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Abstract—In participatory mobile crowdsensing (MCS) users repeat-
edly make choices among a finite set of alternatives, i.e., whether to
contribute to a task or not and which task to contribute to. The platform
coordinating the MCS campaigns often engineers these choices by
selecting MCS tasks to recommend to users and offering monetary or
in-kind rewards to motivate their contributions to them. In this paper, we
revisit the well-investigated question of how to optimize the contributions
of mobile end users to MCS tasks. However, we depart from the bulk
of related literature by explicitly accounting for the bounded rationality
evidenced in human decision making. Bounded rationality is a conse-
quence of cognitive and other kinds of constraints, e.g., time pressure,
and has been studied extensively in behavioral science.

We first draw on work in the field of cognitive psychology to model
the way boundedly rational users respond to MCS task offers as Fast-
and-Frugal-Trees (FFTs). With each MCS task modeled as a vector of
feature values, the decision process in FFTs proceeds through sequen-
tially parsing lexicographically ordered features, resulting in choices that
are satisfying but not necessarily optimal. We then formulate, analyze
and solve the novel optimization problems that emerge for both nonprofit
and for-profit MCS platforms in this context. The evaluation of our opti-
mization approach highlights significant gains in both platform revenue
and quality of task contributions when compared to heuristic rules that
do not account for the lexicographic structure in human decision making.
We show how this modeling framework readily extends to platforms
that present multiple task offers to the users. Finally, we discuss how
these models can be trained, iterate on their assumptions, and point to
their implications for applications beyond MCS, where end-users make
choices through the mediation of mobile/online platforms.

.

Index Terms—Mobile crowdsensing; incentive allocation; bounded ra-
tionality; task recommendation; decision trees; user choice engineering.

1 INTRODUCTION

Mobile crowdsensing (MCS) has generated many expecta-
tions over the last decade that it will transform the way in-
formation is generated and shared among parties interested
in it [1], [2]. Technically, it couples the enhanced sensing
capabilities of smart mobile devices with a variety of mobile
and social technologies, which have made the uploading,
processing, and sharing of data easier than ever before.
As a result, MCS has been applied in diverse application

areas such as environmental monitoring1, transportation2,
and participatory governance3.

The implementation of MCS campaigns is more often
than not coordinated by a mobile platform and end users
typically interact with it through a mobile frontend (app).
In this work, we study platforms that actively identify and
recruit those users who are most suitable for the highly
heterogeneous MCS tasks at hand. Consider, for instance,
the creation of pollution maps out of smartphone sensors’
measurements; or the generation of promotional marketing
material for shops out of photos contributed by smartphone
users; or the status-tracking of garbage collection points
with the help of citizens’ reports issued through mobile
apps. Users carrying out a task bear some cost in terms
of time, cognitive resources, device battery, or physical
distance that needs to be covered to perform the task. To
outweigh these costs and elicit useful contributions to MCS
campaigns, the platform may provide incentives. These
incentives are either monetary or in-kind rewards and their
efficient allocation to potential contributors demands a good
understanding of their particular interests and preferences
and how these interact to shape their decisions to contribute
(or not) to tasks. Such information, which is the basic
ingredient for building user profiles, can be collected either
implicitly, from historical data about past interactions of
users with the MCS platform, or their activity in other
social media sites [3]; or, explicitly, through customized
questionnaires built in the app.

User profiling goes hand-in-hand with a modeling hy-
pothesis about how users reach decisions, e.g., whether to
contribute or not to a given task, and how they make
choices, e.g., which task to contribute to out of a set of
recommended alternatives. In this respect, the de facto
assumption in the current MCS literature is that MCS users
behave as fully rational agents [4]. Namely, they exhaustively
enumerate all information available at hand to (strategi-
cally) optimize some implicit utility function that quantifies

1. NoiseTube, http://www.noisetube.net/index.html.
2. Waze. Outsmarting Traffic Together, http://www.waze.com/.
3. SeeClickFix, https://seeclickfix.com/pages/311-app.html.



the “net value” of their task contributions.
Our starting point in this work is that users are boundedly

rational agents. This term was used by Herbert A. Simon
in [5] to denote that decision makers can rarely know and
evaluate all possible outcomes of their decisions with suffi-
cient precision due to constrained memory and processing
capacities as well as limited or imperfect information about
the decision environment. Since then, extensive experimen-
tal evidence has been accumulated e.g., in [6] [7], suggesting
that human decisions seek to satisfice4 rather than optimize.
In parallel, the research community in cognitive psychology,
behavioral economics and marketing science, have come up
with cognitive heuristic decision-making models that aim to
match this evidence [8] [9].

An attractive feature of cognitive heuristics is that they
constitute descriptive decision-making models. They cap-
ture salient cognitive processes underlying human choices
(parsing of alternatives, elimination, satisficing) that persist
across very different choice settings. The decision environ-
ment of the MCS user will likely be characterized by: a)
limited attention and interference due to competition from
other simultaneous tasks (high cognitive load); b) limited
time to evaluate the proposed tasks and arrive at a decision
(time-pressure). Cognitive load and time pressure are both
well known to favor the use of heuristics over more complex
normative models of human decision-making [6].

Our paper leverages the work on cognitive heuristics to
mark a radical departure from standard modeling practice
in MCS literature. To the best of our knowledge, it is
one of the first attempts to import knowledge and mod-
eling tools from behavioral science to the problem of task
recommendation and incentive allocation in MCS. In our
modeling approach, presented in section 2, MCS tasks are
represented as feature vectors over a finite vector space
and users are boundedly rational and heterogeneous with
respect to preferences and interests. We capture the bounded
rationality aspect through a decision-making model that
originates in the field of cognitive psychology, the Fast-and-
Frugal-Tree (FFT) model [10] [11]. With FFTs, users rank
the task features and sequentially parse them to decide
whether to make a contribution or not. Then, the main
question for the MCS platform is how to engineer the user
choices to motivate valuable contributions to tasks. The
choice engineering challenge involves properly selecting tasks
to recommend to users and offering monetary (or in-kind)
rewards for contributions to them within the constraints of
the budget allocated to each task.

