

A. Packet caches in IP

Packet-level caching in IP networks requires detecting re-
dundancy in arbitrary packets at wire-speeds. The compu-
tational cost for avoiding replication via, say, suppressing
replicated data [10], deep packet inspection [11] and/or delta
coding [12], has prevented Web caches from moving in this
direction. Interest in packet-level caching was rejuvenated by
a computationally efficient technique for finding redundancy
in Web traffic [5], where Rabin fingerprints are used to detect
similar, but not necessarily identical, information transfers in
real time. As this method is protocol independent, it may even
eliminate redundancy among different services, thus greatly
widening the scope of application caches.

Unfortunately, this scheme has a limited scope of applica-
bility: it requires placing pairs of caching points at opposite
ends of a physical link, replacing redundant data with a special
identifier as packets enter and leave that link. The two caching
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points must also keep their lookup indexes synchronized. A
few years later, the application of this technique was explored
in an inter-domain scenario [6]. Even though the scheme
performed far better than an ordinary object cache, it was
once more concluded that this solution can only be applied to
limited-scale deployments across specific network links. The
authors argued that the usefulness of this technique could be
enhanced by new network protocols that would leverage link-
level redundancy elimination [6].

B. Packet caches in ICN

The distinguishing feature of ICN is the placement of
information in the center of network operations, in contrast
to endpoint-oriented IP networks [7]. In ICN the functions
of requesting, locating and delivering information are directly
based on the information itself, rather than on the hosts
providing the content. In most ICN proposals, information
travels through the network as a set of self-verified data chunks
that carry a statistically unique identifier. This identifier, which
is usually a concatenation of the content’s name and the
packet’s rank/order in the content, is placed in the packet
header, relieving ICN nodes from the computational costs
of detecting identical packets; if two packets have the same
identifier, then they must (statistically) carry the same content.
In the vast majority of ICN studies, a chunk refers to the
Maximum Transfer Unit (MTU) of the network, that is, the
maximum packet allowed, hence, we will use below the terms
packet and chunk as synonyms.

ICN transport protocols are mostly receiver-driven [13],
[14], completing a transmission via numerous independent
transfers of self-verified chunks. Each transfer is triggered by
a specific request packet and is fulfilled by the transmission of
the corresponding data packet. The pull model allows exploit-
ing on-path caches: ICN routers that use their queueing buffers
as temporal repositories for packets can directly respond to
later requests for these packets.

ICN has great potential for exploiting packet-level caches,
therefore many researchers have investigated the gains of
ubiquitous caching [15]–[18]. The authors of these papers try
to aggregate the caching potential of all on-path routers into
a distributed caching system, focusing on achieving the most
profitable distribution of content across these routers. How-
ever, experience with distributed caching systems suggests that
dedicated caching super-nodes at the edges of the network
can have the same impact as caching at every in-network
node [8]. In addition, some authors advocate caching content
only at a subset of network nodes that satisfy certain centrality
requirements [19], while others argue that an “edge” caching
deployment provides roughly the same gains with a universal
caching architecture [20].

To the best of our knowledge, there is only one study in
the literature dealing with the internal details of ICN packet
caches [21]. This study proposes a two-layer cache model with
the goal of improving response time. Specifically, it suggests
that groups of chunks should be pre-fetched from the slow
memory (SSD) to the fast one (DRAM) in order to respond
faster to consequent chunk requests. However, the authors

propose this design only for edge routers, due to its storage re-
quirements and static content catalogue. For in-network routers
they argue that both SRAM and DRAM should be utilized
for wire-speed operation. Most other research simply assumes
a Least Recently Used (LRU) replacement policy [16], [17],
[19], [20], [20], [22] or novel policies for the proper dis-
tribution of the cached content along the path [15], [18],
[23], without evaluating whether router-cache performance is
limited by the size of its fast memory.

