
The role of streaming in Interactive Multimedia Documents dissemination
Reetta Pitkänen, Michalis Vazirgiannis, George C. Polyzos

Dept. of Informatics, AUEB
Athens 10434, Greece

reetta@aueb.gr, mvazirg@aueb.gr, polyzos@aueb.gr

ABSTRACT
Multimedia applications require handling of continuous media
and support of a variety of media objects with their temporal and
spatial relationships. The paper focuses on the importance of
streaming usage for the quality of service for multimedia
document playout in distributed environments. We describe two
Java-based client-server systems for WWW-enabled delivery of
Interactive Multimedia Documents (IMDs) supporting a high
level of interaction and distribution of scenario and media. We
performed series of tests on client-server systems on both Local
Area Networks and on Wide Area Networks. The framework has
used RTP/RTCP protocols for delivery of continuous streams
over the network. The experiments show and quantify the
positive effects of streaming on the quality of IMD presentation.

1. Introduction
Multimedia applications require handling of continuous media
and support of a variety of media objects with their temporal and
spatial relationships. The issue of distributed Interactive
Multimedia Documents (IMDs) and specifically their retrieval
and execution is an issue of current research [1]. The delivery of
interactive multimedia content through the WWW is an
upcoming requirement due to the increasing quantity and quality
of such content. The rendering of an IMD may become a very
complicated task due to the multitude of events occurring and
the potentially large set of different presentation options [11].

Multimedia applications require a large amount of resources in
terms of host processing power and network bandwidth
consumption. Continuous media have an inherent temporal
dependency. This results in synchronization requirements for
streams, events and groups. It is important for a multimedia
presentation system to guarantee the precise presentation time
and synchronization between different media objects. Users do
not like to wait for a long time for the results of their queries or
to see a presentation they requested. Delay in access to
multimedia objects used by an IMD can result in significant
perceived degradation of the quality of the presentation. Due to
high data rates (even compressed video requires high bandwidth)
high-speed networks, powerful workstations with real-time
facilities and suitable host interface attachments are needed.

Until recently, the standard way to present multimedia
documents through a network was to download them first, and
then display them. Since transmitting media across a network
requires high throughput, start-up latency becomes unacceptable
for real-time media. For real-time applications, there is a strong
need for streaming media. With streaming media, the client can
begin to play the stream without having to wait for the complete
stream to download. Some related efforts are the following.

Berkeley Continuous Media Toolkit (CMT)[10] is a framework
that consists of a suite of customizable applications that handle
streaming media data. In [5] a real-time Multimedia Presentation
System (MPS) is presented to experiment with media-on-demand
issues using RTP over the Internet with emphasis on video and
audio media types.DirectShowÿ is Microsoft’s architecture for
capture and presentation of multimedia [6]. DirectShow RTP is a
framework that extends the DirectShow architecture, adding
support for multimedia applications that stream their data across
computer networks using the RTP protocol. The DirectShow RTP
framework was designed to support a wide variety of multimedia
streaming tasks in a highly extensible manner.

NetMedia is a client-server distributed multimedia presentation
system that can flexibly support synchronized streaming of
continuous media, in real-time, across the Internet [4]. It is mainly
focused on the real-time buffer management and end-to-end data
transmission. [3] describes algorithms for effective
synchronization between media and the maintenance of a QoS.

In the context of WWW-enabled delivery, special attention should
be paid to the Synchronized Multimedia Integration Language
(SMIL). The key to HTML success was that attractive hypertext
content could be created without requiring a sophisticated
authoring tool. SMIL aims at the same objective for synchronized
hypermedia [1].

There is an extensive coverage of topics such as streaming video
and multimedia presentations. New standard technologies include
products such as Real Networks RealSystem Server [14] and the
MS Windows Media Server [13]. However, the merging of these
two areas, combined with substantial user interaction, has received
little attention by researchers. Also, most of the research has
concentrated on streaming of a single media object.

