
Data Management in Mobile Environments

Katsaros Constantinos
MSc in Computer Science

Athens University of Economics and Business

1 Introduction

It is commonplace that the rapid advances in wireless communications, electronics
and networking have resulted in a new computing paradigm, mobile or nomadic
computing [10]. An increasing number of new autonomous, portable devices (Pocket
PCs, Palmtops, PDAs, mobile phones) has become a significant part of every day life
and work, leading to a decentralized, location independent, wireless computing
environment. The extended computing capabilities of such devises have made them
suitable for providing information services complementing traditional stationary
hosts. Personal mobile devices may now store and process data, giving the
opportunity to develop novel applications.

However, unlike traditional wired communications, the deployment of these new
services faces several important restrictions due to the wireless-mobile environment.
Low bandwidth and battery life as well as frequent disconnections, due to energy
saving measures and changes of location, are not negligible factors since they put
constraints on the availability and integrity of the offered service. Furthermore, in a
highly dynamic environment - in terms of mobility and changes of location - a
location management mechanism is necessary in order to assure that mobile hosts can
be located and reached at any time [10].

In a data-centric point of view, the restrictions mentioned above introduce several
issues that need consideration. The very nature of a mobile environment indicates the
distribution and heterogeneity of data. Either following a completely symmetric peer-
to-peer architecture or a client-server one, mobile nodes must be able to reach the
desired data in a cost efficient way. Data transfers must be minimized so that wireless
environment’s limitations do not result in a degraded service and mechanisms must be
deployed in order to confront the frequent disconnections and achieve high data
access performance, data availability and consistency. Several approaches have been
proposed in this direction, including replication, caching, semantic caching and
partial answers, which are discussed in the remainder of this document. Furthermore,
other approaches (some of them service-oriented and context-aware) have been
proposed in order to solve the problem of the heterogeneity of data. These are
discussed in the last section of this document.

2 Data Access

Considering the above-mentioned limitations of a mobile environment, a critical issue
that arises is the obtainability of data. Major approaches on this issue are discussed in
the following.

2.1 Data Broadcasting

Data broadcasting (data push) is regarded as the main method of information
dissemination in wireless networks [21]. A lot of research has been done in this field
aiming at the improvement of the database server’s responsiveness and client data
availability [17,18,19,20]. All of these schemes try to reduce the energy consumed on
the client by efficiently organizing the contents of the broadcast (based on popularity
and/or correlation of data items). But in a mobile server context (for example mobile
ad-hoc networks) these techniques fail to address the limited energy and bandwidth
problem since they assume that a server has unlimited power supply and may even
continuously be active processing and broadcasting. Obviously, traditional mobile
broadcast methods fail to deal with server mobility and power limitations [7].
Apparently, similar issues arise as in the case of broadcast based caching invalidation
as discussed in the next section. It is not energy efficient that all mobile servers
broadcast the same data or some server broadcasts the same data multiple times in
order to serve similar requests.

In this direction, two algorithms were proposed in [21] called adaptive broadcasting
and popularity based adaptive broadcasting which address the issues of client and
server energy limitation and timing constraints on requests in an mobile ad-hoc
network (MANET).

In the first algorithm, a number of mobile servers and clients co-existing in the same
area is assumed. Full data replication among the servers is also assumed, posing
though a question about the synchronization-updating mechanism. The data in a
server’s local database is divided into two groups: frequently requested data, called
hot data, and less frequently requested data, called cold data. This is accomplished by
maintaining a request frequency (RF) factor for each data item. Each server
periodically broadcasts its power level and location information so that in the end of a
period, all servers know this information about all other servers. The server with the
highest power is considered to be the leader. It is responsible to schedule the data
broadcast of other servers. This means that it partitions hot data into portions. The
higher the power level of a server, the bigger portion of the data it will be assigned to
broadcast. The lower the power level of a server, the hotter the data will be. This is so
because a server can, additionally to the broadcast, reply to data on-demand requests
(data pull). Thus, a server transmitting the hottest data is less probable to receive
explicit requests, saving thus some energy that has already reached low levels. The
adaptation characteristic of the algorithm lays on the fact that the contents of a
broadcast dynamically change following the changes in the RF factors. As a data item
becomes more popular, it gets included in the next broadcast either by replacing a less
frequently requested item or by being appended to the broadcast content.
This algorithm suffers from the following drawbacks. First, there is a large
communication overhead when updating the RFs, second there are no request
deadlines and client movements are not considered in the calculation of the RFs, third

there is a single point of failure (the leading server), and forth in sight of a new
request some older ones may starve.