III. OBJECT-ORIENTED PACKET CACHING

A. Design issues

Based on the previous discussion, we identified three aspects
of ICN packet-caching that can be improved:

Limited storage resources: A reasonable requirement for
packet-level caching is wire-speed operation. Usually, the
cache module is implemented based on a hash-table structure,
spread across the fast and slow memory of the system. The
hash-table proper is kept on the fast, and expensive, memory
of the system, mapping a hashed packet identifier to a pointer
to the packet data on the slow, but cheap, memory [18], [24].
Since the vast majority of proposed cache designs assumes
1500 byte chunks and at least 32 byte LRU entries [24], a
one-to-one correlation of fast-to-slow memory entries, implies
a ratio of fast to slow memory size of approximately 1:46. The
largest amount of SRAM memory found in current network
routers is 210 Mbits [9], thus being able to index almost
1.2 GBytes of 1500 byte chunks. However, the maximum
DRAM memory of a network router is 10 GBytes, thus
roughly 88% of the available network storage cannot be
indexed at the packet-level. One solution to this problem would
be to increase chunk size, so that the hardware specifications
would not affect caching performance, but this would penalize
the granularity of caching [5], [6] and it would also require
changing the network’s MTU to preserve the self-identification
of network units. Another solution could be to use DRAM
for indexing the stored packets. However, this design requires
one read to the slow memory for each incoming request,
even with zero cache hits, thus making wire-speed operation
questionable.

Looped replacement: In contrast to object caches, packet
caches may contain only part of an object, depending on the
replacement policy and the access pattern. This can be both
a benefit and a curse. In most applications, the packets of an
object are requested in a sequential ascending order, which
means that in an LRU-based cache, the first packets of the
object are evicted before the last ones, as they have resided
longer in the cache. Consider for example an object consisting
of n packets and a cache that can hold m packets, where
n > m. An object cache would not cache the object at all,
but a packet cache could cache some of its packets. However,
if the object is accessed sequentially, then after the first m
packets are fetched and the cache fills, the m+1-th packet will
displace the first packet, and so on until the object completes
transmission (Fig.1(a)). When the object is later requested
again, the first packet will not be found, so it will be fetched
from the source, replacing the earliest packet of the object;
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this will be repeated until the entire object is fetched again,
without even a single cache hit (Fig.1(b) and (c)). We call this
the looped replacement effect. It can arise with any cache size,
as long as we are using the LRU replacement policy, provided
that the object is always accessed sequentially and requests
for the same object are not too frequent. This effect is also
identified by authors in [22], who however do not propose a
specific solution.

Fig. 1. An LRU cache holding m packets, presented as a circular buffer.
In (a) an object consisting of n packets (n > m) was just downloaded, in
(b) and (c) the first and second packet of the same content, respectively, are
fetched again.

Large object poisoning: A serious challenge for small in-
network caches is handling large but unpopular objects. A
cache-anything LRU module stores all the chunks of every
incoming object, regardless of its popularity; popularity only
influences evictions. This can severely penalize the perfor-
mance of the cache, especially in cases of large objects that
occupy a significant amount of memory space, which cause
the cache to waste its resources by storing contents that do
not offer any profit.

B. Design overview

To address the limitations of packet-based caching schemes
in the ICN context, we designed Object-oriented Packet
Caching (OPC) [25], a scheme which combines the effec-
tiveness of packet-level caching with the resource efficiency
of object-level caching. The design of OPC directly attacks
the weak aspects of ICN packet-caches: it increases memory
utilization, avoids looped replacement, and prevents large
object poisoning. OPC achieves these goals without requiring
more computational and memory resources than an ordinary
LRU packet-cache.

The main concept of OPC is to combine object-oriented
cache lookups with packet-oriented cache replacement. Based
on the observation that most applications request the packets of
an object in a sequential manner, in OPC the initial part of an
object is always cached, from the first to the n-th packet, with
no gaps. Therefore, any partially cached objects are always
represented by their first n packets.

The lookup index in OPC holds the object’s name and
a counter for each (partially) stored object. This counter,
also called last chunk id, indicates the number of cached
chunks for that object. For instance, the entry file/a, 45
means that the cache holds the first 45 chunks of the object
file/a without gaps. If a request for that object arrives with
a rank/order less or equal to the last chunk id, the cache
can directly respond to the request. When a request with a
higher chunk rank/order arrives, then the cache simply for-
wards the request to its destination. This reduces the indexing
costs to one entry per (partially) stored object, or roughly

average objectsize times less than an ordinary LRU packet
cache.