Our main contributions come in sections 3 and 4.
Therein, we address the joint task recommendation and in-
centive reward allocation problem faced by two types of MCS
platforms: nonprofit platforms, which seek to maximize the
aggregate quality of attracted user contributions to MCS
tasks, and for-profit platforms, which aim at maximizing their
revenue out of commissions charged on those contributions.
In the first case, we come up with instances of the Gen-
eralized Assignment Problem (e.g., see chapter 7 in [12]),
whereas the second case gives rise to both linear and non-
linear Integer Programs with mixed packing and covering

4. Satisfice is a “portmanteau” word of satisfy and suffice and implies
searching through available alternatives until one is deemed acceptable.

constraints [13]. We discuss the complexity and approxima-
bility of these problems and identify algorithmic solutions to
them. Finally, we compare these solutions against heuristics
that either partially or fully ignore the bounded rationality
aspect in the user choices, highlighting the possible per-
formance gains that are feasible when the MCS task offers
are systematically optimized for the “right” user decision-
making profiles. Notably, our modeling approach readily
generalizes to situations, where the MCS platform presents
users with multiple task offers rather than a single take-or-
leave it offer. Then, the choice of MCS task can be captured
by the Discrete Elimination by Aspects (DEBA) model, a
lexicographic model suited to multi-attribute choice settings
with multiple alternatives [14].

In section 6 we explain how these models can be trained,
iterate on their assumptions, and point to their implications
for a broader set of application areas beyond MCS. We
contrast our work against the existing literature in section
7 before we conclude in section 8.

2 SYSTEM MODEL

In our model, there are three types of actors: entities issu-
ing crowdsensing tasks, hereafter called task issuers; users
owning smart devices who may choose to contribute to
these tasks (task contributors); and an online MCS platform
that intervenes between the two sides. The main mission of
this platform is to facilitate user contributions to the issued
MCS tasks. A mobile app is used for the interaction of task
contributors with the MCS platform.

Formally, let U , with U = |U|, be the set of potential task
contributors. These are mobile users with smart devices who
have registered with the platform and run the respective
app on their devices. Let also M, with |M| = M be the
set of crowdsensing tasks that are managed by the platform
and Mu, u ∈ U be the subset of tasks that are eligible for
contribution by user u. In general, this set of tasks varies
with time, depending on the user’s location and possibly
other contextual information collected by the mobile app. In
this work, we assume that user contributions are elicited
by the platform upon distinct time epochs and system
snapshots (issued tasks, user locations) so that the set of
tasksMu is fixed for each user.

2.1 Crowdsensing tasks as multi-attribute choices

Each task m ∈ M may be represented as a vector of values
on a set of L features, fm = (f1m, . . . , f

L
m). These features

may be numerical or categorical and describe different task
characteristics such as the reward offered for contributing
to it, which may be monetary or in-kind (e.g., a coupon);
the physical location, where the task contribution needs to
be carried out; the average time or effort to perform the
task; the battery/computational burden of the task on the
user’s device; and the type of the service, e.g., commercial
vs. community-oriented, that may be facilitated by the task.

Ongoing crowdsensing tasks are advertised to the mo-
bile end users through the platform and the mobile app. One
example of such a task notification could be: “Coffee place
m, at distance dm from your current location, offers a discount
voucher of value rm for taking a couple of nice photos of it. Click



on the offer to accept it, upload the photos, and get your voucher.”
Likewise, an example of a notification for a community-
oriented task, could be: “Download the MapNoise app at your
smart device, carry out noise measurements and submit them to a
noise-mapping tool that aims to improve the quality of life in our
municipality. In return, you get a voucher for free coffee or tea
from the municipal kiosk this weekend.” The mobile app could
present such task notifications one at a time to the users, as
“take it or leave it” offers, or simultaneously, inviting them
to make a choice between them.

The tasks may demand contributions from one or more
end users. Each task m comes up with a budget Bm, which
sets an upper bound on what the task-issuing entity is
willing to spend on rewarding task contributors. In general,
Bm ≥ 0, i.e., there may be tasks that do not come up with a
budget and rely on purely voluntary user contributions.

For simplicity of exposition, we assume in the sequel
that the number of important task features for the user
choices is L = 3: the task reward, expressing the user
profit out of a contribution; the task location, which relates
directly to the cost a user incurs when contributing to
a task5; and a binary feature, hereafter called community
orientation, denoting whether this task serves somehow the
local community or a purely commercial purpose. This is a
strongly behavioral feature that turns out to be decisive for
voluntary contributions on behalf of users.

Apparently, these features are indicative and by no
means exhaustive. For instance, another feature that may
affect the user choice is the battery consumption related to
a task, e.g., when this task involves the activation of the
mobile device sensors for data collection and transmission.
The actual relevance of different features for each user
also depends on the time of the day and the user context
(work vs. leisure time, transportation mode) and, ideally, is
captured by the user profiling process (see section 2.2.1),
drawing on the learning processes discussed in section 6.1.

2.2 Users as bounded rational agents

The MCS task contributors demonstrate distinct skill sets,
related to personal capacities or capabilities of their smart
devices, and preferences, related to personal interests and
behavioral traits. Hence, contributions by all users do not
equally qualify for a given task. In the coffee place example,
an amateur or professional photographer would take better
photos than someone who does not practice photography
at all. Likewise, in the noise mapping example, the quality
of noise measurements depends on the sensitivity of the
microphone at the user’s smartphone. We denote with qum
the quality of contribution a user u can make to task m.