The second algorithm was proposed in order to address the above-mentioned
drawbacks. In this algorithm popularity factor (PF) is used. This factor mirrors the
importance of a data item. Whenever a client posts a request for a data item, the
corresponding PF increases. If the time elapsed since the request of this item exceeds
a predefined threshold (residence latency, RL) the PF factor decreases. If a server has
not received any requests for a long time it will switch to doze mode.

In conclusion, several crucial issues must be considered when talking about data
communication in a wireless-mobile environment. First, power consumption must be
minimized and this imposes several restrictions on the data communication scheme.
Multiple identical data broadcasts and data requests have to be eliminated. A carefully
designed broadcast scheme can minimize the power consumption due to explicit data
item requests but on the other hand we do not want any redundant transmissions. It
must be kept in mind that servers may also be nomadic. Obviously, there is a tradeoff
between scheduled broadcasts and on-demand requests. Second, time restrictions
must be posed on any data communication method. The consumption of energy is
maximal when a mobile node is in active state. This means that a mobile client cannot
afford waiting a long time for a data item to be broadcast, not only in terms of power
consumption but also in terms of system performance (response time). Therefore,
there is need either for some strict, but not restrictive, time scheduling [5,6] or an
indexing technique as proposed in [22]. In addition to that, special care must be taken
in case of multiple mobile servers in the same area. Simultaneous broadcasts will
result in collision wasting power and time both on the servers and the listening clients.
A leading server can carry out the coordination of broadcasts as proposed in [21]
(with the above mentioned single-point failure drawback). Third, as in the case of
broadcast based caching mechanisms, special care must be taken for the consistency
and integrity of the data to be ensured. Full replication methods as in [21] impose
severe restrictions on this goal while partial replication seems to be a rather difficult
task as discussed above. When portions of the network become separated for a time,
keeping data accurate may become impossible [7]. Fourth, the existence of peer-to-
peer communication mechanisms could improve the performance of a data
communication scheme. Near-by mobile clients could share data without the
interference of a server entity. This issue is covered in the remainder of this
document.

2.2 Replication

Replication refers to the action of creating local or nearly located copies of useful data
items in order to avoid later communication overhead or even unavailability in case of
on-demand retrieval from their original location. The need for data replication derives
directly from the restrictions in a mobile/wireless environment. Disconnected or
poorly disconnected nomadic users rely primarily on local copies of the required data
in order to achieve availability and reliability. However, these restrictions also apply
in the case of these replication mechanisms’ deployment. Full replication results in
additional energy consumption and heavy traffic generation [7]. Consequently,
traditional, full replication techniques designed for static infrastructure seem to be
inappropriate for a mobile environment [15]. On the other hand, partial replication

can be regarded as an alternative solution but it also hides some important issues that
need deep consideration. Partial replication may be achieved by partitioning the data
(for instance a database). In the mobile context and especially in peer-to-peer systems
this task could prove to be very difficult as the data placement problem in such
systems is NP-complete [8]. Moreover, updating partial and/or full replicas is
considered as a difficult problem. In general, data items with low update rate should
be replicated in the environment of a client that wishes frequent access to them. In
contrast, if a data item is updated more frequently than a user wishes to access it, then
it is probably more sufficient for the client (and the server) to access it on-demand
[23]. However, this problem is similar to cache updating discussed below, in that in
both cases the objective is to update stale data on a mobile host. The difference
between these situations is the size of the data that need update. Usually replicas are
large amount of data in contrast to caches. Several approaches have been proposed for
the cache (in-) validation problem, as described in the following section.