To ensure that OPC always holds the initial part of an object,
we also introduce a novel packet replacement algorithm. OPC
inserts a chunk with rank/order i if it is either the object’s first
chunk, in which case we also create a new index entry for that
content, or if we already have stored the i− 1 chunk for that
object, that is, if last chunk id for that object is equal to
i− 1. This guarantees that at any time the cache always holds
the first part of each object, without any gaps. If there is no
space in slow memory to hold a new chunk, then we use an
object-level LRU list and remove the last cached chunk of the
object at the tail, so as to still hold the first chunks of the
object with no gaps. On the other hand, if there is no space
in fast memory for a new object, then the index entry for the
object at the tail of the object-level LRU is removed, along
with the corresponding chunks in the slow memory.1

Fig. 2. Data structures used by OPC.

C. Data structures
An OPC node maintains two data structures for chunk

insertions and lookups, and one data structure for chunk
evictions. The first two structures, called Layer 1 (L1) and
Layer 2 (L2) indexes, organize data at the object-level and
the chunk-level, respectively. The L1 index is stored in fast
memory (e.g., SRAM) and is implemented as a fixed-sized
hash-table with one entry per cached object. Each entry in L1
maps a content identifier to a pair of values: the rank/order
of the last stored chunk (last chunk id) of that object and
a pointer to the final chunk of the object in the L2 index
(Ptrmem). The L2 index on the other hand is basically an
array in slow memory (e.g. DRAM) containing the cached
chunks of each object in sequential order; we explain how
slow memory is managed in Section III-E.

Upon the receipt of a chunk request, OPC uses the identifier
in the request’s header to check via the L1 index if there
are any cached chunks of that item. If so, and the search
returns a last chunk id greater or equal to the rank/order
of the requested chunk, then that chunk can be retrieved
from address Ptrmem − (chunk id − id) ∗MSS, where id
is the rank/order of the requested chunk and MSS is the
maximum segment size of a data chunk. Note that in order to
speed up lookups, the memory array employs MSS bytes per
chunk, regardless of the chunk’s size. Otherwise, the request
is forwarded towards its destination.

When a new data chunk arrives, we also consult the L1
index: if the object is stored and this is the next chunk in

1The hash table can use linear probing, double hashing, or any other
technique that does not require additional memory, to handle collisions.
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sequence, we store it in the L2 index, increment Ptrmem by
MSS and increase last chunk id; if the object is not stored
and the chunk is the first for that object, we store the chunk
in the L2 index and create a new entry in the L1 index with
last chunk id equal to 1 and Ptrmem pointing at the chunk
in the L2 index. Otherwise, we ignore the chunk.

The third data structure in OPC is a doubly-linked list used
to rank the objects for replacement purposes. This list, also
kept in fast memory, shows the least “important” object in
the OPC cache; this object will be evicted when additional
space is needed. In our implementation, objects are ranked
based on their recent usage, i.e. in LRU fashion. However,
the way the least important content is defined is not crucial
for our design, so cached contents may be organized in an
LRU, LFU or FIFO structure. If the eviction is due to lack
of L1 space, then the L1 index entry and all the L2 chunks
that the selected entry points at are reclaimed. If the eviction
is due to lack of L2 space though, only the last chunk of the
selected entry is reclaimed and the L1 entry is updated by
decrementing Ptrmem by MSS and last chunk id by 1. A
snapshot of OPC’s data structures is illustrated in Fig. 2.

D. Caching behavior

We can now explain how the OPC design addresses the
limitations of chunk-level caching in the ICN context de-
scribed in Section II. First, the two-level indexing structure
of OPC optimizes the use of both fast and slow memory: the
L1 index in fast memory uses one entry per object, rather
than one entry per chunk. The small size of the L1 index
allows storing it in fast memory, to speed up lookups, but also
substantially augments the volume of data that can be indexed
in L2 memory, compared to simpler solutions such as LRU and
FIFO, thus addressing the limited storage resources problem.