This paper describes the architecture of two Java-based client
server systems for WWW-enabled delivery of IMDs supporting a
high level of interaction and distribution of scenario and media.
We performed series of tests on client-server systems on both
Local Area Networks (LANs) and on Wide Area Networks
(WANs). The system has been implemented in Java using the
Remote Method Invocation (RMI) [9] client-server communication
protocol, Java Media Framework (JMF) [2] for handling
multimedia objects and RTP/RTCP protocols for delivery of
continuous streams over the network.

2. System architecture and implementation
We have developed two approaches for IMD delivery and
rendering: without streaming (the more traditional one) and with
streaming. Rendering is the process of the actual presentation of
the media, i.e. where, when, for how long and under what
transformations each media object will be presented [11]. The first
system (Figure 1) retrieves scenarios from an IMD server and
media objects from a set of http servers.

An IMD involves a variety of individual multimedia objects
presented according to a set of specifications called the IMD
scenario [11]. A scenario is a set of autonomous functional units
called scenario tuples, which describe the flow of the application
in spatial and temporal domains (e.g. “video1> 4 image1> 0
button1> 5 video 1||” which means “start video1, after 4 sec start
(show) image1, immediately (after 0 sec) start button1, after 5
sec pause video1”). It also describes how application and system
events are handled. The scenario defines all media objects used
in a multimedia presentation. It does not include the media
object data, but only references to their location in the form of
URLs [2].

During the authoring phase, the author of an IMD defines the
spatial and temporal order of the media objects within the
document context and the relationships between these objects.
The author also defines how an end user will interact with the
presentation as well as the way application or system events will
be treated. During an IMD session, whenever a media object is
to be presented, the client communicates with the respective http
server and presents the media directly from the remote machine
without storing it locally. It is important to notice that the client
will present the media only when it has retrieved the entire
media object. A detailed description of this system can be found
in [1].

Figure 1. Architecture for client-server system without
streaming

In both approaches, the system implementation is based on Java;
the IMD server, the Media server and the client are all
implemented in Java, and therefore portable across platforms.
Java has many appealing features such as built-in multi-thread
support and cross-platform compatibility. Moreover, all WWW-
browsers support Java. Therefore, it is possible to present an
IMD in any WWW-browser. Both implementation frameworks
support concurrent processes (i.e., a set of instruction streams
may run in parallel).

In the approach without streaming, the client retrieves the
continuous media (video and sound) from http servers and
presents them with the aid of the JMF. The JMF specifies a
unified architecture, messaging protocol and programming
interface for media players, media capture and conferencing [1].
JMF APIs support the synchronization, control, processing and
presentation of time-based media.

The second system is based on an approach that uses streaming
of continuous media (Figure 2). It is an extension of the system
described in [1]. With streaming media, the client can begin to

play the stream without having to wait for the complete stream to
download. The streaming is implemented using the Real-time
Transport Protocol (RTP). RTP is a protocol providing support for
applications with real-time properties, including timing
reconstruction, loss detection, security and content identification.
RTP enables the identification of the data being transmitted,
determines the order the packets should be presented in and
synchronizes media streams from different sources [12]. JMF APIs
enable the transmission and playback of RTP streams.

Figure 2. Architecture for client-server system that uses
streaming of continuous media

The following modules provide the server functionality. The IMD
server is responsible for the delivery of IMD objects (scenarios) to
the client. The RMI registry, which is the naming service of RMI,
is used to establish communication between client and server [1].
The Media server (Figure 3) is responsible for the delivery of
continuous media streams (video and audio) to the client. Finally, a
set of http servers store and serve the hypermedia objects.

Figure 3. The media server architecture and the
communication with the client.

When the media server is started, it registers itself to the RMI
Registry and waits for client requests. When there is a client
request, it uses a Processor to produce an RTP-encoded
DataSource and to construct a SessionManager. The
SessionManager is used to coordinate an RTP session as well as to
keep track of the session participants and the streams that are being
transmitted. It also handles RTCP control channels [2]. The system
supports simultaneous media streams.