In conclusion, several issues have to be addressed in order to clearly determine the
potentials of data replication in mobile environments. First, there is the need for any-
to-any communication [15]. A client-server approach may not prove scalable. Finding
stable nodes to host replicated data may prove hard in the context of a highly dynamic
network topology. If the number of mobile users increases, then this approach may no
longer be viable since heavy traffic is caused in the network due to the redistribution
of the data in cases of node movement. It is obviously preferable that mobile users
communicate directly with each other and get the desired data replicas from near-by
users [1]. Of course, this requirement entails an efficient knowledge partitioning
mechanism as described above, as well as a scalable updating mechanism. Second,
there is need for detailed replication control. Unnecessary data transfers must be
avoided in order to save disc space and bandwidth. This means that individual object
selection must be possible. Obviously, transferring a large-granularity container will
result in transferring unneeded objects [15]. Thus, the replication mechanism must be
flexible. Third, replication is often based on a priori decisions of the user. The user is
often expected to explicitly state their intensions about moving to another location.
This characteristic may be restrictive for the way a mobile user moves from place to
place and/or hindering for the systems adaptation to a possible new location. Mobile
users cannot always predict their location. Fourth, in an environment with
autonomous data sources, replication may not be possible simply because the data
source forbids it [3].

It seems from the above, that replication in a highly dynamic mobile environment is a
difficult task. This is the reason that attention is drawn to flexible caching schemes
(see next section). However, as long as efficient solutions are provided for the
problems discussed above, replication could increase the systems data availability and
data access performance.

3 Caching

Caching is a widely used mechanism for improving data access performance and
availability. The main difference between caching and replication is that the former
occurs after the retrieval and use of the data while the latter in an a priori way.
Especially in a wireless, mobile environment, caching of frequently accessed data in a

mobile node’s local storage can reduce energy and bandwidth consumption as well as
query delays, while at the same time increasing the system’s flexibility in cases of
disconnection. However, a fundamental issue when considering caching policies is
data consistency. A client must always ensure that data in its cache is up to date in
order to be able to provide valid responses in submitted queries.

3.1 Broadcast Based Caching Schemes

Various caching schemes have been proposed, addressing the problem of cached data
consistency. In these schemes, a client-server architecture is considered, in which the
original data reside on a stationary host (server) that serves client requests. The server
broadcasts special messages (invalidation reports) in order to help clients keep their
cached data consistent.

Two main invalidation strategies exist, depending on whether the server maintains the
state of each client’s cache [6,16]. In the stateful server strategy, the server maintains
information about the data items each client keeps in its cache. Thus, it is responsible
to inform each client about any updates on the data items they have cached. To do so,
invalidation messages are sent to each client holding an old copy of an updated data
item. This strategy is not efficient when clients are frequently disconnected, as they
cannot be informed about the invalidation of their cache. This results in the loss of
their cache in view of the use of stale data [16]. Moreover, in case a mobile client
moves, it must de-register from the server and register to another. This is obviously a
situation where mobility is hindered. Last but not least, a client gets informed about
the change in the state of a data item even if it does not plan to use it. This is a
potential waste of bandwidth [6]. An example of this approach is the Andrew File
System [24]. In the stateless server strategy, the server maintains no information
about its clients’ caches. Mobile clients are responsible for updating their cache. To
do so, they communicate with the server in order to learn about any possible updates.
This approach is obviously power and bandwidth consuming. An example of this
approach is the Network File System [25].

Another approach on the subject is the mechanism of timestamps (TS) [6]. In this
cache invalidation method, the stateless server broadcasts invalidation reports
periodically, every L seconds. These reports consist of the id of all data items that
changed during the last w seconds (where w ≥ L) coupled with the corresponding
timestamp, which declares the time that this item last changed. Upon reception of the
invalidation report, mobile clients check their cached data. If they find an outdated
item (the new timestamp in the invalidation report is this case larger than that of the
cached item) they drop it from the cache. If an item is not reported in the invalidation
message then its timestamp in the cache is updated to the timestamp of the
invalidation report. If the mobile client realizes that the interval between to successive
invalidation report receptions is bigger than w, then the whole cache in dropped. A
mobile client may produce an answer to a query only when it has received the next
invalidation report, which means only after it has checked the consistency of its
cache.
A variation of the TS method is that of Amnesiac Terminals (AT). In this method the
server periodically informs the clients about the items changed since the last
invalidation report. If a mobile client gets disconnected for a period of time, it has to
rebuild its cache from scratch.