Second, to avoid the looped replacement issue, OPC always
holds the initial chunks of an object, by only inserting chunks
sequentially and evicting them in the reverse order. Assuming
that chunks are requested in ascending order (as is also the
case in [21]), our method extends the time that a cached object
can be exploited, thus increasing the cache hit rate. To better
illustrate this, consider Fig. 3, which presents the potential
cache hits of two requests for the same object (y-axis) in an
LRU and an OPC cache, depending on the interarrival time
of these requests (x-axis). In general, as the chunks of an
object are requested sequentially, the number of cached chunks
increases, hence the potential for cache hits also grows. In
subfigures (a) and (c), the cache size is smaller than the object
size, therefore when the cache gets full, the potential for cache
hits cannot increase any more. With an LRU cache (subfigure
(a)) the looped replacement effect causes the next chunks (even
of the same object) to displace the first chunks of the object,
therefore a new sequential request for the object will lead to
zero cache hits. In contrast, with OPC (subfigure (c)) chunks
are only dropped from the end of the object, therefore the
potential for cache hits decreases gradually, until all chunks
are displaced. Similarly, in subfigures (b) and (d) where the
cache size is larger than the object size, after the entire object
is cached the potential for cache hits remains constant. When

Fig. 3. Potential cache-hits of two requests for the same object in an LRU
and an OPC cache. In (a) and (c) content size exceeds cache size, whereas in
(b) and (d) cache size exceeds content size.

the chunks start getting evicted at a later time, with an LRU
cache (subfigure (b)) the potential drops to zero, since the first
chunks are evicted, while with OPC (subfigure (d)) it only
decreases gradually.

Finally, OPC addresses the large object poisoning issue, by
applying object-level filtering on popularity statistics. Specif-
ically, an L1 object-level index following the LRU policy,
pushes an object at the head of the LRU list only on cache hits;
newly inserted chunks inherit the LRU position of the object,
which is commonly not the head. In contrast, with chunk-
level LRU, each inserted chunk is placed at the head of the
LRU list by default, thus having to traverse the entire LRU
list before it is evicted. Consequently, in OPC the eviction
of an object depends on the popularity of that object as a
whole, while in a cache-anything chunk-based LRU the many
individual chunks of the object fill up the LRU list, making
it harder to keep popular objects in the cache. As shown
in the evaluation section, OPC effectively enhances caching
efficiency, by storing chunks with greater popularity, which
are expected to produce more cache-hits.

E. Space allocation in slow memory

The OPC scheme assumes that slow memory is a large
array with fixed size slots of MSS bytes, where adjacent
chunks of the same object are placed in contiguous physical
memory locations. This allows one-access insertions, evictions
and reads from slow memory, since we simply index slow
memory based on a pointer in fast memory. However, the
number of chunks that must be stored per object is not known
a priori, therefore allocating L2 memory for a new L1 entry
is not trivial.

The simplest policy is to provide a fixed-size area per
object, based on the L2 slots/L1 slots ratio, thus equally
distributing slow memory among all cached objects, ignoring
the size and caching needs of each object. The efficiency of
this approach clearly depends on the nature of network traffic;
if most object sizes are close to L2 slots/L1 slots, then
cache performance is not affected, but if objects are much
smaller than the fixed-size allocation, then slow memory is
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Fig. 4. Evolution of slow memory: (a) initially, (b) after object c steals a
chunk from object b, (c) after object b is evicted to make space for object e.

underutilized; if they are larger, we can only store their first
part, thus potentially reducing cache hits.

To avoid these problems, we have designed a method for
dynamic memory allocation that adapts to different types of
traffic, retaining one-access chunk insertions and evictions
from slow memory, at the cost of increasing the accesses for
lookups and entire object evictions. In our scheme, chunks of
the same object are not stored in contiguous memory space,
forming instead a linked-list starting from the last chunk of
the object. Therefore, each chunk slot in L2 consists of a data
chunk and a pointer Ptrprev to the previous chunk of the
same object. The combination of Ptrmem (L1) and Ptrprev
(L2) forms a linked-list per object, where the last chunk of the
object is the head of the list. In addition, one global pointer,
Ptrfree points at a list of available chunks, which are also
linked via their Ptrprev pointers.

