
A BitTorrent Module for the OMNeT++ Simulator

Konstantinos Katsaros
Mobile Multimedia Laboratory

Department of Informatics
Athens University of

Economics and Business
Athens, Greece

ntinos@aueb.gr

Vasileios P. Kemerlis
Network Security Laboratory

Computer Science
Department

Columbia University
New York, NY, USA

vpk@cs.columbia.edu

Charilaos Stais
Mobile Multimedia Laboratory

Department of Informatics
Athens University of

Economics and Business
Athens, Greece

stais@aueb.gr

George Xylomenos
Mobile Multimedia Laboratory

Department of Informatics
Athens University of

Economics and Business
Athens, Greece

xgeorge@aueb.gr

ABSTRACT

In the past few years numerous peer to peer file sharing, or more
generally content distribution, systems have been designed, imple-
mented, and evaluated via simulations, real world measurements,
and mathematical analysis. Yet, only a few of them have stood
the test of time and gained wide user acceptance. BitTorrent is not
just one such system; it holds the lion’s share among them. The
reasons behind its success have been studied to a great extent with
interesting results. Nevertheless, even though peer to peer content
distribution remains one of the most active research areas, little
progress has been made towards the study of the BitTorrent pro-
tocol, and its possible variations, in a fully controllable but realistic
simulation environment. In this paper we describe and analyze a
full featured and extensible implementation of BitTorrent for the
OMNeT++ simulation environment. Moreover, since we aim to es-
tablish a realistic simulation platform, we show our enhancements
to a conversion tool for popular Internet topology generation and a
churn generator based on the analysis of real BitTorrent traces.

Keywords

BitTorrent, P2P, OMNeT++, OverSim, network simulation

1. INTRODUCTION
A major characteristic of today’s Internet is that a large fraction

of its traffic is due to content distribution applications. This has
prompted researchers to consider redesigning the Internet so as to
best support the distribution of content between publishers and sub-
scribers of information, rather than communication between end-
points [18]. The primary means for content delivery is currently
represented by Peer-to-Peer (P2P) applications [13] where multi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2009 ACM TBA ...$5.00.

ple entities, or peers, collaborate in order to efficiently exchange
content between them. The technique of swarming, that is, the
concurrent downloading of content from multiple peers while si-
multaneously uploading to multiple other peers (first presented in
BitTorrent [9]), has greatly contributed to this development.

BitTorrent is a P2P content distribution system, comprised of a
set of network protocols between the participating peers. It uti-
lizes a simple bartering scheme to reduce parasitic behavior such as
free-riding, where peers only download and never upload content.
When a host wants to distribute a set of files through BitTorrent,
it organizes all files as a sequence of bytes, logically splits the se-
quence into equal size pieces and calculates a hash value for each
piece. Then, a server is located, which is willing to host the file
exchange (not the file themselves); this is the tracker. The content
metadata and supporting information such as hash values, piece
size, file size, tracker address and so on, are recorded in a file with
an arbitrary name that acts as a description and summary of the
content. This metafile can then be distributed over the Web so that
search engines can match user queries with metafile names.

When presented with a metafile, a client1 connects to the indi-
cated tracker and asks for a list of other hosts currently participat-
ing in that particular exchange; all these hosts comprise the swarm.
Note that the tracker does not itself participate in the swarm. Sub-
sequently, each client constructs and maintains a bitmap with the
pieces that it has (a new client initially has nothing, while the origi-
nal distributor has everything). Then, each client randomly contacts
other clients, called peers (or seeds, if they hold the entire file), and
exchanges bitmaps with them. Based on the bitmaps, and other
available data, such as path delay or bandwidth, each client can
freely decide the peers to exchange pieces, in what order, and with
how to talk at any given time. In general, pieces are exchanged in
a tit-for-tat fashion, but to kickstart new clients, peers occasionally
give out pieces for free.

BitTorrent owes its huge success to its ability to distribute re-
source consumption among the participating entities, thus avoiding
the bottlenecks of centralized distribution, as well as to its ability
to avoid performance deterioration and service unavailability by

1In the rest of this paper we follow the BitTorrent protocol specifi-
cation terminology [7] which employs the term client for the local
instance of the BitTorrent modules and the term remote peer for the
instances operating at remote sites.

enforcing cooperation. While BitTorrent has drawn strong inter-
est from researchers, most studies have concentrated on the perfor-
mance evaluation of the protocol and its potential variations via the
study of real world trace data sets [11, 13]. This approach has sig-
nificant advantages with respect to the reliability of the extracted
results, but it is characterized by inflexibility: there is no con-
trol over the participating peer characteristics and major protocol
variations cannot be studied without first implementing and then
deploying them. Moreover, the trace collection process is cum-
bersome and the data gathered may be incomplete. For instance,
collecting information for peers behind firewalls is difficult, while
gathering information about the swarm’s size and structure may be
hindered by the tracker protocol itself [17]. Analytical studies are
even more problematic due to the highly dynamic character of Bit-
Torrent: peers dynamically enter and leave the swarm, establish
and tear down connections, decide on the preferred pieces of a file
and chose to exchange data with peers or not. Simulation appears
to be a more promising alternative, as it allows fast prototyping,
provides the ability to perform large scale experiments, and offers
a common reference platform for experimentation. Nonetheless,
current BitTorrent simulators either consider coarse-grained repre-
sentations of the underlying network, thus reducing the realism of
the simulation, or omit many important features of the BitTorrent
protocols.