 The evaluation of these schemes shows that the TS method is more suitable for
mobile clients that is less probable to be disconnected (workaholics) while the AT
method is more suitable for mobile clients that are in a disconnected state most of the
time.

The cache invalidation method described above has two major drawbacks which were
faced in the low-latency cache invalidation method (UIR)[16]. First, in the TS method
a client may answer a query only after it has received the next invalidation report.
This means that a client must wait L/2 seconds in average, in order to validate its
cache and answer a query. The proposed solution to this delaying factor is the
introduction of short intermediate invalidation reports (updated invalidation reports,
UIR). Between the broadcasting of two consecutive invalidation reports, (m-1) UIRs
are broadcast to the clients every 1/m seconds. These reports refer only to the data
items that changed since the last invalidation report (similarly to the AT method).
Thus, a client may be able to answer a query only after 1/m seconds after the
reception of the query. Second, in the TS method, if an updated item resides on
multiple clients’ caches, then separate queries will be issued and answered for these
caches to be updated. This is obviously a bandwidth-consuming situation. The
proposed solution here is to keep track of the requested items. When the server
receives a request for a data item it refrains from responding immediately. Instead it
saves the id of the requested data item in a list Lbcast. This list is broadcast
immediately after the next invalidation report. All clients listening to this report will
also learn about the data items that are going to be transmitted by the server. The
server broadcasts these items after the broadcasting of Lbcast. All clients interested in
the broadcast data item will have already been informed about its transmission and
will simply save it without issuing any data item request. However, all clients must
wait for the transmission of Lbcast before queries can be answered, resulting in longer
delays [5]. The same problem is addressed in [5] where the Delayed Requests Scheme
(DRS) is proposed. This method aims at reducing the uplink traffic due to identical
data item requests. In this scheme, clients with invalidated data items refrain from
posting a request to the server for a period of twait seconds. During this period they
listen to the downlink channel to see if the server is already planning to broadcast
these items. In order for a client to learn so, the server, upon reception of a request,
broadcasts a notice message informing the clients of its intention to broadcast the
requested items. If eventually the client does not get informed about the scheduled
broadcast of the data item, it posts a request for it.

Neither of the above methods addresses the problem of potentially very large
invalidation reports. Both in TS and UIR methods, the size of an invalidation report is
proportional to the number of updated data items. Thus, in cases of high update rates,
the invalidation reports become large, forcing mobile clients to spend their limited
bandwidth and energy resources. The validation-invalidation reports scheme (VIR)
[5] aims at solving this problem. The idea is that when the number of updated data
items increases (in general: more than the half the data items have to be invalidated),
the number of unchanged – and still valid – data items shrinks. Thus, it is more
efficient to send validation reports in this case, instead of the larger invalidation ones.
These reports consist of the id of each validated data item (id) and the corresponding
timestamp (t) that indicates the time of the last change of the item. Obviously, the
following condition must hold: t ≤ Treport - L.

A common advantage of all the above approaches lays on the fact that broadcasting is
a cost effective way of communicating cache validation information to all mobile
clients [5], since the cost of broadcast communication in a wireless environment is
independent of the number of recipients. On the other hand, a particular constraint
posed by this approach is that mobile clients have to be listening for these messages.
Obviously this is an energy-consuming situation, which however has been dealt with
[6].

It must be pointed out that all the above approaches were studied in the context of
stationary servers and mobile clients. In a different architecture, where mobile nodes
hold databases, the above techniques for creating the cache and preserving its
consistency, cannot be applied straightforwardly. Power and bandwidth restrictions
make it costly for a mobile node to periodically broadcast invalidation reports.

3.2 Semantic Caching

Although it has been proved that traditional broadcast based caching schemes
improve data access performance and data availability, it is difficult for a client to
determine if a query could be answered entirely based on locally cached data, forcing
it to contact the database server [4]. This holds because of the lack of semantics in
these caching mechanisms.