Whenever a new chunk needs to be inserted to the cache,
if the list of available chunks is not empty, the entry pointed
at by Ptrfree is used, and Ptrfree is modified to point to the
next free chunk. The new chunk is linked to the list of the
appropriate object by modifying its Prevptr to the previous
head of that object’s list, and making the Ptrmem of that
object point at the new chunk. If there are no available chunks
(Ptrfree is null), then we use the LRU object list to determine
which object will lose a chunk, and move the chunk at the
head of that object’s list to the head of the new object’s list,
by simply modifying the Ptrmem pointers of the two objects
and the Ptrmem pointer of the chunk. These operations require
only a single slow memory access to modify the Ptrprev
pointer of the selected chunk.

When an entire object is to be evicted, all of its chunks in
L2 become part of the free list. We first make the Ptrfree
pointer point at the head of the evicted object’s list, then we
traverse the list following its Ptrprev pointers and, finally, we
modify its last pointer to point at the previous head of the
free list. This requires traversing the list of the object that is
evicted, thus object eviction is a costlier procedure.

The main overhead of our method is that it does not support
one-access cache hits. In order to fetch a cached chunk, OPC
must follow the object’s linked-list from the last stored chunk
until the right chunk is found. Given that chunks are requested
in sequential order and that OPC holds the initial part of an

Web P2P Video Other
#objects 195386 1 176 10485
#chunks median 6 687168 8133 4

max 19929 687167 16977 5120
std. dev 56.6 0 5261.2 0

#requests mean 658686 2 326 22352
max 10984 2 17 1106
std. dev 53.8 0 2.33 15.3

TABLE I
WORKLOAD CHARACTERISTICS.

object without any gaps, if the first chunk is hit then the rest
will follow. Therefore, we expect an average of n/2 memory
accesses per hit when all chunks of an n-chunk object are
hit. Nevertheless, our experiments validate that this overhead
is not critical, since it arises only during actual cache hits.
Furthermore, an additional latency in the order of nanoseconds
is an insignificant expense for a cache-hit that saves several
milliseconds of delay.

An example of L2 management is presented in Figure 4,
where L2 state is shown at three consecutive snapshots. In
Fig.4.(a), the slow memory holds chunks of four objects (a,b,c
and d), which are not stored contiguously. In Fig.4.(b), another
chunk of object c is inserted, but since there are no free slots,
it “steals” the last chunk of object b. In Fig.4.(c), object b is
evicted to make space for object e, by first moving all chunks
of b to the free list and then using the first free chunk for the
first chunk of object e. If at this point we get a cache hit for
the first chunk of object c, we need 4 slow memory accesses
to traverse the corresponding list.

IV. EXPERIMENTAL EVALUATION

A. Experiment set-up

We implemented the CCN/NDN forwarding functionality
along with various policies for chunk-level cache manage-
ment2 over the NS-3 network simulator.3 We examined 10
scale-free topologies of 50 nodes, created via the Barabási-
Albert algorithm [26], as in the experiments in [19]. We
assumed a stop-and-wait unicast transport protocol for all
applications, as the simpler transport provides a clearer view
of system performance. In order to get a realistic traffic mix
with variable object sizes and popularities, we employed the
GlobeTraff traffic trace generator [27]; the characteristics of
the resulting workload are summarized in Table I. At every
access node we placed a fixed-size group of 25 receivers,
reserving one access node to host the origin server for all
content. The workload was randomly distributed among the
receivers, which all started requesting content simultaneously.
The experiment ended when all receivers finished pulling their
scheduled items.

We investigated the performance of OPC against LRU under
three different cache placement policies: universal caching,
edge caching and caching based on betweenness centrality. In
universal caching, all network nodes operate a caching module,
whereas in edge caching, caches are placed only at the access

2Implementations available at http://www.mm.aueb.gr/
3Available at http://www.nsnam.org/
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Fig. 5. OPC gains normalized to LRU depending on ‘fast memory size:catalog size’ ratio.