In this paper, we present a full featured and extensible imple-
mentation of the BitTorrent protocol for the OMNeT++ simula-
tion environment. We chose this platform due to its simplicity, its
high degree of modularity and the availability of several protocol
implementations ranging from a complete TCP/IP protocol stack
(provided by the INET framework) to a large set of overlay proto-
cols (encapsulated in OverSim [1]). In order to increase the degree
of realism in our simulation environment, we also present our en-
hancements on a topology conversion tool that allows our platform
to use Internet like topologies generated by the popular Georgia

Tech Internet Topology Model (GT-ITM) [22]. In the same vein,
we present a churn generator model that inserts BitTorrent nodes
in a network topology by following an arrival process derived from
the analysis of actual BitTorrent traces [11].

The rest of the paper is organized as follows. In Section 2 we
provide a detailed description of the BitTorrent protocols, focusing
on the features that we implemented. In Section 3 we present the ar-
chitecture of our simulator implementation with respect to module
structure and code organization. Section 4 details the procedure for
establishing realistic simulation scenarios, including the GT-ITM
topology conversion tool and the churn generator module. In Sec-
tion 5 we discuss the limitations of the other available simulators
that prompted our work. Finally, we discuss our future work plans
in Section 6 and we conclude in Section 7.

2. THE BITTORRENT PROTOCOLS
One of the difficulties faced during the implementation of the

BitTorrent modules, was the lack of an official protocol specifica-
tion. Despite the immense embrace of BitTorrent from the user and
research communities, no formal protocol specification has been
drawn up yet. The only authoritative document available, describes
the entities involved in the protocols, the basic concepts, and the
rudimentary transactions among them, but it lacks behavioral and
implementation details [7]. In effect, we had to resort to the unoffi-
cial BitTorrent Protocol Specification [6], which nevertheless does
not constitute a formal and unambiguous source of information. In
fact, several attributes of the protocols appear to be under dispute.
In the remainder of this section we provide a detailed description
of the protocols implemented, clarifying at the same time our ap-

proach in all cases of dispute.

2.1 The Tracker Protocol
Typically, the distribution of a new file2 with BitTorrent starts

by publishing a .torrent metafile; this metafile is distributed to
peers using an out-of-band channel, usually by posting the metafile
on a web page. Among other information, a .torrent metafile
contains the tracker address, file size, piece size, and the hashes for
the file pieces. Trackers are responsible for helping peers discover
each other so as to form a swarm. In most cases, each .torrent
metafile is served by a single tracker, but recent extensions to the
protocol (not implemented by us) allow multiple trackers for one
file or even no trackers at all [8]; the trackerless approach employs
Distributed Hash Tables (DHTs) for decentralized peer discovery.

Clients communicate with the tracker via a simple text-based
protocol, layered on top of HTTP/HTTPS, using the tracker’s URL
stored inside the metafile. During the download phase, each client
communicates with the tracker and publishes its progress (in terms
of total bytes downloaded/uploaded), as well as its contact details

(e.g., IP address, TCP port, identification info). These parameters
are passed from the client to the tracker using the standard HTTP
GET method[2]. Note that most of the information announced by
the client is for statistical purposes; only the IP address and TCP
port of a client are crucial for the tracker. After such message,
called a tracker request, the tracker randomly selects a set of peers
and returns their contact details in a bencoded dictionary [6]. Since
each tracker request provides the contact details of a client to the
tracker, the tracker can return such details back in its replies. In
this manner, over time the peers discover increasing subsets of the
swarm.

2.2 The Peer-wire Protocol
The peer-wire protocol provides the core BitTorrent functional-

ity: interaction with remote peers. In the following we first present
an overview of the implemented peer-wire protocol and then pro-
ceed with the details of its operation, focusing on the most impor-
tant features available in our implementation.

2.2.1 Protocol overview

After contacting the tracker, a client attempts to establish TCP
connections with the peers listed in the tracker response. Upon
connection establishment, the two peers exchange HANDSHAKE

messages in order to verify their peer identities and ensure that they
are interested in the same torrent metafile. This handshake is then
followed by an exchange of BITFIELD messages that contain the
bitfield of each client, which is a bitmap denoting the availability
of each piece at the client. Based on that information a client can
determine whether it is interested in one or more pieces of the re-
mote peer. Note that this exchange is optional when the client has
no pieces, since it would result in the exchange of useless informa-
tion, and is therefore avoided in our implementation.

By following the above procedure over multiple3 peer connec-
tions, a client collects information regarding the availability of the
pieces that it is still missing in the subset of the swarm that has
explored using that information. Based on this information, it then
decides which pieces to request from each peer. In general, if a
peer does not hold any pieces that the client does not already hold,
a NOT INTERESTED message is sent to that peer to indicate the

2Since BitTorrent organizes the set of files to be distributed as a
linear sequence of bytes, akin to a single file, we use the terms file
and files interchangeably throughout the rest of the paper.
3The number of connections to establish is an important protocol
parameter discussed in Section 2.2.2

lack of interest for its data. At the beginning of a connection, peers
are assumed not to be interested in each other’s pieces by default.

Although at this stage a client knows the peers interested in, it
cannot make any requests yet as data cannot be exchanged until the
remote peer actively permits this by sending an UNCHOKE mes-
sage. This means that each client is by default blocked, or, in Bit-
Torrent parlance, choked by the corresponding remote peer. The
decision to choke or unchoke a client is made based on several cri-
teria embodied in the choking algorithm [6] of the protocol:

Reciprocation: Peers unchoke the clients providing the best up-
load rates.