On the other hand, user u comes up with her own
preferences over each task in Mu, prioritizing/weighing
differently each task feature (interchangeably called de-
cision cue6 hereafter). In principle, the way this happens
can be learned from historical data, that is, data about past
choices users have made when tasks were offered to them.

5. Practically, this cost may correspond to money, time and/or effort
spent by the user when traveling to the task location.

6. The terms “feature”, “cue”, “aspect” are used almost interchange-
ably in different knowledge areas such as data science, cognitive psy-
chology and consumer research to characterize decision alternatives.

Yet, these data can be combined with different modeling
hypotheses about the way users decide. The crucial modeling
hypothesis in this work is that users exhibit bounded rationality.
They neither make nor search for optimal choices. They
rather activate simple cognitive processes to select among
alternatives, which do not necessarily exhaust the informa-
tion they have at hand about them.

In this work, the bounded rationality hypothesis is cap-
tured through decision-making models from the cognitive
psychology literature, called cognitive heuristics. These are
computationally simple models that aim to describe the
cognitive processes underlying the actual decision-making
process rather than its outcome only [8]. Both theoretical
and empirical research in the area of behavioral sciences
has shown that the accuracy of cognitive heuristics is
comparable to that of more complex and computationally-
demanding models such as regression, neural networks, and
classification and regression trees (CARTs) [15].

In particular, we model the user decision-making pro-
cesses after Fast-and-Frugal Trees (FFTs)7. FFTs are deter-
ministic binary decision trees [10] [11]. Each level of the tree
marks the inspection of a cue. The context of the inspection
depends on whether the cue is binary or continuous. For
binary cues (e.g., community orientation of a task), “1”
typically denotes existence of a cue and “0” its absence.
Continuous cues, on the other hand, are compared against
acceptability thresholds: a cue may favor an alternative (e.g.,
contribute to the task) if it exceeds a threshold value, when
it is positively (e.g., MCS task reward) correlated with that
alternative; or, it may favor it if it does not exceed a threshold
value, when it is negatively (e.g., MCS task distance) corre-
lated with that alternative. At every level of the tree, at least
one of the two inspection outcomes results in a decision, i.e.,
at least one of the child nodes is a leaf node (see Fig. 1).

2.2.1 Modeling user choices as FFTs

For given set of decision cues, the FFTs can be parameterized
with respect to the order in which these cues are inspected
(cue ranking), and the type of cue inspection outcome
(positive or negative) that results in choosing an alternative.
Distinct user decision-making classes emerge by combining
options for these model parameters, so that users of a given
class rank and process the decision cues identically.

Cue ranking: First, users are grouped according to the or-
der in which they inspect cues. For instance, a user may first
inspect the reward offered for contributing to the task, then
the distance she has to travel to make a contribution, and,
last, whether the task serves somehow the local community.
We abbreviate this specific order of inspecting cues as RDC
out of the initials of the ordered cues: Reward, Distance,
Community. There are overall L! = 6 different cue rankings
in this respect, namely RDC,RCD,DRC,DCR,CRD,CDR.

In addition to these six rankings, we need to account for
users who are indifferent to one or two of the three cues.
Indifference to a cue is simply captured through omission
of the respective FFT level. Hence, there are L(L − 1)! =
L! = 6 more rankings of cue pairs (RD,DR,DC,CD,RC,CR)

7. They are called frugal because they end up processing limited infor-
mation; and they are called fast, because this non-exhaustive processing
of available information accelerates the decision-making process [8].
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Fig. 1: The four possible FFTs that emerge for users who inspect cues in the order (distance, reward, community).

plus L = 3 rankings that degenerate to single cues (R,D,C).
Hereafter, to keep the model simpler, besides the six three-
cue rankings, we consider the two-cue rankings, RD and
DR, which capture indifference to whether the MCS task
serves the local community or a commercial purpose [16].

Cue inspection outcomes and FFT types: For any of the six
rankings involving three cues, users may activate one of
the 2L−1 = 4 FFTs that correspond to that ranking. Figure
1 lists these four FFTs for the RDC cue ranking. All four
FFTs involve checks against the presence of the binary cue
(community orientation) and comparisons of the two con-
tinuous cue values (task reward, task distance) against the
user-specific acceptability thresholds, θur and θud , respectively.
However, in each tree, a choice (e.g., contribute to a task)
is reached through different combinations of outcomes in
subsets of these checks/comparisons.

Hence, the leftmost and rightmost tree models, the FFTs
of type 1 (FFT1) and type 4 (FFT4), are of the pectinate
(rake) type: one of the two alternatives is chosen under a
strong conjunction rule. Under the FFT4 (strict pectinate), a
user chooses to contribute to a task only when all three cues
result in positive responses (“yes”) to the inspection at each
level. On the contrary, under the FFT1 (lenient pectinate), a
user contributes to the task unless the outcome of all three
cue inspections is negative (“no”). The other two FFT types,
FFT2 and FFT3, are referred to as “zigzag” trees [10] in
that positive and negative inspection outcomes alternate in
yielding a choice at each level. In FFT2, a choice is reached
at first level through a positive inspection outcome, whereas
in FFT3 through a negative inspection outcome.

Finally, for users who are indifferent about the commu-
nity orientation of the task, with cue rankings DR and RD,
there are two pectinate-type FFTs [16].