Fig. 6. OPC gains normalized to LRU depending on ‘fast:slow memory size’ ratio.

nodes of the network. In betweenness centrality caching, all
network nodes deploy a caching module, but data chunks are
stored at the on-path node(s) with the highest betweenness
centrality degree [19]. Based on the hardware specifications
presented in [9], we assume that the most capable caching
router is equipped with 210 Mbits of SRAM and 10 GBytes
of DRAM. Furthermore, we assume 40 byte LRU entries and
1500 byte chunks, similarly to most previous work [9], [19],
[20]. Compared to LRU, the OPC fast memory entry requires
two additional bytes for storing the number of cached chunks
per object (up to 216 chunks per object). This means that LRU
can index up to 688,128 items in fast memory, while OPC can
only index up to 655,360 items. However, since LRU requires
one index entry per packet, the ratio of fast to slow memory
items must be 1:1, while with OPC each index entry can point
at many packets; with these memory sizes, the fast to slow
memory item ratio is around 1:11, i.e., one index entry per 11
chunks.

B. Network Performance assessment
We first investigate the performance of OPC relative to LRU

under the three cache placement policies described above,
depending on the ratio of fast cache memory size per router to
the population of distinct self-identified items (chunks) in the
workload, commonly referred to as the Catalog size. Since
the number of distinct chunks was fixed in our workload,
we first set the fast memory size in each caching router to
correspond to 0.01%, 0.1% and 1% of the distinct items in
the workload and then set the slow memory size according to
the ratios presented in Sec. IV-A, i.e., 1:1 for LRU and 1:11
for OPC. For every run, we measure the number of hop-by-
hop interests forwarded in the network (Network load), the

number of interests received by the source (Server load) and
the fraction of cache hits to cache requests (Cache hit ratio).

Figure 5 depicts the performance gains of OPC for each
metric normalized to LRU, that is, the LRU metrics correspond
to 100%. The performance superiority of OPC is clear in
all cases, but is even more evident when storage resources
are more limited. Specifically, when fast memory can hold
0.01% of the traffic, the gains of OPC with regard to LRU
range from 260% to 400%, depending the metric and the
cache placement policy. As storage resources are increased,
the gains of OPC relative to LRU are reduced, since the fast
memory bottleneck of LRU plays a smaller role. In addition,
we observe that the improvement on edge caching is the most
sensitive to cache size; for example, the gains in server load
drop from 400% to 128%, with increasing cache size. This
is not unreasonable, since edge caching offers less aggregated
cache capacity compared to the other two policies which use
all routers for caching. Finally, betweenness caching is the
least affected by cache size: OPC gains on server load drop
from 260% to 160%.

We then explore the impact of memory configuration on the
performance of OPC. While the ratio of fast to slow memory is
fixed to 1:1 for LRU by its design, regardless of actual memory
sizes, OPC can adapt to different memory configurations by
adapting this ratio. We thus fixed the fast cache size per router
to 0.1% of the total traffic and modified the slow cache size
so that the ‘fast:slow memory size’ ratio was 1:1, 1:2, 1:5,
1:10 and 1:20. Figure 6 illustrates the gains of OPC for each
metric (again, normalized to LRU) depending on this ratio. We
first notice that even with a 1:1 ratio, where both LRU and
OPC exploit the same amount of slow memory, OPC performs
approximately 10% better than LRU in all cases. This confirms
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our arguments in Sec. III-D that OPC better utilizes storage
resources, thus providing more efficient in-network caching.
We also observe that the performance gains converge at their
maximum values (180% to 200%) for all metrics when the
ratio reaches 1:5. This is reasonable, since in our workload the
most popular traffic types are Web and Other, with the median
number of chunks per object being 6 and 4, respectively.