TCP performance: TCP behaves better when the number of si-
multaneous uploads is capped.

Fibrillation avoidance: Frequent choking/unchoking causes data
transfer interruptions that deteriorate protocol performance.

Optimistic unchoking: New peers are occasionally unchoked so
as to discover potentially better connections. Moreover, peers
are thus given the chance to acquire their first pieces.

When a client is unchoked by a peer, it starts sending REQUEST

messages, each asking for a specific block of the selected piece.
The peer sends back the requested data using PIECE messages.
Upon completing the downloading of a piece, a client informs via
HAVE messages the peers that it has established connections to.
These peers update the bitfield for that client and may then, po-
tentially, express their interest for that piece with an INTERESTED

message.

2.2.2 Connections

A client learns about other peers by employing the Tracker pro-
tocol and parsing the peer list returned by the tracker. The client
then joins the swarm by establishing connections with some peers.
However, as noted in [6], each connection incurs an increase in sig-
naling traffic, especially for bitfield maintenance via the exchange
of HAVE messages. Thus, in our implementation we provide con-
figurable lower and upper bounds for the number of established
connections, using the MINNUMCONNECTIONS and MAXNUM-
CONNECTIONS configuration parameters (see Table 1).

2.2.3 Piece downloading strategy

The piece downloading strategy refers to the policy followed in
the selection of the pieces that will be requested from a peer. It
is an important aspect of BitTorrent as it heavily affects the di-
versity of the pieces available at each peer. A low degree of di-
versity would result in low interest for a peer’s pieces, thus caus-
ing degraded application performance. We have implemented the
two most prevalent piece downloading strategies, Rarest First and
Random First. Based on the information gathered during the BIT-
FIELD – HAVE message exchange, the Rarest First strategy selects
those pieces that appear less frequently in a client’s set of con-
nected peers. This selection is randomized among several of the
less common pieces, according to the RAREST LIST SIZE config-
uration parameter (see Table 1), in order to avoid multiple peers
converging on the same piece. This way, peers download pieces
that most other peers probably want, therefore facilitating data ex-
change. However, rare pieces are present only in a few peers, and
it is possible that downloading them may be interrupted due to a
choking decision. Clients with no pieces in their possession would
therefore have to wait for an optimistic unchoking event from a peer
holding the same rare piece in order to continue downloading. The
Random First strategy avoids this problem by selecting a random

piece which is more likely to be available from multiple peers, so
that a choking decision would not have such an adverse effect.

2.2.4 Queueing

As mentioned above, REQUEST messages refer to specific blocks
of a piece. This facilitates fine-grained data exchange by enabling
the queuing of data requests. As common piece sizes vary from
256 KB to 1 MB [6] or even larger, per piece requests would result
in a multitude of redundant packet retransmissions in the event of
a choking decision during piece transfer. A window-based queuing
mechanism is employed for these requests, otherwise propagation
delays would dominate the total download time.

Since the exact nature of the queueing policy is under dispute,
we implemented a generic queueing mechanism in which the user
can specify the exact size of the queue. In this mechanism a client
may send to a peer up to REQUEST QUEUE LENGTH (see Table 1)
REQUEST messages for blocks. Once a PIECE message has been
received, the client may send the next REQUEST message. Once
a piece has been requested in its entirety, if the request queue is
not full, the client chooses another desired piece from that peer’s
bitfield according to the piece selection strategy (see Section 2.2.3)
and starts sending REQUEST messages for its blocks.

2.2.5 Choking algorithm

For the choking algorithm we followed the guidelines presented
in Section 2.2, along with the ability to tune the choking algorithm
as desired. The user is able to select appropriate values for the
time between (optimistic) choking decisions, using the CHOKING

INTERVAL and OPTUNCHOKING INTERVAL configuration parame-
ters, and the maximum number of (optimistically) unchoked peers,
using the DOWNLOADERS and OPTUNCHOKEDPEERS configura-
tion parameters (see Table 1). In order to facilitate the deployment
of content providers with advanced seeding capabilities (see Sec-
tion 4.2) we have enabled the above parameters to be separately
configured for such nodes via the SEEDERDOWNLOADERS and
SEEDEROPTUNCHOKEDPEERS parameters. The configuration pa-
rameter NEWLYCONNECTEDOPTUNCHOKEDPROB is the proba-
bility that the most recently connected peer will be preferred over
previously connected peers in an optimistic unchoke decision.

2.2.6 Super Seeding

The super seed feature is especially useful for content distribu-
tion as it helps the initial seeder of a file avoid excessive bandwidth
consumption while fostering data exchange between participating
peers. A super seeder does not inform its peers that it has all pieces
available, masquerading as an ordinary client. Initially it pretends
to possess no pieces and only later informs it about the availabil-
ity of an individual piece with a HAVE message, as if it had just
completed downloading it. The seeder either selects a piece it has
never uploaded before or, if all pieces have already been uploaded
at least once, a piece that has been uploaded only a few times. Af-
ter the piece has been downloaded by the peer, the seeder will not
inform it of another one until it sees this piece marked as available
in the bitfield of another peer, implying that the first peer has in turn
uploaded this piece.