2.3 MCS platforms as choice engineering tools

The main mission of the platform is to match the issued
tasks with mobile users who would be interested in con-
tributing to them. However, the platform does not assign
tasks to users, for instance, under some prior contractual
agreement with them. It rather leverages what it knows
about their preferences and the way they make choices (see
section 2.2.1) to engineer the task offers it issues to them, i.e.,
the task recommendations coupled with proper rewards for
contributions to the tasks. We focus hereafter on platforms

that issue take-it-or-leave-it offers for single tasks. In section
5, we discuss ways to expand this work on platforms that
issue offers for multiple tasks.

For any given user-task pair, the offered reward is the
only decision cue the platform can optimize; the other two
are beyond its control. The appropriate reward for a user
depends on both her decision-making class (cue ranking,
FFT type) and the recommended task. For instance, to users
who prioritize based on exerted effort (e.g., distance), the
platform may recommend tasks in nearby areas, offering
some minimum fixed reward rmin predefined and publicly
announced by the platform (default reward). It could then
direct these savings on the task budget to expert users prior-
itizing tasks according to the offered rewards. Likewise, the
platform needs smaller rewards to attract contributions by
users of lenient- than by users of strict-pectinate FFT type.

2.3.1 Determining user-specific task rewards
A contribution by user u to task m comes with a positive
value qum that corresponds to the quality of the contribution
that u can make to m; and a cost rum relating to the reward
that should be offered to u to ensure her contribution. Given
each user’s u decision-making class, a critical requirement
for the platform is to determine the minimum reward that
suffices to induce a contribution of u to task m.

The set of tasksMu in the neighborhood of user u may
be split into 2L−1 = 4 user-specific task groups:

Mu,1 = {m ∈Mu : dum ≤ θdu, cm = 1}
Mu,2 = {m ∈Mu : dum ≤ θdu, cm = 0}
Mu,3 = {m ∈Mu : dum ≥ θdu, cm = 1}
Mu,4 = {m ∈Mu : dum ≥ θdu, cm = 0}

where the indicator variable cm = 1 when a task serves
the local community and cm = 0, otherwise. The minimum
rewards that induce positive responses to task offers can
then be computed per task group and user decision-making
class, see Table 1. We can make the following remarks:

• The two relevant reward values for a given user
are her reward acceptability threshold, θru, and the
default platform reward, rmin. For all platform users,
these reward values are O(|U |) since the reward ac-
ceptability thresholds are, in principle, user-specific.

• The minimum rewards are similar for all pairs of
user decision-making classes that inspect the same



TABLE 1: Minimum rewards that can induce a positive response of user u to a task offer m ∈ Mu as a function of her
decision-making class, FFT type, and the task group. For the RD and DR cue rankings, FFT1 and FFT4 point to the lenient-
and strict-pectinate trees in [16]

.
Cue rank DCR, DRC RDC, RCD CRD, CDR RD, DR

Task group FFT type FFT1 FFT2 FFT3 FFT4 FFT1 FFT2 FFT3 FFT4 FFT1 FFT2 FFT3 FFT4 FFT1 FFT4

{dum ≤ θdu, cm = 1} rmin rmin rmin θur rmin rmin θur θur rmin rmin rmin θur rmin θur{dum ≤ θdu, cm = 0} rmin rmin θur – rmin θur θur – rmin θur – –
{dum ≥ θdu, cm = 1} rmin θur – – rmin θur θur – rmin rmin θur –

θur –{dum ≥ θdu, cm = 0} θur – – – θur θur – – θur – – –

cue first. In other words, the rewards vary with
task group and FFT type but they do not depend
on the precise order in which the decision cues are
inspected; only the first cue matters.

• The rewards across the four task groups exhibit the
same pattern under all six cue rankings for FFT type
1 and FFT type 4 users.

• By definition, users activating the strict-pectinate
type of FFT (FFT4) are the least flexible since they
will only accept offers for nearby tasks that benefit
the community and offer rewards at least as high
as the reward acceptability threshold θru. The number
of tasks that are candidate for offer to each user
depends mainly on the FFT type and less on the cue
ranking.

All in all, the originally 28 decision-making classes can be
merged into 10 reward allocation classes. If we denote each
such class by the pair (cue ranking, FFT type), the ten classes
are (∗, FFT1), (∗, FFT4), where * is a wildcard for any of
the six cue orderings involving three cues; the six combina-
tions of type (a, b), where a ∈ {(DCR ∪ DRC), (RCD ∪
RDC), (CRD ∪ CDR)} and b ∈ {FFT2, FFT3}; and
the two classes ((RD,DR), c), where c ∈ (FFT1, FFT4).
Users within each of these classes could be treated in similar
manner by the platform in terms of the minimum reward
that should be proposed to them for any given task inMu.

We optimize the task offers for two types of platforms.
Non-profit platforms typically prioritize the quality of at-
tracted user contributions. This could be the case with
platforms administered and funded by a public institution
(e.g., municipality) or a non-profit entity. The non-profit ori-
entation could also be an intermediate step in the platform’s
growth strategy, while trying to scale up and set up the
two sides of the market, the market supply (task issuers)
and demand (task contributors). For-profit platforms, on
the other hand, aim at maximizing their revenue, which
results from commissions out of each task contribution they
manage to attract. The commissions may either be fixed or in
proportion to the user rewards. In either case, the allocation
of rewards to the mobile users is carried out within the limits
of task budgets, as defined by the task issuing entities.