Each media type is transmitted in a separate RTP session. If a
video clip contains both visual component and audio component,
they are transmitted as separate RTP streams. The media data for a
session is transmitted as a series of packets called the RTP stream.
The RTP data packets are not guaranteed to arrive in order. In fact,

IMD server

Client

Scenario

HTTP server HTTP server HTTP server

Media objects

IMD server

Client

Scenario

HTTP server HTTP server Media server Media server

Continuous media
objects

Static media
objects

Client

RMI Registry

Media Server

Media objects

they are not guaranteed to arrive at all [12]. The receiver is
responsible for the reconstruction of the packet sequence and the
detection of lost packets.

RTCP is a control protocol that works in conjunction with RTP
[12]. The primary function of RTCP is to provide information to
an application regarding the quality of data distribution. Each
RTCP packet contains sender and/or receiver reports that report
statistics useful to the application. These statistics include
number of packets sent, number of packets lost, inter-arrival
jitter, etc. This reception quality feedback will be useful for the
sender, receivers, and third-party monitors [2]. For example, the
sender may modify its transmission rate based on the feedback;
receivers can determine whether problems are local, regional or
global; network managers may use information in the RTCP
packets to evaluate the performance of their networks for
multicast distribution. The sender report (SR) contains the total
number of packets and bytes sent as well as information that can
be used to synchronize media streams from different sessions. A
receiver report (RR) contains information about the number of
packets lost, the highest sequence number received, and a
timestamp that can be used to estimate the round-trip delay
between the sender and the receiver.

Users have control over the buffer maintained by the RTP
receiver. The buffer has two parameters that can be controlled:
Length and Minimum threshold. The Length is the length of the
buffer. When the data in the buffer exceeds this length, the data
at the head of the queue (earlier data) is dropped. The Minimum
threshold determines a point in the buffer. Data is forwarded to
the application only when enough data comes to the buffer so as
to reach the min. threshold point. According to [2] RTP video
buffer limit in frames is 4 frames, while audio buffer limit is a
maximum of 1000 ms of audio. The communication between the
client and the servers is performed exclusively (except for the
actual streaming of media) using the Remote Method Invocation
(RMI) protocol [1].

3. Experimental evaluation
We carried out extensive experiments in LAN configuration
consisting of three machines connected by a 10 Mbps Ethernet.
We used one media server and two clients. The media server is
on the same machine as the http server that holds the media
objects. It is important to notice that the scenarios are time-
independent and usually a few kilobytes in size, so it not very
important where the IMD server is located (can be either on the
same machine with the client or on a remote server). Table 1
summarizes the different client configurations we used.

Media server
(Windows

2000)

WAN
Client

(Windows
98)

LAN
Client 1

(Windows
98)

LAN Client
2 (Windows

2000)

CPU Pentium III
533 MHz

Pentium II
400 MHz

Pentium
200 MHz

Pentium III
650 MHz

Memory 256 MB 128 MB 48 MB 128 MB

We used several different scenarios for the experiments. These
scenarios contain different combinations of video, audio, images
and text. We used 240 x 180-pixel resolution video clips and
audio with 22.5 kHz sampling rate. We also used gif and jpg
files for images and txt files for text. Each scenario was executed
four times concurrently on each client, using three different
execution schemas (no streaming, streaming with maximum
values for buffer and minimum threshold and streaming with

default values for buffer and minimum threshold). Due to space
limitations we will refer to selected test results that are
representative of the overall system behavior.