C. Cache Performance assessment

We now explore the performance of OPC in terms of
temporal caching costs, measuring the latency overhead of the
design of Sec. III-E and its impact on network performance.
In our analysis, we disregard processing delays, focusing on
the latency overhead due to accessing the router’s memory,
which is considered essential for wire-speed operation. We
assume that each memory access requires 0.45 ns and 55 ns
for SRAM and DRAM, respectively [9]. LRU performance is
charged 1 DRAM + 1 SRAM access at packet insertions
and packet fetches and 1 SRAM access at unsuccessful
packet lookups. For OPC, we assume the design of Sec. III-E
for managing DRAM, so we charge packet insertions and
evictions with 1 DRAM + 1 SRAM access, object evic-
tions with 1 DRAM + n ∗ SRAM accesses, where n is
the number of stored object chunks, and packet hits with
1 DRAM + m ∗ DRAM accesses, where m is the number
of hops followed in the linked list from the last stored chunk
to the requested one. Finally, we assign a 5 ms propagation
delay to all network links, and redeploy the experimental setup
used in the results reported in Fig. 5.

Fig. 7. OPC performance normalized to LRU depending on ‘fast memory
size:catalog size’ ratio.

Figure 7.(a) depicts the total DRAM accesses of OPC
normalized to LRU for three distinct ‘fast memory size:catalog
size’ ratios. When memory size is 0.01% of the catalog, OPC
exhibits 16-32% less temporal overhead than LRU, despite
the additional cost of maintaining the linked lists in DRAM.
Since the actual hit-ratio of OPC is around 2-3% (against a
roughly 1% hit-ratio for LRU), most memory accesses are
due to insertions and evictions, rather than cache hits. The
stricter insertion rule of OPC, which only inserts chunks in
sequence, reduces the DRAM accesses for insertions/evictions
by roughly 40%, leading to better memory performance. On
the other hand, on cache hits OPC can require up to 1800%
more reads than LRU, but as hits are only accountable for 1-
2% of the total memory accesses, their cost is negligible. When

memory size is increased to 0.1% of the catalog, OPC spends
roughly 200% more time for DRAM accesses than LRU. This
increased delay overhead is proportional to the increased hit-
ratio, thus these additional memory reads are due to additional
cache hits, justifying the temporal overhead. Finally, when
memory size is set to 1% of the catalog, OPC’s total DRAM
latency reaches 1400% of LRU. OPC’s larger memory can now
hold bigger objects, creating longer linked-lists that amplify
the DRAM accesses, as cache hits are up to 26000% more
than with LRU. Nevertheless, these DRAM accesses are only
triggered by cache hits, which offer network delay gains in
the order of milliseconds, whereas DRAM accesses due to
insertions/evictions are further reduced to 30% of LRU.

In order to understand how the increased DRAM latency of
OPC impacts actual network performance, we also measured
the average time needed for users to complete their sched-
uled transmissions, also called completion time. As shown in
Fig. 7.(b), which illustrates the reduction in completion time
with OPC normalized against LRU, memory latency has a
negligible impact on the performance visible to users: the plot
is completely analogous to Figure 5.(b), which presents the
reduction of network load with OPC normalized against LRU.
This validates our claim that performance is mostly influenced
by cache hits, where the temporal gains due to the increased
hit-ratio of OPC dwarf its penalties in accessing DRAM.

D. Behavioral assessment
In order to better interpret the above results, we will also

explore the state of the cache throughout the experiments.
Using periodic logs, we record the stored chunks and the hits
per chunk in the cache. In Figure 8 we plot these data for
the betweenness centrality cache placement policy with either
LRU or OPC, when the fast memory per cache is 0.1% of
the catalog. Specifically, we show the cumulative distribution
functions (CDFs) of cache-hits per chunk Id and of stored
chunks per chunk Id, where the chunk Id is the rank/order of
a chunk in its corresponding object.

We can see that 95% of the cache-hits in LRU are scored
by the first five chunks of objects, whereas these same chunks
account for only 53% of the cached content. In contrast,
95% of the cache-hits in OPC are provided by chunk Ids
that account for 74% of the cached content, or 21% more
than LRU, even though the slow memory capacity of OPC
is approximately 10 times larger. Therefore, OPC “caches
more” of the content that is accountable for most cache-hits,
thus offering better caching accuracy. We omit plots for other
policies, as they present the same tendencies.