3 TASK OFFERS IN NONPROFIT MCS PLATFORMS

3.1 Optimizing the aggregate quality of contributions
If x = (xum : u ∈ U ,m ∈ Mu) are binary decision
variables, with xum = 1 if user u is made an offer for task
m, and xum = 0 otherwise, the optimization problem (P1)
faced by the MCS platform can be written as follows:

max
x

∑
u∈U

∑
m∈Mu

qumxum, (1)

s.t.
∑

u:m∈Mu

rumxum ≤ Bm ∀m ∈M (2)∑
m∈Mu

xum ≤ 1 ∀u ∈ U (P1) (3)

xum ∈ {0, 1} u ∈ U ,m ∈Mu . (4)

where the rewards rum offered to users are determined as
in section 2.3.1. The problem (P1) is an instance of the max-
imum Generalized Assignment Problem (GAP), referred
to as LEGAP in [12]. With regard to the standard GAP
typology, MCS tasks in (P1) correspond to bins, task budgets
to bin capacities, user contributions to items, qualities of
user contributions to item profits, and rewards offered for
task contributions to item sizes. Equation (2), in particular,
reflects the per task budget constraints on the rewards that
can be offered to users as incentives for their contributions.
It is trivial to show, yet worth codifying as proposition for
future reference, that:

Proposition 1. The MCS platform cannot further increase the
aggregate quality of contributions in (1) by offering rewards
beyond the minimum ones reported in Table 1.

The best approximation ratio for the GAP in the form
of (P1)8, e

e−1 + ε for ε > 0, is achieved by the LP-based al-
gorithm in [17]. Comparable approximation guarantees are
also achievable with the combinatorial algorithm proposed
in [18], which reduces the problem to iteratively solving
0-1 Knapsack Problems (KPs) for each task. The authors
in [18] show that any α-approximation algorithm A for
the KP with running time f(U) can be transformed into
an (1 + α)-approximation algorithm for GAP that runs at
O(Mf(U) +MU) time.

3.2 Evaluation

In this section, we evaluate the achievable performance gain
when the MCS platform explicitly accounts for the decision-
making strategies of end users.

3.2.1 Methodology
We simulate several instances of the joint task recommenda-
tion and reward allocation problem. Each problem instance
specifies the number of MCS tasks, M , and their spatial dis-
tribution across a rectangular area of RxR m2; the number

8. The problem variant that emerges when (3) holds strictly as equal-
ity has also been studied in the literature, e.g., see [12].
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Fig. 2: Approximately optimal task offers vs. alternative
heuristic rules: R = 1000, θur ∼ unif(0.5, 3.5), θud ∼
unif(170, 1000), rmin = 0.25.

of involved users, U , and their positions within the same
area; and the decision-making profiles of the users, i.e., their
decision-making classes (cue ranking, type of FFT) with the
relevant thresholds {θur } and {θud}. The task and user loca-
tions, as well as the decision-making profiles of users (FFT
type, threshold values) are randomly chosen, in line with
different statistical distributions. For each problem instance,
we solve the optimization problem (P1) for the maximum
aggregate quality of contributions. Unless otherwise stated,
the task budgets are uniformly set to Bm = 25,∀m ∈M.

Comparison references for nonprofit platforms: This
approximately optimal solution of (P1), marked as GAP in
the plots of this section, is compared with two heuristics
for prescribing task offers to users. The first one issues
recommendations to each user u for the task m ∈ Mu that
she is most skilled for, i.e.,

xum = 1, m = arg max
l∈Mu

qul, u ∈ U . (5)

and then splits the budget of each task equally among those
users who get an offer for it, i.e.,

rum =
Bm
K

, K = |{u : xum = 1}| (6)

The second heuristic uses the same rule (5) for identifying
candidate contributors for each task. However, it then solves
a 0-1 KP, where the MCS task is the bin and the users are
the items to pack in it, taking into account their skills {qum}
and their reward acceptability thresholds {θur }.

In what follows, we refer to the two heuristics with
the abbreviations SKILL-EQ and SKILL-KP, respectively.
Notably, the heuristics leverage different amounts of user
profiling information. SKILL-EQ only relies on the skills of
users (and their devices) and myopically chooses tasks to
offer inline with th0se skills. On the other hand, SKILL-KP
also exploits information about what users consider accept-
able as reward for a task offer and optimizes tasks offers on

the basis of this coarse information. Comparing GAP with
these heuristics, we can have a better understanding of what
we gain by undertaking the analysis in section 2.3.1 and then
drawing on it to optimize task offers in section 3.1.

3.2.2 Results

General performance trends: Figure 2a plots the number
of task offers, both those issued by the MCS platform and
those accepted by the end users, and the resulting aggregate
quality of user contributions to MCS tasks under a broad
range of U/M ratios (user density per MCS task). In these
experiments, the MCS users are equally split between the
ten reward allocation classes discussed in section 2.3.1 and
approximately half the tasks have a community orientation.

In principle, as the number of the platform users in-
creases for given M (top row), the platform can direct task
offers to more skilled users. On the other hand, in light of
the budget constraints, it is far harder to come up with
“good” offers for all users. GAP leverages the enhanced
profiling information about users and tasks in section 2.3.1
to optimize task offers; all its offers are tailored to the user-
specific preferences and task types and induce contributions
by users. However, as the number of users scales up, beyond
U = 400 when M = 25, the portion of users who get offers
gracefully drops. On the contrary, the SKILL-EQ heuristic
always make offers to all users in the platform but, since it
only accounts for the user skills, most of them are turned
down by users. In fact, the scheme does not scale to high
U/M ratios: the finite budget is split into equal but very
small rewards that cannot motivate user contributions.

Finally, the SKILL-KP scheme is at least as good as
SKILL-EQ at low user densities and almost always outper-
forms it at high user densities. The scheme is much more
selective when making offers, ensuring that the issued offers
come up with rewards equal to the users’ reward accept-
ability threshold values. However, this can be wasteful for
two reasons, as can be inferred from Table 1: either because
a smaller offer, e.g., rmin, would suffice to ensure a user
contribution to the specific task or because the task is such
that the user would never consider it for a contribution,
irrespective of the offered reward (blank entries in Table 1).