Two parameters were taken into consideration for the experiments:
end-to-end delay for each actor and packet loss. In this case, delay
is defined, as the amount of time needed from the moment a client
requests a media object until the moment its presentation is started.
In order words, delay is a sum of server latency, network latency
and client startup latency. More specifically, the different delays
involved in end-to-end delay estimation are: (i) data retrieval
delay, attributed to disk access delays, (ii) packetization delay, (iii)
network delay, including propagation and queuing delays, (iv)
depacketization delay, and (v) decoding and rendering delays.
Results for streaming is measured with two different values for
buffer length and minimum threshold in order to verify how much
these values affect the parameters. In the first case (maximum
values), the buffer length is set to 270 ms and 135 ms for minimum
threshold for video while sound has the corresponding values of
1000 and 500. In the second case (default values), the buffer length
is set to 135 ms and 0 ms for minimum threshold for video while
sound has the corresponding values of 250 ms and 125 ms. We
tested four different scenarios on local network using two clients,
and other two scenarios were tested over the internet using a
remote client.

3.1. Test results
In this section we describe the experimental results using an
interactive scenario: “Exploring the heavens” which contains a
series of images, text and video clips. The action list of scene1 is
"ALKUR_VIDEO> 0 NEXT_BTN1>". Action list of scene2 is
"EARTH_IMG> 4 EARTH_IMG< 1 MOON2_IMG> 4
MOON2_IMG< 1 IO_IMG> 4 IO_IMG< 2 SPACE_VIDEO> 1
MISSION1> 2 NEXT_BTN2> ". Finally, the action list of scene3
is "A17> 3 A16> 5 DISCOVERY> 3 EXITBTN>". The temporal
ordering of the above media objects and scenes appear in Figure 4.

No streaming: The first time the scenario is executed, the delay
for video clip ALKUR_VIDEO is much bigger than with the next
three executions, while the video clip SPACE_VIDEO has
approximately the same delay for all four executions. Packet loss is
small and is not noticeable by the user.

0 25 50 75 100 125 150 175 200

duration (sec)

ALKUR_VIDEO
NEXTBTN1

EARTH_IMG
MOON2_IMG

IO_IMG
SPACE_VIDEO

MISSION1
NEXTBTN2

A17
A16

DISCOVERY
EXITBTN

Timeline of scenario "Exploring the heavens"

scene1 scene2 scene3

Figure 4: Timeline of the scenario “Exploring the heavens”

Streaming (max buffer length and threshold): Delay is much
smaller than with no streaming. The first time the scenario is
executed, the delay for video clip ALKUR_VIDEO is much bigger
than with the next three executions, while the video clip

SPACE_VIDEO has approximately the same delay for all four
executions. Packet loss is not noticeable by the user and is
smaller than with no streaming.

0

5000

10000

15000

20000

25000

A
LK

U
R

_V
ID

E
O

E
A

R
T

H
_I

M
G

M
O

O
N

2_
IM

G

IO
_I

M
G

S
P

A
C

E
_V

ID
E

O

M
IS

S
IO

N
1

A
17

A
16

D
IS

C
O

V
E

R
Y

Actor

D
el

ay
(m

s)

No streaming Streaming (max buffer) Streaming (default buffer)

Figure 5: Average delays for actors of scenario
“Exploring the heavens” environment LAN, client 1,
average delay for 4 executions

Streaming (default buffer length and threshold): Delay is
much smaller than with previous two schemes. The first time the
scenario is executed, the delay for video clip ALKUR_VIDEO is
much bigger than with the next three executions, while the video
clip SPACE_VIDEO has approximately the same delay for all
four executions. Packet loss is not noticeable by the user and is
smaller than with no streaming and approximately equal than
with streaming with maximum values.

It is important to notice that text “MISSION1” that appears one
second after video “SPACE_VIDEO” has very large delay when
streaming is used. Playback quality is good and is approximately
the same with all execution schemes.

4. Conclusions and future work
We have presented two Java-based client-server systems for
IMDs that support a high level interactivity and distribution of
scenario and media. Using RTP/RTCP we have developed our
system to support streaming of continuous media objects. The
major conclusions are the following:

As was shown by our experiments, the processing power of the
client can become a bottleneck and influence the performance of
the presentation a great deal. The processing power affects both
client start-up latency and playback quality of the presentation.