Our module implements this feature at all clients, but only en-
ables it at the initial seeder via the SUPER SEED MODE configu-
ration parameter (see Table 1), since super seeding is not recom-
mended for ordinary peers [6]. These peers provide their pieces as
requested by their clients, acting as regular seeders after download-
ing all pieces. The duration of this seeding phase can be set via the
TIMETOSEED configuration parameter (see Table 1).

2.2.7 Endgame mode

Parameter Default Value

file size (MB) 700

piece size (KB) 256

block size (KB) 16

DHT port -1

pstr BitTorrent protocol

pstrlen 19

keep alive (sec) 120

have supression true

choking interval (sec) 10

downloaders 4

optUnchokedPeers 1

optUnchoking interval (sec) 30

seederDownloaders 4

seederOptUnchokedPeers 1

rarest list size 5

minNumConnections 30

maxNumConnections 55

timeToSeed (sec) 0

request queue length 5

super seed mode false

end game mode true

maxNumEmptyTrackerResponses 5

newlyConnectedOptUnchokeProb 0.75

downloadRateSamplingDuration (sec) 20

Table 1: Peer-wire protocol parameters.

The endgame mode addresses the problem of slow transfers for
the last data blocks of an exchange, since at that stage most pieces
have been downloaded, therefore the degree of parallelization is
low. In this mode the client sends REQUEST messages for each
missing block to all peers that are not choking it, as opposed to
a single peer. While this is not clarified in the specification [6],
our implementation does not send these messages to all peers in its
current peer set since a peer choking the client will simply discard
the request. Another unclarified aspect of the endgame mode re-
gards the entry condition. In our implementation, the client enters
this mode when the number of missing blocks equals the number
of requested blocks, meaning that all missing blocks have been re-
quested. This feature can be turned on/off using the END GAME

MODE configuration parameter (see Table 1).

3. IMPLEMENTATION
The architectural design approach we followed resembles the

philosophy of the INET framework upon which we built our mod-
ules4. We opted for the following goals: simplicity for eliminating
simulation complexity, modularity for supporting abstractions and
add-ons, and extensibility for encouraging the model’s evolution
by community contributions. Most of the implementation specific
characteristics (those features left open in the specification), were
encapsulated in order to produce a simulation package that is con-
crete and extensible. Thus, simulations can run without touching
the source code, by simply editing the corresponding configura-
tion files of OMNeT++ (i.e., .ini files), while at the same time
maintaining the ability to change many aspects of the model be-
havior. Furthermore, in order to facilitate the evolution of the pro-

4The source code of our BitTorrent implementation is available at
http://mm.aueb.gr/˜katsaros/bittorrent.tar.gz

vided modules, we have modularized the source code of most im-
portant peer-wire protocol features such as the choking algorithm
and the selection of the peer(s) for optimistic unchoking (see Sec-
tion 2.2.5), the piece downloading strategy (see Section 2.2.3), the
entry condition for the endgame mode (see Section 2.2.7), and so
forth. Hence, different algorithms may be easily implemented by
simply redefining the respective methods.

Our BitTorrent model consists of three modules, TRACKER, TRACKER

CLIENT, and PEER-WIRE modules as shown in Figure 1. As their
names suggest, the first module provides the functionality of the
tracker as described in Section 2.1, the second module is responsi-
ble for communicating with the tracker on behalf of a client and the
third module provides the functionality of the peer-wire protocol
as described in Section 2.2. In order to facilitate the deployment
of BitTorrent simulation scenarios, we created separate end host
compound modules for each BitTorrent entity, namely BTHOST,
BTHOSTSEEDER and TRACKER. All these compound modules
were derived from INET’s STANDARDHOST module; individual
protocol modules can also operate as simple STANDARDHOST sub-
modules. A detailed description of the simulation scenario deploy-
ment procedure is provided in Section 4.

BTHost

...Tracker

thread

Tracker

thread

Tracker

thread

..
.

Tracker base

Peer-

wire

thread

Peer-

wire

thread

... Peer-

wire

thread

TCP

..
.

Peer-wire base
Tracker

client

module

TCP

Physical Layer

Peer-wire module

Tracker

Tracker module

Physical Layer

Swarm

Figure 1: BitTorrent module architecture.

As parts of an INET framework application, all modules heavily

rely on INET’s TCP application models. The first design decision
we faced was about the TCP server models we would employ for
the tracker and the peer-wire protocol, given the two alternatives
provided by the INET framework, namely the TCPSRVHOSTAPP

and the TCPGENERICSRVAPP models. The former dynamically
creates and launches a new thread5 object to handle each incoming
connection. The latter also accepts multiple connections but han-
dles them in a centralized fashion. The first approach was regarded
as closer to the symmetric character of a peer-to-peer protocol such
as BitTorrent, while it also saved us from the burden of multi-peer
centralized state maintenance required by the second approach.

3.1 The Tracker Protocol
The implementation of the tracker protocol consists of two prin-

cipal modules: BTTRACKERBASE and BTTRACKERCLIENTBASE.
The former is the server module, which is part of the Tracker, while
the latter is the client module, which is part of the BitTorrent appli-
cation. The communication between these modules is carried out
through the BTTRACKERMSGANNOUNCE and BTTRACKERMS-
GRESPONSE messages, both derived from the CMESSAGE class.
The former class implements the client announce messages and
includes all necessary fields, with their corresponding semantics,
while the latter class encodes the tracker’s responses; both classes
are fully compliant with the specification [6].