Impact of the user decision-making classes’ mix: With
up to three decision cues, there are already 28 user decision-
making classes and 10 reward allocation classes; with L
cues the user decision-making classes are O(L!2L) and the
possible partitions of MCS users to these decision-making
classes are O(L!2L)U . In Fig. 3 we attempt to get an idea
of how the mix of user decision-making classes impacts the
effectiveness of our scheme by considering two symmetric
scenarios, where a varying majority of users is modeled
by strict(lenient)-pectinate FFTs models and the rest are
spread equally among the remaining classes. In a sense,
these two scenarios represent opposite extremes, where the
MCS platform has to cope with least (most) flexible MCS
users, respectively.

Fig. 3 implies that the GAP scheme exhibits higher
robustness than its competitor heuristics to the variations
in the user decision-making class mix. When strict-pectinate
users dominate the mix (Fig. 3a, b), the GAP performance
degradation is more graceful (sublinear) and its relative
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Fig. 3: Aggregate task contribution quality (left) and ac-
cepted offers (right) under the approximately optimal and
heuristic alternatives vs. mix of strict- and lenient-pectinate
users, R = 1000, θur ∼ U(0.5, 3.5), θud ∼ U(170, 1000).

performance gain improves as this demanding class of users
grows. When lenient-pectinate users dominate (Fig. 3c), and
despite the linear performance improvement of the heuristic
rules, GAP retains its performance advantage by sublinearly
increasing the quality of its attracted user contributions.

Impact of the reward acceptability threshold: Higher
spread of the reward threshold values θur implies more users
with higher reward demands for contributing to a task.
Figure 4 plots the aggregate quality of user contributions
against increasing values of rmax = max

u
θur , under U/M

ratios in the range [10,33]. The users in Figs. 4a), b), d) are
equally split between the reward allocation classes, whereas
in Fig. 4c strict-pectinate users dominate the mix.

Overall, Fig. 4 suggests that the performance advantage
of GAP is not sensitive to the minimum reward require-
ments of MCS users. It manages the task budgets far more
efficiently so that its performance gain over the second best
option remains the same or increases in the presence of more
“expensive” MCS users (high rmax values).

Decomposition of the performance gain: In all scenarios
plotted in Figs. 2-4, and in many more not shown here due
to lack of space, GAP significantly outperforms alternative
heuristics for managing task offers. The gain in terms of
aggregate quality of user contributions ranges from 20%
(Fig. 4c) up to more than 300% (Fig. 2b), when compared

to the second best alternative.
In this subsection, we want to assess how much of

this performance gain is due to the user profiling effort in
sections 2.2.1 and 2.3.1 and how much relates to the opti-
mization approach in section 3.1 per se. Hence, we compare
GAP with two purposefully designed alternatives. The first
one solves (P1) to match task offers with users but rewards
user u in proportion to her skills for task m:

rum = rmin + qum(rmax − rmin) (7)

The second scheme uses the minimum rewards computed
in Table 1 but matches task offers with users in two steps.
First, it provisionally “assigns” users to tasks they are most
skilled for. Then, it works independently with each task and
if the task budget suffices to issue offers to all users, the
platform does so; if not, a 0-1 KP instance is solved to select
the most valued (i.e., skilled) users.

Hence, the first scheme (OPT-PROP) optimizes the task
recommendations, but uses a heuristic rule to determine
the offered rewards. On the contrary, the second scheme
(SKILL-OPT) uses a heuristic rule to determine the tasks
recommended to the users but takes into account the user
profiling work to optimize the rewards offered to them.

Figure 5 shows that the user profiling effort has much
more impact on performance than the optimization process.
Nevertheless both schemes exhibit a better performance
than the comparison heuristics SKILL-*, and their combi-
nation exhibits the best performance of all, as we expected.

4 TASK OFFERS IN FOR-PROFIT MCS PLATFORMS

For-profit MCS platforms primarily aim at maximizing their
revenue. This comes out of a commission fee charged each
time a user contribution is made. Charging commission
fees per transaction facilitated by the platform is a more
general practice in online and sharing economy platforms.
Consider, for example, Airbnb9 or the most popular ride-
sharing applications such as Uber or Lyft10.

We consider two possibilities for these commission fees.
In the first case (fixed commission), the fee is a fixed amount
hf for each delivered user-to-task contribution. In the sec-
ond case (fixed commission rate), the fee is a fixed ratio hr of
the reward allocated to a user. Hence, it varies across user
contributions. This case is reminiscent of the way Airbnb
charges commissions upon accommodation rentals.

4.1 Fixed commission fee
Since the commission fee is fixed, the platform revenue
is proportional to the absolute number of attracted user
contributions to MCS tasks. The optimization problem (P2)
faced by the MCS platform can be stated as follows.

max
x

∑
u∈U

∑
m∈Mu

xum , (8)

s.t. (2), (3), (4) (P2)∑
u:m∈Mu

qumxum ≥ Qm ∀m ∈M (9)

9. http://www.airbnb.com
10. http://www.uber.com, http://www.lyft.com.
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In constraint (9), Qm is a minimum threshold imposed
on the quality of contributions that will be attracted for task
m. Different tasks may have stricter or looser requirements
in this respect. For example, a photo-shooting task comes
with a higher Qm value, requiring at least some photos by
(amateur) photographers with high resolution smartphone
cameras. We discuss the practical issues regarding the cali-
bration of such values in section 6.