An additional caching mechanism is proposed [4] in order to solve this problem. In
semantic caching, data is cached as a collection of possibly related blocks. The
relation of these blocks comes from the fact that they represent the results of
previously evaluated queries. In other words, each caching unit accompanied with its
semantic description can be regarded as a materialized view. In this way, a client may
compare a new query with the description of these views (called restrict condition)
and decide whether it can produce an answer or it has to post a data request to the
server. More specifically, when a query is submitted to the clients, a query handler
module analyzes it to determine whether it can be answered locally. If so, the query is
executed on the cached data without any communication establishment with the
server. In this case the query is said to be completely self-answerable [4]. In case the
query cannot be answered completely using the cached data (partially self-
answerable) then it is divided into two parts, a probe query that will be answered
using the cached data and a supplementary query that describes the missing data that
need to be transferred from the server. The whole process is called query
transformation. The results of these two queries are integrated to form the original
query’s result. Each query result is stored in the cache as a cache fragment for future
use. These fragments can be broken down into smaller, finer ones (called sub-cache
fragments), in order to achieve better caching granularity (cache fragmentation). If
the client is disconnected during the above process only the result for the probe query
will be returned to the user.

The updating mechanism of a semantic cache is based on the lazy, data pull method.
Each caching unit is associated with a timer, whose expiration triggers the client to
post a request to the server for the updated data.

Another issue about semantic cache management is the materialization of the views a
semantic cache contains. As mentioned above, each caching unit can be regarded as a

materialized view on the original data. However, multiple views have overlapping
areas (over the same data) raising the point of selection of the views to be
materialized. A greedy approach would be to materialize all views to provide optimal
performance in query processing. This approach would result in extensive storage
requirements, which are difficult to satisfy in a mobile device. An alternative to this is
to materialize the most frequently accessed views. This is done during cache
fragmentation process.

This type of caching yields several important advantages. Partial or complete answers
can be retrieved from a semantic cache reducing the power and bandwidth needs. In
the case of a complete answer it is more than obvious that semantic caching can save
significant resources. Moreover, this characteristic can prove very useful in cases of
disconnection. These cases are frequent in a wireless environment and this method
can significantly improve the reliability and the availability of the system. Moreover,
semantic caching offers a great degree of flexibility in the cache management since
(as mentioned above) it can support various degrees of caching granularity. In fact,
with semantic caching, the granularity of cached data is the result of the query [27]. In
consequence, semantic caching can result in reduced space requirements, in addition
to its network traffic efficiency. In cases where the projection operator is supported by
the semantic caching scheme [4], the above advantages are amplified since the
projection operator is very useful at pruning unnecessary attributes.

3.3 Cooperative Caching

Cooperative caching is the caching scheme that allows the sharing and coordination of
cached data among multiple nodes [1]. This scheme can be used in ad-hoc networks
in order to reduce query delay and message complexity as well as power and
bandwidth consumption. It can also be considered as an efficient alternative to
replication schemes in environments with frequent topology changes, as described
above.

In an ad-hoc network, each node may serve neighboring nodes as a forwarder-router
or even as a gateway in cases where a neighboring node cannot establish
communication with any other node. A set of cooperative caching schemes is
proposed in [1] for such an environment.

In the first scheme, Cache Data, a node monitors passing-by data items. If it finds out
that there are many requests for a data item or there is enough free cache space, it
caches it. To avoid situations where all nodes in the path between the data source and
the requesting node cache a frequently requested data item, a node does not cache a
data item if all requests come from the same node. In this case, it is more efficient to
store the item closer to the requestors (the closer common node in the paths from the
requestors to the source) and avoid thus all unnecessary traffic along the path as well
as storing data in other nodes. Using this rule, at least the requesting node will cache
the data item.

In the second scheme, Cache Path, a node caches the destination of passing-by data
items in order to keep track of an alternative location of various data items (apart from
that of the data source). Based on the underlying routing mechanisms, a node can then

forward incoming requests to the closest of the known holders of the requested item.
To reduce network traffic, a node caches an item’s destination only when it is very
close to it. This ensures that caching information will be useful since a very distant
destination will never be preferred for forwarding a request to.