The Tracker functionality is implemented in the BTTRACKER-
BASE module, which is derived from the INET TCPSRVHOSTAPP,
as a multi-threaded network application. Upon each successful
connection to the Tracker, a thread is generated at run time in or-
der to drive the session between the tracker and the peer. The
BTTRACKERCLIENTHANDLERBASE module, stemmed from the
INET TCPSERVERTHREADBASE, is used to encapsulate and mod-
ularize the details of tracker-to-peer communication such as mes-
sage exchanges, input validation, reply construction and so on, while
BTTRACKERBASE handles the underlying low-level operations such
as timer handling, and message dispatching. Similarly, the client
part is implemented in BTTRACKERCLIENTBASE, derived from
the INET TCPGENERICCLIAPPBASE, including the functional-
ity required to retrieve tracker responses and feed the BitTorrent
application with the received information (i.e., the contact infor-
mation of other peers). For both the tracker server and client we
implemented the entire set of parameters described in [6]. The key
configuration parameters of both modules, with their corresponding
default values, are illustrated below in Table 2 (server) and Table 3
(client).

Parameter Default Value

alwaysSendTrackerId false

compactSupport true

maxPeersInReply 50

announceInterval (sec) 30

cleanupInterval (sec) 60

Table 2: Tracker Server parameters.

3.2 The Peer-wire Protocol
The implementation of the peer-wire protocol consists of two

principal modules: BTPEERWIREBASE and BTPEERWIRECLIEN-
THANDLERBASE. The main coordination point for the BitTorrent
client is the BTPEERWIREBASE module, derived from the INET

5The term thread is used to denote the individual connection han-
dler rather than an actual Operating System entity.

Parameter Default Value

connectGiveUp 3

reconnectInterval (sec) 2.0

sessionTimeout (sec) 30.0

infoHash nil

compact false

noPeerId false

numWant 20

key nil

Table 3: Tracker Client parameters.

TCPSRVHOSTAPP. This module provides the following function-
alities:

1. Retrieving tracker protocol information, that is, communi-
cating with the tracker client module to retrieve the peer set
information provided by the tracker.

2. Handling the connection establishment policy.

3. Implementing the piece selection strategies. This functional-
ity involves maintaining state on:

• Data availability in the client and throughout the part of
the swarm that we are connected to.

• A client’s current data exchanges, that is, which blocks
have been requested.

4. Informing peers about the availability of new pieces, both in
the normal and in super seeding mode.

5. Applying the choking algorithm.

6. Coordinating the endgame mode.

The BTPEERWIRECLIENTHANDLERBASE class, derived from
the INET TCPSERVERTHREADBASE, is responsible for handling
communications with a single peer. This means that all peer-wire
protocol message exchanges between peers (see Section 2.2.1) are
handled by instances of this class. The coordination of individual
thread (e.g., assuring that a certain block is not requested from more
than one peers, except while in the endgame mode), is performed
by the BTPEERWIREBASE either with direct method calls or with
message exchanges.

Apart from the above classes, our implementation is also based
on two utility classes, namely BITFIELD and BTUTILS. The for-
mer is used to represent a peer’s bitmap, including block informa-
tion6, and provides all necessary handling functions, such as initial-
ization, updates and queries. The latter is used for handling proto-
col state information as described above.

3.2.1 Connection establishment

In the TCPSRVHOSTAPP model, a TCPSRVHOSTAPP object
creates a new socket for each passive connection which is handled
by a new TCPSERVERTHREADBASE instance. In order for our
implementation to reflect the completely symmetric character of
peer connections, we decided to extend this model by also incorpo-
rating the functionality of the client side. That is, our BTPEER-
WIREBASE class allows each new active connection to be han-
dled by a separate BTPEERWIRECLIENTHANDLERBASE thread

6This information is not included in the BITFIELD messages.

object. Hence, when a client decides to establish a TCP connec-
tion with a peer it creates a new socket, establishes the connection
and creates a new BTPEERWIRECLIENTHANDLERBASE instance
to be set as the callback object of the socket. In effect, symmetry
is achieved since two identical thread objects handle the two ends
of the connection. Code structure is therefore simplified since the
peer-wire protocol functionality is incorporated in a single event-
based class.

Furthermore, as discussed in Section 2.2.2, our implementation
was designed to limit the number of established connections per
peer. To achieve this, connections are not initiated by a client un-
less the current number of established connections lies below the
maximum number of allowed TCP connections. However, this is
not enough, since a peer may initiate a connection with a client
that has already reached the maximum number of allowed TCP
connections. In this case, the connection should be refused by the
client. This is accomplished by closing/opening our TCP SERVER-
SOCKET, subject to the connection establishment policy.

3.3 Statistics
The collection of application and protocol statistics is facilitated

by BTSTATISTICS, a simple module responsible for collecting and
aggregating statistics. The set of currently available statistics in-
cludes the download duration for those peers that have managed to
download the desired file in its entirety and the number of down-

loaded blocks for those peers that have failed (i.e., those peers that
cannot find a peer to provide their missing blocks/pieces). A peer is
considered to have failed if it receives an empty tracker response for
MAXNUMEMPTYTRACKERRESPONSES times before download-
ing completes (see Table 1). Furthermore, the number of distinct

data providers and the number of blocks downloaded from seeder,
are also included in the statistics collected for each peer. The for-
mer can be used to examine whether the downloading process is
spread across the swarm, while the latter can assist in revealing the
tendency of users to download directly from the initial seeder (i.e.,
the content provider) subject to several scenario specific parame-
ters such as the arrival time of peers (see Section 4.2), which is
also recorded, the available bandwidth at the content provider, the
seeding policy of other peers, etc.