Problem (P2) belongs to the broader family of ILP prob-
lems with both covering- and knapsack/packing-type con-
straints. Kolliopoulos and Young in [19] provide a bicriteria-
approximation algorithm for the minimization version of
the most generic form of the problem {min cTx : x ∈
Zn+, Ax ≥ α, Bx ≤ b, x ≤ d} including covering (Ax ≥ α),
packing (Bx ≤ b), and multiplicity constraints (x ≤ d),
setting an upper bound on the integer decision variables.
Their algorithm yields solutions that are O(ln(D)/ε2) of the
optimal ones, where D stands for the number of packing
constraints (number of rows in A) and ε ∈ (0, 1], while
imposing upper bounds on the violation of the covering
constraints,Bx ≤ (1+ε)b+β, with βi =

∑
j Bij . In our case,

we typically cope with “small” problems featuring tens of
tasks and hundreds of users. For the needs of the evaluation
in section 4.4, we use mainstream ILP solvers that return
exact solutions in tens of seconds worst-case (see Table 2).

4.2 Fixed commission rate

When the platform’s commission is proportional to the re-
wards of task contributors, Proposition 1 does not, generally,
hold. The platform could still use these minimum rewards
as a starting point for finding any feasible solution x0 under
constraints (2), (3), (4) and (9). It could then a posteriori inflate
the rewards to the task contributors in x0, to exhaust the

TABLE 2: Average running times in seconds (30 samples for each
(U,M) pair) of the default branch-and-bound MILP solver in MATLAB
intlinprog with an AMD ryzen 3 2200U CPU with Radeon Vega
Mobile Gfx 2.50GHz and 4GB RAM. Outliers are excluded from the
average (with probability ∼0.01 a problem instance was infeasible or
its running time exceeded 60 sec.)

Number of tasks
10 20 30 40 50

Number
of users

100 0.11 0.11 0.58 0.50 0.94
200 0.20 0.56 0.83 0.42 0.64
300 0.49 3.08 0.51 4.98 3.92
400 0.55 1.07 2.47 4.87 9.45
500 0.62 2.83 3.90 6.29 7.33
600 1.57 2.58 4.38 8.14 6.90

MCS task budgets and maximize its profits. However, the
reward inflation process could result in asymmetrically high
rewards to individual contributors. This is not good practice
for an MCS platform in the long term.

To come up with more plausible solutions in this case,
let ρum ≥ rum be the rewards offered by the platform
under fixed commission rate, hr ∈ [0, 1], and let rmax
be a maximum reward value that is fixed for the MCS
platform. The total revenue of the platform will be equal
to hr

∑
u∈U

∑
m∈Mu

ρumxum, but since hr is a constant, the
optimization problem faced by the platform is given by

max
x,ρ

∑
u∈U

∑
m∈Mu

ρumxum (P3)

s.t.
∑

u:m∈Mu

ρumxum ≤ Bm ∀m ∈M (10)

rum ≤ ρum ≤ rmax ∀m ∈M,∀u ∈ U (11)
(3), (4), (9)

The problem (P3) is an instance of bilinear program-
ming [20], with mixed integer and real variables that make it
computationally hard. In practice, problem sizes of interest
to our case can be solved very efficiently with an integer
programming solver, after applying linearization techniques
to the product of decision variables (e.g., [21]).

Observe that a theoretical upper bound for the optimum
of (P3) is the minimum between U · rmax and

∑
mBm.

4.3 Comparison of problems (P2) and (P3)
If the minimum (rmin) and the maximum (rmax) reward
values are close to each other, it turns out that the optimal
solution of (P2), which makes payments according to Table
1, approximates well the optimal solution of (P3).



Formally, let P2(x) =
∑
u,m xum be the objective func-

tion of (P2) and P3(ρ,x) =
∑
u,m ρumxum be the objective

of (P3), with
∑
u,m abbreviating the double summation

operator
∑
u∈U

∑
m∈Mu

. If x̂ denotes an optimal solution to (P2),

(ρ∗,x∗) denotes an optimal solution to (P3) and the set of
minimum rewards r is given by Table 1, we can prove that

Theorem 1. If rmax ≤ c · rmin, where c ≥ 1, then

1

c
P3(ρ∗,x∗) ≤ P3(r, x̂) ≤ P3(ρ∗,x∗). (12)

Proof. First of all it is easy to check that (r, x̂) is a feasible
solution to (P3). The second inequality in (12) is straightfor-
ward since (ρ∗,x∗) is an optimal solution to (P3).

Regarding the first inequality in (12) we have that

P3(ρ∗,x∗) =
∑
u,m

ρ∗umx
∗
um ≤

∑
u,m

rmaxx
∗
um =

rmax
∑
u,m

x∗um ≤ c · rmin
∑
u,m

x∗um ≤ c · rmin
∑
u,m

x̂um,

where the last holds since x̂ is an optimal solution to (P2).
Now since ∀u,m rmin ≤ rum, we have

c · rmin
∑
u,m

x∗um ≤ c ·
∑
u,m

rumx
∗
um = c · P3(r,x∗).

It suffices to multiply all parts of the inequalities in (12)
by hr to obtain that the approximation in Theorem 1 also
holds for the revenue of the platform

Corollary 1. If rmax ≤ c · rmin, where c ≥ 1, then

hr
c
P3(ρ∗,x∗) ≤ hr · P3(r, x̂) ≤ hr · P3(ρ∗,x∗).

Note that if an optimal solution to (P2) is tight with
respect to the budget constraints, then it is optimal to (P3)
as well (regardless of the rmin and rmax values).

4.4 Evaluation

4.4.1 Methodology
Methodologically, the setting in these experiments is similar
to that in section 3.2.1. In particular, the reward thresholds of
MCS users follow the uniform distribution over [0.5,3] and
their skills take values in [0.1,1] according to the normal dis-
tribution N (0.55, 0.15). Finally, each user is assigned to one
of the decision-making classes in Table 1 independently and
uniformly at random. For each problem instance, we solve
the optimization problems (P2) and (P3) for the maximum
platform revenue, see sections 4.1 and 4.2, and we compare
their solutions against those of alternative schemes. Each
point in the plots is the average of 40-50 simulation runs.