It must be noted, that the above mechanisms require the constant operation of the
mobile nodes, since processing of all passing-by data items is needed. This is
obviously power consuming. In addition to that, heavy network traffic is generated
due to the frequent employment of the underlying routing algorithms for the distance
calculations to take place.

4 Partial Answers

Another method proposed for increasing a systems performance under restricting
conditions, such as data source unavailability, is partial answers [3]. In this approach,
the main target is to provide the system with the ability to return answers to queries
even in cases where the sources of the required data are not accessible. Such a
condition is obviously very often in a mobile environment where clients suffer from
frequent disconnections. The method for extracting partial answers is suitable for
systems where data is distributed among several sources.

The main idea here is that in cases where not all data sources involved in query are
available, we can still take advantage of the ones that are available and provide some
answer to the user. When a query - involving multiple data sources- is submitted by
the user, it is evaluated by the system. If all data sources are available then the system
returns the complete answer to the query. If no data sources are available then the
answer is null. If some of the data sources are not available during the query
evaluation then a partial answer is returned. This answer consists of the data accessed
from the available data sources, a query on the unavailable data sources and some
additional information gathered during evaluation, e.g. the list of data sources that
were available or the ones that were not.

Partial answers can be either transparent or opaque. In the first case, we can take
advantage of the data returned in the partial answer in order to extract a part of the
complete information. This can be accomplished through the use of a parachute
query. A query of this type targets at the data obtained from the available data
sources. Multiple parachute queries can be submitted. A problem that turns up here is
that the effectiveness of a parachute query depends on the structure of the
intermediate results during execution of the original query [3], which is determined by
the query optimizer. This structure may obstruct the extraction of useful information
because query optimization is not targeted at a particular parachute query. One
solution is constrained optimization, where the parachute query is submitted together
with the original one so that the query optimizer may produce an execution plan
suitable for both the queries. In this case, the possibility that a certain data source may
be unavailable must be taken into account. Another option is unconstrained
optimization, where the optimization of the original query is done regardless of the
parachute query’s structure. In this case, query optimization is simpler but the
effectiveness of parachute queries is reduced. To improve on this, intermediate results
can be retained during the evaluation of the original query. Returning to the case of

opaque partial answers, the query returned inside the partial answer can be later re-
submitted in order to obtain the missing information. The whole process can be
repeated several times until we have a complete answer for the original query. Thus,
we are able to extract all the required information even if all data sources are not
available at the same time. It suffices that all data were available at least once.

Another important feature of this approach is the embedment of the query scrambling
functionality in the query evaluation process. Query scrambling is used to handle the
problem of delayed responses from the data sources. When a data source delays its
response during the evaluation of a query, the data source is marked as unavailable
and skipped without blocking the system. Thus, the system has the opportunity to
proceed with the rest of its tasks letting the partial answering mechanism solve the
problem of this data source’s unavailability.

5 Heterogeneity and Service-oriented approaches

Another important issue regarding data management in a mobile environment is data
heterogeneity. In a nomadic computing paradigm, it would be naïve to assume that a
uniform, universal representation of data for all computing nodes surely exists. We
cannot rely on the existence of a predefined, global schema [2]. In addition to that, a
large variety of mobile devices is expected to further enhance this diversity. Thus, it is
important to provide this new computing environment with the necessary mechanisms
so that information dissemination is feasible, overcoming existing diversities. In
addition to that, mobility introduces one more factor, context-awareness
[11,12,13,14]. Data may be location dependent [9,10] and this must be seriously taken
into account when considering data management. Context-awareness may prove
helpful in providing mobile nodes with the desired information, as it may help
specifying the data required by a user [11,12,13,14].

A data-centric view of such an environment relies on the use of meta-data [26].
Meta-data is used to facilitate data discovery as well as us to speed up data
processing. In other words, meta-data can be used by a mobile node to determine
mappings between its schema and its neighbors’ ones. In order to achieve that,
metadata primarily describe content data. Content data is the actual data a mobile
node carries. In some cases [11,12,13,14] content data may also contain location
dependent information (for example, current location and temperature). Furthermore,
metadata can be used first, to ensure suitable data representation for the various types
of mobile devices, second, to provide personalized services and third, to optimize
routing. In these cases, metadata would be used to describe the type of the user’s
device, the user’s preferences and the user’s mobility patterns [10] (profile data [26]).
There are several widely accepted languages and tools appropriate for the deployment
of meta-data such as XML and RDF.