For all the above metrics, both individual measurements (vec-

tor statistics) and aggregated values (scalar statistics are recorded,
accommodating coarse and fine grained analysis of the collected
data. We plan to enrich this set with statistics on the download rate
achieved by the peers during the download process, the amount of
signaling traffic, and so on.

4. CREATING SIMULATION SCENARIOS
As already discussed above, our BitTorrent implementation was

developed as a stand-alone INET framework application, therefore,
in order to run a BitTorrent simulation, a network topology must
be provided and the appropriate modules (TRACKER, TRACKER

CLIENT and PEER-WIRE) must be loaded as submodules of the
compound modules representing the peers and the tracker. Al-
though this procedure is sufficient for testing the modules, it is
cumbersome to use when constructing realistic scenarios:

• Constructing large-scale realistic network topologies in OM-
NeT++/INET is a complex procedure that requires careful
handling of node module placement and interconnection.

• Randomly introducing clients into the simulation, both topo-
logically and chronologically, through network description
files fails to capture the dynamics of such applications.

These considerations indicate that there is a need for globally
controlled network-wide dynamic module loading in the construc-
tion of the simulation scenario. Hence, we turned to the OverSim
overlay simulation framework [1], which provides several of the
features required to establish realistic dynamic simulation scenar-
ios. It must be stressed however that our BitTorrent implementation
is not OverSim dependent: it can simply optionally employ several
of the features provided by OverSim in order to establish realis-
tic simulation scenarios. In the following sections we present the
OverSim features that we exploited along with our enhancements.

4.1 Topologies
One of our concerns in creating a realistic simulation platform

for BitTorrent is related to the underlying network topologies. Over-
Sim provides various underlying network structures, both simple
(SIMPLEUNDERLAY) and complicated (IPV4UNDERLAY). How-
ever, both models present significant limitations in representing a
realistic network substrate. The lack of protocol functionality and
step-by-step routing in the SIMPLEUNDERLAY model turned our
attention to the more realistic IPV4UNDERLAY model. In [14] we
addressed two important limitations of this model. First, the model
only provides the distinction between backbone and access routers
neglecting more complex structures imposed by the existence of
multiple autonomous administrative domains. Second, the model
provides no support for routing policy weights. Both problems
were addressed by an extension to the BRITE topology generator
[16] export tool [20] that enables full support of the very popular
Georgia Tech Internet Topology Model (GT-ITM) [22] topologies
within the IPV4UNDERLAY model, including the employment of a
weighted shortest path algorithm.

Despite these important enhancements, the resulting GT-ITM
based IPV4UNDERLAY model retains two more, significant limi-
tations. The first is revealed when considering the locality prop-
erties (with respect to the consumption of ISP-specific resources)
of data exchanges in P2P content distribution applications, such as
BitTorrent. It has been shown that BitTorrent’s network-agnostic
peer-wire protocol has an adverse impact on capacity related ISP
costs by allowing downloads from peers residing in external do-
mains even though the desired data are already present locally [13].
This has triggered several research efforts (e.g., [21],[5]) which
would benefit from a simulator providing the flexibility to study ISP
level aspects of the protocol performance. Hence, while OverSim’s
IPV4UNDERLAY model provides no access to such information,
we have further enhanced our topology conversion tool to also pre-
serve the unique Autonomous System numbers [12] produced by
BRITE and to export them to a separate configuration file so that
each router, as well as each attached end host, can be assigned the
corresponding AS number. Direct access to this information is pro-
vided to the simulation programmer, facilitating the investigation
of the aforementioned locality properties and protocol inefficien-
cies, as well as the implementation of location-aware schemes [5].
Our future work plans in that area include the extraction of more
information regarding this aspect of the BitTorrent protocol (see
Section 6).

Second, OverSim does not make any distinction between the up-
link and downlink characteristics of access links (e.g bandwidth).
However, this distinction is important in providing a realistic net-
working environment, since current typical access technologies,
such as ADSL, do present this asymmetry. This issue is further
signified by the fact that bandwidth heterogeneity results in sys-
tematic unfairness of the peer-wire protocol download rate for is
based on the tit-for-tat mechanism [3]. Hence, we have further en-
hanced OverSim’s IPV4UNDERLAY model to support a range of

Uplink Downlink Fraction

(Mbps) (Mbps)

1 4 0.20

1 8 0.40

2 16 0.25

2 24 0.15

Table 4: Bandwidth distribution of access links.

channel 7 characteristics for the two directions of each access link.
Specifically, the simulation programmer is able to specify different
channel options for the uplink and downlink of each access link
type, along with the fraction of the total access links across the
entire network that each channel type is assigned to. For exam-
ple, in the measurements presented below, we have set the values
presented in Table 4. The fraction values indicate that 40% of the
participating peers can download data with a maximum rate of 8
Mbps while they can upload with a maximum rate of 1 Mbps.

4.2 Host Deployment
Having established a realistic network topology, the next step is

to deploy the BitTorrent entities on it, that is, the tracker, the initial
seeder and the peers. For the tracker, to avoid coupling the net-
work topology description file with the application, we extended
the OverSim IPV4UNDERLAYCONFIGURATOR module to dynam-
ically introduce an end host in the network serving as the BitTorrent
tracker.