In order to delve deeper in the results, we now focus
on the 350 most frequently cached objects. We define the
caching frequency as #logs with object

#logs , or the probability that
an object is (partially) found inside a cache. These 350 objects,
even though they represent 0.01% of the catalogue, account
for 65% and 80% of OPC and LRU cache-hits. A detailed
analysis of the characteristics of these objects is depicted in
Figure 9, with the x-axis representing the rank of the object;
note that, the 350th object has the highest frequency.

Figure 9.(a) presents the caching frequency of these 350
objects, showing that OPC caches store more of the most



8 PUBLISHED IN: PROCEEDINGS OF THE ACM ICN 2015

Fig. 8. CDF of cache-hits and cached chunks against chunk Id.

frequently cached objects than LRU caches, which is not
surprising, given that OPC stores approximately 11 times
more chunks in the slow memory, thus allowing for more
popular objects to be cached. The significance of this design
decision is revealed by the fact that in LRU only 10 objects are
found cached in more that 80% of logs, whereas 150 objects
satisfy this condition in OPC. Figure 9.(b) shows that both
LRU and OPC exploit popularity roughly the same, since the
popularity of the most frequently cached objects is roughly the
same. This is also reasonable, since OPC itself utilizes LRU
replacement for the L1 object-level index. Nevertheless, some
not so popular objects are frequently cached in LRU, implying
that caching frequency is not as correlated with popularity as
in OPC.

Figure 9.(c) depicts the size of the 350 most frequently
cached objects, while Fig. 9.(d) shows the storage capacity
occupied by each object throughout the experiment, that is, the
total number of chunk occurrences for an object in all logs.
These figures verify that large object cache poisoning does
occur in LRU, since LRU stores some fairly large objects,
some of which are also unpopular (see Fig. 9.(b)), leading
to thousands of stored chunks for these objects, as shown
in Fig. 9.(d). As a result, Fig. 9.(e) shows that the cache-
hits per object are very low for these unpopular objects. For
example, object 91 in the LRU cache has a size of 6416
chunks and a popularity of only 11 requests, yet it occupies
33,000 slots in the slow memory, while scoring zero hits. In
contrast, the object at position 90 of OPC has a size of 6
chunks, a popularity of 130 requests, it occupies 1680 slots
and scores 345 hits. Besides this corner case, OPC provides
more cache-hits than LRU in general, even for objects with
similar popularities. This is not a surprise, since the larger
usable slow memory capacity of OPC allows it to store more
chunks per object for a longer time.

Finally, Fig. 9.(f) depicts the per object caching efficiency
of OPC and LRU, defined as #cache hits

#stored chunks . This metric
exposes the gains due to inserting an object in the cache, by
relating storage costs with cache hit benefits. The deviation
of this metric with OPC is noticeably lower than with LRU.
We interpret this stability as a positive side-effect of address-
ing the particular problems of packet-caches, the very same
problems that directed the design of OPC and provide the
aforementioned gains in almost every metric.

Fig. 9. State analysis of OPC and LRU chunk-level caches (placement:
betweenness, (fast) memory size: 0.1% of catalog).
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V. CONCLUSION

We have presented the Object-oriented Packet Caching
(OPC) scheme for ICN architectures, a two level chunk
caching scheme that fully exploits both the fast and slow
memories of current routers for caching. We discussed the set
of goals guiding OPC design, such as increasing chunk storage
capacity and improving caching efficiency. Having identified
looped replacement and large object poisoning as two critical
issues for ICN packet caches, we presented a simple yet effec-
tive algorithm for chunk lookup, insertion and eviction, which
achieves all of our design goals. We assessed the performance
of OPC via domain-scale simulations with realistic network
traffic and provided an in-depth report of the OPC gains,
validating our claim that OPC provides significantly higher
performance than a simple LRU cache, reducing both network
and server load, in a wide range of cache placement policies
and router cache sizes.
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