Athens University of Economics and Business Master of Science in Computer Science

The mobile phone as a platform for assisting the independent living of aging people

M.Sc. Thesis Eleni Trouva

supervisor: Prof. George C. Polyzos

2nd evaluator: Prof. George Xylomenos

In this thesis

 We exploit the capabilities of mobile phones/PDAs in the context of a Smart Home environment to monitor the activities and assist aging people

- We propose:
 - An indoor positioning system
 - An application that helps people with limited vision

Motivation

Demographic trend

 Rapid growth of the elderly population and increase in life expectancy

New models of positive ageing

 Older adults are being empowered to lead fulfilling lives and adapt to degenerative changes to maintain functionality, autonomy and quality of life

Technology's promise

 Improve the well-being of the elderly, enabling them to lead their lives to a larger extent independently from healthcare institutions and their caretakers

Smart Home

Definition: The integration of technology and services through home networking for a better quality of living

A smart home for aging people can (should):

- Provide an environment that is constantly monitored to ensure the householder is safe and secure
- Automate specific tasks that a householder is unable to perform
- Alert helpers or carers if the householder is in difficulties
- Enable and empower the user

Positioning and trajectories recording in a Smart Home environment

- Need for: Indoor positioning
- Low cost: Using the mobile phone

Indoor positioning Technologies and techniques

Using:

- Bluetooth
- Wi-Fi
- RFID
- Camera on mobile phone

How:

- Cell-based methods (simple discovery)
- Range-combining techniques
- Scene analysis Fingerprinting

Cell-based methods

- Naive scanning and simple discovery
- Localization based on the visibility of beacons (and non-visibility), without using any distance or angle measurements
- Take advantage of the knowledge of the limited range of each of the beacons, using the region of intersection of the ranges of all visible beacons

Range-combining techniques

 Use signal characteristics information and perform calculations (usually time for a signal to propagate or angles) to determine the location of an entity in relation to some other infrastructure devices

Examples

- Time of Arrival
- Multilateration
- Triangulation Angle of Arrival

Scene analysis - Fingerprinting

Fingerprints

- Collections of signal property readings
 (Link Quality, Received Signal Strength Indicator, Transmit Power Level, Response Rate, Signal-to-Noise ratio)
- Collections of images

Stages

- Training stage: Create database of fingerprints for each interesting location
- Matching stage: Compare the stored fingerprints with the current fingerprint of the device we want to locate and find best match using a matching algorithm

A fingerprint-based localization system that uses images captured by the mobile phone

Indoor localization using mobile phone camera

- Determine a user's location based on the camera images received from the PDA
- The PDA is worn by the user as a pendant and images are periodically captured and transmitted to a Web server
- The Web server returns the location of the user by comparing the received images with images stored in a database using off-the-shelf matching algorithms

Steps

- Create database with images and tag them manually
- Take a query image and send it to the server
- Compare it with the images stored in the database, using algorithms for image comparison
- Each algorithm assigns a weight to every image in the database which reflects the degree of similarity
- If the weight of the best match is less than a certain threshold,
 discard the query image
- Else, return the location of the image that matches the query image with maximum weight

Training Stage

of 200 | > > | | + × |

0

■ Say Cheese Database View

14 4 6

Preview

Location X

Location Y

Date

Image Width

Image Height

MegaPixels

Horizontal DPI

Camera Model

Vertical DPI

91

240

0,0768

72

72

HTC_P3650

C:\homePhotos\IMAG0080.jpg

13/2/2009 12:18 пµ

Matching Stage

- 3 off-the-shelf algorithms for image comparison
- Weighted combination
- Precision ≈ 1m

An application to assist people with impaired vision

OCR using mobile phone's camera

- Perform Optical Character Recognition (OCR) in photographs of medication boxes captured by smart phones or PDAs.
- Use of the Microsoft Office Document Imaging (MODI) object model that is available in Microsoft Office Document Imaging 2007

Effort to optimize the results (1)

Image processing techniques

- Contrast adjustment
- Level adjustment
- Grayscale
- Sharpness filter
- Threshold adjustment

Effort to optimize the results (2)

- Take advantage of an a priori known medication list
- Create an XML file with the names of medications used
- Perform OCR on the photographs of medication boxes
- Search for the exact name using the medication list
- If not found, calculate the similarity and return the best result (above a threshold)

Results

Positioning

db of 200 images

≈ 1m precision

≈ 70% success

OCR

original photos ≈ 55%

processed photos ≈ 62%

medication list ≈ 81%

Summary and Conclusion

Indoor positioning

- Proposed a fingerprint-based localization system that uses images captured by the mobile phone
- Achieved a first step towards indoor monitoring (≈70% accuracy) at low cost in order to:
 - provide a secure environment
 - discover patterns in daily behavior of elderly and provide automated services

Future work

- Check room-level / quarter-room-level accuracy
- Find a better weighted combination of algorithms
- Take advantage of the timestamp metadata to predict location
- Combine with another monitoring system (e.g. Bluetooth)

Summary and Conclusion

OCR on photographs of medication boxes

- Proposed an application that helps people with impaired vision
- Other uses except medication
- No other related work

Future work

- Build an application that needs less user involvement
- Evaluate the performance using photos captured by next generation cameras (performance - lighting conditions)

Thank you

Eleni Trouva

Mobile Multimedia Laboratory
Department of Computer Science
Athens University of Economics and Business
trouva@aueb.gr