Regarding the initial seeder, we implemented a separate deploy-
ment scheme, since in many realistic scenarios the initial seeder
has different characteristics from ordinary peers. For instance, the
content may be a new Linux distribution (e.g., an ISO image file),
hosted by a dedicated server with a high capacity access link, with
ordinary peers participating in the swarm through ADSL links. Pro-
tocol parameters may also be altered to achieve differentiated be-
havior between the initial seeder and the peers. For example, the
initial seeder may optimistically unchoke multiple peers to speedup
the distribution of the offered file. This was again achieved by ex-
tending IPV4UNDERLAYCONFIGURATOR and ACCESSNET mod-
ules’ functionality and employing a separate host description file
for the initial seeder, the BTHOSTSEEDER. Note that our exten-
sions check whether the scenario is BitTorrent related before pro-
ceeding to deploy an initial seeder or a tracker, thus preserving the
base functionality of the affected modules.

Unlike the tracker and the initial seeder, peers need to be ran-
domly introduced into the network both in a topological and in a
chronological sense (i.e., they need to be placed at random nodes in
random time points). The churn models provided by the OverSim
platform, together with the underlying IPV4UNDERLAY configu-
ration mechanism, constitute a flexible mechanism for dynamically
deploying peers in the network. However, the churn models avail-
able in OverSim were not designed to reflect the arrival processes
of real applications. Instead, they provide a generic mechanism for
the arrival process, and several distributions describing the dura-
tion of a peer’s presence in the network. Since in BitTorrent this
duration depends on protocol operation rather than on a predeter-
mined distribution, we focused on the arrival process. Using the
OverSim churn generator mechanism, we implemented the BIT-
TORRENTCHURN model that reproduces the arrival process of Bit-

7At this point we adopt the OMNeT++ definition of a channel
which includes the data rate, error rate, and propagation delay char-
acteristics of a link.

Torrent clients presented in [11]. In this study, based on the analysis
of BitTorrent user traces, it was observed that the peer arrival rate
for a torrent follows an exponential decreasing rule with time t:

λ(t) = λ0e
−

t

τ ,

where λ0 is the initial arrival rate when the torrent starts and τ de-
notes the file popularity. Based on this distribution it can be shown
that Nall = λ0τ , where Nall is the total population size. Hence, by
retrieving values for Nall and λ0 from the configuration files, our
model can generate random arrival times for each BitTorrent peer.

5. RELATED WORK
Simulating the operation of BitTorrent is a difficult task due to

the inherent protocol complexity and the lack of concrete specifi-
cations. The multitude of possible policies, such as those for piece
selection and choking decisions, as well as parameter values, such
as the choking interval and the number of unchoked peers, creates
a highly dynamic environment. Hence, in order to isolate and fo-
cus on important protocol aspects, works such as [3, 4, 15], ignore
the influence of the underlying protocols and focus on the applica-

tion logic. However, this design decision obviously incurs a non
negligible degree of inaccuracy. TCP dynamics, propagation de-
lays and the potential queuing of packets in routers are important
factors that can affect, for example, the perceived download rate in
a client and therefore alter its choking decisions. Being written as
an INET Framework application, our implementation avoids this
situation by providing almost all features specified in [6] and by
operating on top of full-fledged simulation platform.

To the best of our knowledge, there is only one packet-level
BitTorrent simulation module available [10], implemented for ns-
2 [19]. While this implementation shares our goal of providing a
realistic simulation environment, our implementation provides sev-
eral additional features, such as the entire Tracker protocol as well
as the endgame mode of the peer-wire protocol. Furthermore, our
implementation allows fine grained tuning of the protocols by pro-
viding several configuration parameters not available in [10], such
as OPTUNCHOKING INTERVAL and NEWLYCONNECTEDOPTUN-
CHOKEDPROB (see Table 1).

Finally, we note that our implementation is not the first attempt
to incorporate BitTorrent in the OMNeT++ simulation platform. A
swarming-based simulation module is presented in [15], but it only
provides a bare-bones subset of the BitTorrent protocol features,
since it totally lacks the essential tit-for-tat mechanism. This mod-
ule was also developed using trivial network topologies with ded-
icated non-TCP connections among all pairs of peers, unlike our
module which fully exploits realistic, large-scale topologies build
on top of the INET framework.

6. FUTURE WORK
Our plans for future work primarily focus on enriching the cur-

rent set of extracted statistics. To this end, we first aim at keeping
record of the achieved download rate of each peer during its partic-
ipation in the swarm. Our intention is to make this information, as
well as the currently provided statistics, further categorizable with
respect to the access link capabilities of the peers so as to allow
the fine grained analysis of the derived measurements. In the same
vein, and by taking advantage of the enhanced topology model em-
ployed (see section 4.1), we plan to provide support for the extrac-
tion of topology-aware results i.e. results regarding specific areas
of the network such as specific access networks. This will involve
both per peer statistics (e.g. download time) and per area statistics
(e.g. volume of data exchanged with neighboring access networks).

Furthermore, it is in our plans to enable the separate extraction of
statistics for the operation of the initial seeders.

Regarding the creation of simulation scenarios (see Section 4),
we intend to provide support for multiple initial seeders and to fur-
ther enhance the tuning of the peer-wire protocol on these nodes
by providing control over several parameters such as the choking
interval and the number of optimistically unchoked peers. Such
features, in combination with the seeder-specific statistics, are ex-
pected to enable the fine-grained investigation of the protocol per-
formance from the perspective of content providers. Moreover, by
taking advantage of the rich suite of overlay protocols provided by
OverSim [1], we currently investigate the design space for the im-
plementation of the DHT-based trackerless BitTorrent extension.