An approach on the use of meta-data is given in [2]. In this peer-to-peer based,
architecture, meta-data are maintained for each relationship, name and attributes.
These metadata contain keyword/descriptions of the items they represent, which are
provided by the user upon the creation of the item. All these elements are stored in a
Local Dictionary, on the mobile node. Meta-data of sharable items are also associated
with the Export Dictionary. When a mobile node wishes to find data relative to a
submitted query, it launches DBAgents modules that are responsible to find potential

suitable relations in the neighbors’ Export Dictionaries. This is done through keyword
searching. The matching relations (meta-data, database name and location) are
returned to the querying node. This is done for two reasons. First, to provide the user
with the necessary information for him/her to chose the most suitable relation, if any.
The system lets the user make this choice in order to avoid situations where data may
be syntactically the same (having the same keywords) but semantically different. In
these cases, significant resources (power and bandwidth) are wasted with no avail.
Second, the metadata of the user’s choice can be used for future search process.

A different architecture is used in [11,12,13,14]. DBGlobe (elsewhere called
MobiShare [13]) uses a two-layer architecture. In the first layer, individual peers,
called Primary Mobile Objects (PMOs), communicate directly with each other in a
peer-to-peer mode. In the second layer, administration units, called Administrator
Servers (ASs) or Community Administration Servers (CASs), are employed to
coordinate the systems operation inside a certain area analogous to a cell, in terms of
cellular telephony. In DBGlobe a service-oriented approach is employed, in that data
are encapsulated in services. A service is accessible through messages, language and
platform independent, and produces output messages (results), which are machine-
oriented (with the use of profile data as discussed above). Every PMO registers with
the local CAS by providing metadata information similar to that described earlier,
giving the CAS the necessary information to build a service directory. This directory
lists all services offered by PMOs in the cell. The CAS uses a service ontology
(taxonomy [13]) with a hierarchical structure in which semantically similar services
are related to the same node in the tree, e.g. to the topic research [12]. When a PMO is
searching for specific data, it firsts contacts its CAS. The CAS traverses the service
ontology to locate the best matching service for the submitted request (usually a string
complemented by lexicographical matches using a thesaurus) and sends back the
results. The user chooses the desired service and accesses it directly.

6 Conclusions

The main targets for a mobile data management system is to ensure data availability
and consistency even in cases of disconnection, which are frequent in these systems.
The problem is that, in a mobile computing environment, energy and bandwidth
restrictions affect all data management related issues making the achievement of these
goals a difficult task. What derives from the above is that further research needs to be
done, as most of the solutions proposed today assume stationary data sources. In view
of the emergence of numerous data producing devices [9] a lot of issues described
above must be addressed.

References

[1] Y. Yin and G. Cao, “Supporting Cooperative Caching in Ad Hoc Networks,”

IEEE INFOCOM, March 2004.
[2] B.C. Ooi, Y. Shu and K. Tan, “Relational Data Sharing in Peer-based Data

Management Systems,” Proceedings of theACM SIGMOD Conference, September
2003.

[3] P. Bonnet and A. Tomasic, “Partial Answers for Unavailable Data Sources,”
Proceedings of the Conference on Flexible Query Answering Systems, Roskilde,
Denmark, 1998.

[4] K. C.K. Lee and H.V. Leong, “Semantic Query Caching in a Mobile
Environment,” Mobile Computing and Communications Review, Volume 3,
Number 2, April 1999.

[5] K.Y. Lai, Z. Tari and P. Bertok, “Cost Efficient Broadcast Based Cache
Invalidation for Mobile Environments,” ACM, March 2003.

[6] D. Barbara and T. Imielinski, “Sleepers and Workaholics: Caching Strategies in
Mobile Environments,” VLBD Journal,4 , March 1995.

[7] L.D. Fife, “Research Issues for Data Communication in Mobile Ad-Hoc Network
Database Systems,” Proceedings of theACM SIGMOD Conference, June 2003.