The approach that uses streaming has significantly smaller delay
than the approach with no streaming. Additionally, the client
buffer length and minimum threshold affect the client start-up
latency.

Streaming improves the synchronization of the media objects.
Best performance in terms of delay and synchronization was
achieved using streaming with default values for buffer and
threshold (jitter buffer).
It was shown than when no streaming is used, the network
becomes a bottleneck. On the contrary, when streaming is used,

client-processing power becomes the bottleneck. Finally,
streaming also decreases the percentage of lost packets.

We extended our experiments in a WAN configuration consisting
of a remote client and media server and the results were inline with
the above-mentioned results.

We plan to extend the client-system architecture to support QoS
features. We also plan to include other features such as pre-
fetching into our system. The idea of pre-fecthing is to predict data
access needs in advance so that a specific piece of data is loaded
before it is actually needed by the application. The need for pre-
fetching in our system is based on the observation that there are
frequent periods of time during which the bandwidth is under
utilized or not utilized at all. In order to achieve high quality IMD
presentations over the Internet, protocols such as RSVP and
Differentiated Services (DiffServ) should be considered.

References
[1] Th. Markousis, D. Tsirikos, M. Vazirgiannis, Y. Stavrakas:

“WWW-enabled delivery of interactive multimedia
documents,”Computer Communications23 (2000) 242-252.

[2] Sun Microsystems, Inc: “JavaTM Media Framework API
Guide”, http://java.sun.com/products/java-
media/jmf/2.1/guide/, November 19, 1999.

[3] T. V. Johnson, A. Zhang: “A Framework for Supporting
Quality-Based Presentation of Continuous Multimedia
Streams”, Proceedings of the 1997 International Conference
on Multimedia Computing and Systems (ICMCS '97),
Ottawa, Canada, June 1997.

[4] Y. Song, M. Mielke, A. Zhang: “NetMedia: Synchronized
Streaming of Multimedia Presentations in Distributed
Environments”, Proceedings of the ACM Multimedia, Italy,
Florence, June 1999.

[5] S. Palacharla, A. Karmouch, S. A. Mahmoud: “Design and
Implementation of a Real-time Multimedia Presentation
System using RTP”, Proceedings of the COMPSAC '97 - 21st
International Computer Software and Applications
Conference,Washington, DC, August 1997

[6] L. S. Cline, J. Du, B. Keany, K. Lakshman, Christian
Maciocco, David M. Putzolu: “DirectShow RTP Support for
Adaptivity in Networked Multimedia Applications”, IEEE
Multimedia Systems ‘98

[7] F. Rousseau, A. Duda: “Streaming Support in an Advanced
Multimedia Infrastructure for the WWW”, Proceedings of the
Fourth IEEE Symposium on Computers and Communications

[8] J. Du, M. Clark, D. Putzolu, D. Ryan, L. Cline, D. Newell:
“An Extensible Framework for RTP-based Multimedia
Applications”, In Proceedings of the 7th International
Workshop on Network and Operating System Support for
Digital Audio and Video (St. Louis, MO, May 1997), IEEE,
pp. 53--60

[9] Sun Microsystems, Inc: “JavaTM Remote Method Invocation”,
http://java.sun.com/products.jdk/rmi/

[10] M. H. Jackson, J. E. Baldeschwieler, and L. A. Rowe:
“Berkeley Continuous Media toolkit API”, September 1996.

[11] M. Vazirgiannis, “Interactive Multimedia Documents”,
Springer-Verlag, LNCS Series, October 1999, ISBN 3-540-
66711-3.

[12] RFC 1889 “RTP: A Transport Protocol for Real-Time
Applications” http://www.faqs.org/rfcs/rfc1889.html

[13] Microsoft: Windows Media Server:
http://www.microsoft.com/windows/windowsmedia/EN/defau
lt.asp

[14] Real Networks: RealSystem Server:
http://www.realnetworks.com/products/basicserver/info.html