Finally, apart from extending the functionality of the presented
modules, our goal is to continue the presented evaluation with an
extended set of experiments regarding both the resource require-
ments of the presented simulation environment and the performance
of BitTorrent ’s peer-wire protocol. Our first steps towards this di-
rection include the investigation of the impact of the file size on
both the memory and the computation overhead, and the investi-
gation of the block size impact on the peer-wire protocol perfor-
mance.

7. CONCLUSIONS
In this paper we have presented an implementation of the Bit-

Torrent set of protocols for the OMNeT++ simulation environment.
Our main target was to produce a realistic simulation environment
that will enable the detailed evaluation of the protocol in fully con-
trollable conditions. Towards this direction we have faithfully im-
plemented the only available protocol specification, trying to make
our module resemble an actual BitTorrent application implemen-
tation. Furthermore, we created a set of tools, which enable the
construction of realistic simulation scenarios that can capture the
properties of the Internet like network topologies and the real world
deployment dynamics of BitTorrent participants. Our goal is to
enable simulation scenarios to be created where clients access the
network over both symmetric and asymmetric links with various
characteristics.

Acknowledgements

The work reported in this paper was partially supported by the ICT
PSIRP project under contract ICT-2007-216173.

8. REFERENCES
[1] I. Baumgart, B. Heep, and S. Krause. OverSim: A flexible

overlay network simulation framework. In Proc. of the IEEE

Global Internet Symposium, pages 79–84, 2007.

[2] T. Berners-Lee, L. Masinter, and M. M. (eds). Uniform
Resource Locators (URL). Internet Request For Comments,
December 1994. RFC 1738.

[3] A. Bharambe, C. Herley, and V. Padmanabhan. Analyzing
and improving BitTorrent performance. Technical Report
MSR-TR-2005-03, Microsoft Research, 2005.

[4] A. Bharambe, C. Herley, and V. Padmanabhan. Analyzing
and improving a BitTorrent network’s performance
mechanisms. In Proc. of the IEEE INFOCOM, pages 1–12,
2006.

[5] R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bates,
and A. Zhang. Improving traffic locality in BitTorrent via
biased neighbor selection. In Proc. of the International

Conference on Distributed Computing Systems (ICDCS),
2006.

[6] BitTorrent development community. BitTorrent Protocol
Specification v1.0.
http://wiki.theory.org/BitTorrentSpecification.

[7] BitTorrent.org. BitTorrent Protocol Specification.
http://www.bittorrent.org/beps/bep_0003.html.

[8] BitTorrent.org. Torrent File Extensions.
http://www.bittorrent.org/beps/bep_0005.html.

[9] B. Cohen. Incentives build robustness in BitTorrent. In Proc.

of the Workshop on the Economics of Peer-to-Peer Systems,
pages 116–121, June 2003.

[10] K. Eger, T. Hoßfeld, A. Binzenhöfer, and G. Kunzmann.
Efficient simulation of large-scale P2P networks:
Packet-level vs. flow-level simulations. In Proc. of the

Workshop on the Use of P2P, GRID and Agents for the

Development of Content Networks, pages 9–16, 2007.

[11] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang. A
performance study of BitTorrent-like peer-to-peer systems.
IEEE Journal on Selected Areas in Communications,
25(1):155–169, 2007.

[12] IANA. Autonomous system numbers.
http://www.iana.org/assignments/as-numbers.

[13] T. Karagiannis, P. Rodriguez, and K. Papagiannaki. Should
Internet service providers fear peer-assisted content
distribution? In Proc. of the Internet Measurement

Conference, pages 63–76, 2005.

[14] K. Katsaros, N. Bartsotas, and G. Xylomenos. Router
assisted overlay multicast. In Proc. of the Euro-NF

Conference on Next Generation Internet Networks (NGI),
2009 (to appear).

[15] P. Korathota. P2P swarming protocol simulation.
http://me55enger.net/swarm/.

[16] A. Medina, A. Lakhina, I. Matta, and J. Byers. Brite: an
approach to universal topology generation. In Proc. of the

International Symposium on Modeling, Analysis and

Simulation of Computer and Telecommunication Systems

(MASCOTS), pages 346–353, 2001.

[17] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. The
Bittorrent P2P file-sharing system: Measurements and
analysis. In Proc. of the International Workshop on

Peer-to-Peer Systems (IPTPS), pages 205–216, 2005.

[18] PSIRP Project Team. PSIRP project home page.
http://www.psirp.org.

[19] UCB/LBNL/VINT. Network Simulator - ns (version 2).
http://www.isi.edu/nsnam/.

[20] A. Varga. OMNeT++ export for BRITE 2.1.
http://www.omnetpp.org/filemgmt/singlefile.php?lid=5.

[21] H. Xie, R. Yang, A. Krishnamurthy, Y. Liu, and
A. Silberschatz. P4P: provider portal for applications. In
Proc. of the ACM SIGCOMM, pages 351–362, New York,
NY, USA, 2008.

[22] E. Zegura, K. Calvert, , and S. Bhattacharjee. How to model
an internetwork. In Proc. of the IEEE INFOCOM, volume 2,
pages 594–602, 1996.