[8] S. Gribble, A.Halevy, Z. Ives, M. Rodrig and D. Suciu, “What can Databases Do
for Peer-to-Peer?” Proceedings of the Workshop on the Web and Databases
(WebDB), 2001.

[9] T. Imielinski and B.R. Badrinath, “Wireless Graffiti – Data, data everywhere,”
Proceedings of the 28th VLBD Conference, 2002.

[10] T. Imielinski and B.R. Badrinath, “Querying in highly mobile distributed
environments,” Proceedings of the 18th VLBD Conference, 1992.

[11] A. Karakasidis and E. Pitoura, “DBGlobe: A Data-Centric Approach to Global
Computing,” Proceedings of the 22nd International Conference on Distributed
Computing Systems Workshops, 2002.

[12] E. Pitoura, S. Abiteboul, D. Pfoser, G. Samaras and M. Vazirgiannis, “DBGlobe:
A Service-Oriented P2P System for Global Computing,” ACM SIGMOD Record,
September 2003.

[13] E. Valavanis, C. Ververidis, M. Vazirgiannis, G. C. Polyzos and K. Norvag,
“MobiShare: Sharing Context-Dependent Data & Services from Mobile Sources,”
IEEE/WIC International Conference on Web Intelligence (WI'03), October 2003.

[14] C. Ververidis, S. Valavanis, M. Vazirgiannis and G. C. Polyzos, “An
Architecture for Sharing, Discovering and Accessing Mobile Data and Services:
Location and Mobility Issues,” In proceedings of the LOBSTER Workshop,
Mykonos, 2002.

[15] D. Ratner, P. Reiher, G. J. Popek and G. H. Kuenning, “Replication
Requirements in Mobile Environments,” Mobile Networks and Applications,
Vol.6, Issue 6, November 2001.

[16] G. Cao, “ A Scalable Low-Latency Cache Invalidation Strategy for Mobile
Environments,” ACM, 2000.

[17] D. Aksoy and M. Franklin, “Scheduling for Large-Scale On-Demand Data
Broadcasting,” Proceedings of the 12thInternational Conference on Information
Networking, January 1998.

[18] V. Grassi, “ Prefetching Policies for Energy Saving and Latency Reduction in a
Wireless Broadcast Delivery System,” Proceedings of the 3rd ACM International
Workshop on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
2000.

[19] Y. Guo, M. Pinotti and S. Das, “A New Hybrid Broadcast Scheduling Algorithm
for Asymmetric Communication Systems,” ACM Mobile Computing and
Communications Review, 2001.

[20] E. Yajima, T. Hara, M. Tsukamoto and S. Nishio, “Scheduling and Caching
Strategies for Broadcasting Correlated Data,” Proceedings of the 16th ACM
Symposium on Applied Computing, March 2001.

[21] L. Gruenwald, M. Javed and M. Gu, “Energy-Efficient Data Broadcasting in
Mobile Ad-Hoc Networks,” Proceedings of the International Database
Engineering and Applications Symposium, July 2002.

[22] I. Imielinski, S. Viswanathan and B.R. Badrinath, “Energy Efficient Indexing on
Air,” Proceedings of the ACM SIGMOD Conference, May 1994.

[23] Y. Huang, P. Sistla, and O. Wolfson, “Data Replication for Mobile Computers,”
Proceedings of the ACM SIGMOD Conference, May 1994.

[24] K. Kazar, “Synchronization and Caching Issues in the Andrew File System,”
USENIX Conference, 1988.

[25] S. Sandberg, D. Goldberg, S. Kleiman, D. Walsh and B. Lyon, “Design and
Implementation of the Sun Network File System,” Proceedings of the USENIX
Summer Conference, June 1985.

[26] D. Pfoser, E. Pitoura, N. Tryfona, “Metadata Modeling in a Global Computing
Environment,” 19th ACM International Symposium on Advances in Geographical
Information Systems (ACM-GIS), 2002.

[27] M.T. Ozsu and P. Valduriez, “Principles of Distributed Database Systems,
Second Edition,” Prentice-Hall, 1999.

	1 Introduction