Comparison references for for-profit platforms: We
consider three heuristics. The first one, DIST-PROP, offers
each user her nearest task, to ensure that she will not reject
the offer due to the task distance. It then distributes the
task budget in proportion to the skills of each user, to favor
contributions of higher quality to the task.
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Fig. 6: Attracted task contributions and number of violated
constraints vs. number of users in for-profit platforms charg-
ing fixed commission fees: M = 20, Qm = 1.5, Bm = 15.

The other two heuristics offer rewards that equal users’
reward acceptability thresholds {θru} but differentiate as to
how they determine the task recommendations to users. The
DIST-THR heuristic parses tasks sequentially and greedily
chooses users, in order of increasing distance from the task,
until either the task quality threshold is met or the task
budget is exhausted. Any remaining users are assigned to
their nearest task. On the contrary, the SKILL-THR heuristic
first maps users to the tasks they are most skilled for. Then,
it seeks to maximize the number of attracted contributions
by paying as many of them as possible in order of increasing
θur , i.e., starting from the cheapest ones.

Note that the feasibility of problems (P2) and (P3) is not
guaranteed. Hence, together with the revenues achieved by
the optimal solution (OPT) and its comparison references,
we also report the number of infeasible problem instances
and quality constraints the four alternatives fail to satisfy.

4.4.2 Numerical results
We highlight the main performance properties of our solu-
tion for platforms charging fixed commission fees through
focused experiments. We discuss platforms charging fixed
commission rates in section 4.4.3.

Impact of the number of platform’s users: As expected,
the MCS platform revenue is non-decreasing with the user
supply under all four approaches to the joint task recom-
mendation and reward allocation problem. However, it can
also be seen in Fig. 6a that with the optimal solution to
the formulation (P2) the revenue scales far more aggres-
sively than with its alternatives, linearly up to 400 users
and sublinearly for more users. OPT directs efficiently the
MCS task offers and satisfies all quality constraints on the
attracted contributions’ quality (Fig. 6b). On the contrary, as
the user supply grows, the three alternatives are presented
with higher flexibility to satisfy the task quality constraints
Qm (at least, the DIST-THR and DIST-PROP heuristics) but
cannot scale up the number of attracted contributions and,
hence, the platform revenue.

Impact of the quality constraint: As a general remark
out of Fig. 7, the number of contributions that two out
the three heuristic solutions attract appear to be insensitive
to the task quality constraint size. What changes, as Qm
ranges in [0,2] is that the heuristic schemes fail to satisfy an
increasing number of the task quality constraints in (9), as
shown in Table 3. The task budget level, as expected, has
a more visible impact on the attracted contributions, deter-
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Fig. 7: Attracted task contributions vs. quality constraint,
Qm, in for-profit platforms with fixed commission: M = 25.

TABLE 3: Infeasible instances and violated constraints of the
best out of the three heuristic solutions to (P2) as a function
of the quality constraint, Qm: U=100, M=25, Bm=6.8

Qm 0.8 1.2 1.4 2 2.1 2.2 2.4

Infeasible
instances

0% 0% <1% <1% 29% 66% >90%

Violated
constraints

2.3 6.1 11.4 17.5 20.6 20.8 21.7

mining what is the achievable platform revenue. Noticeable
is the performance variation of the DIST-THR heuristic for
Bm = 20 in Fig. 7a. It matches the optimal solution when
the quality constraint is inactive and strongly outperforms
DIST-PROP for low Qm values since its offered rewards
render the task offers acceptable by more users.

At the same time, the ILP solver comes up with feasible
solutions to (P2) almost always for Qm up to 2. It does
so even under tighter task budget values, deepening the
performance gap from its alternatives. Overall, OPT turns
out to be far more resilient to both the covering (i.e., task
quality) and packing (i.e., task budget) constraints that apply
to the platform revenue maximization.

Impact of task budget: Finally, we plot the revenue
attracted by the four alternatives as a function of the task
budget. We set Qm = 1.5, to ensure few constraint viola-
tions, even under low task budgets (see Table 3).

In all cases, Fig. 8 suggests that formulating the problem
as in (P2) and solving it optimally proves to be far superior
to the way the other heuristics manage the per-task budgets.
OPT can elicit contributions from almost all users even at
low budget values, whereas the heuristics need far higher
budgets to scale up contributions. In the best case (DIST-
THR heuristic, Fig. 8a) the achievable revenue can match
that under the optimal solution but for task budgets 3-4
times higher. Typically, even at those budget levels, the best
achievable revenue with the heuristics levels off approxi-
mately 10% below the optimal values (see Figs. 8b-d) .

4.4.3 Nonprofit vs. for-profit platforms
Finally, we compare the three types of platforms with each
other. To do this we find the optimal solutions to problems
(P1), (P2) and (P3), and then compute the aggregate quality,
the number of contributions, and the sum of payments
achieved by each one of them. Our purpose is to determine
to what extent the aggregate task quality and revenue
objectives are aligned or stand in conflict with each other.

Particular care is taken to make platforms charging fixed
commission rates comparable to the rest, with respect to the
sum of payments. Namely, we inflate the rewards allocated
to the task offers made by the other two types of platforms
until either the payments reach the upper limit of rmax or a
task budget is exhausted.

Table 4 reports the worst case scores of the three plat-
forms in each of the three objectives. For instance, the
nonprofit platform (P1) achieves 97% (75%) of the revenue
of the for-profit platform that charges fixed commission fees
(commission rates, respectively).

Var Bm ∈ [5, 25] Var Qm ∈ [0.5, 2.5]
P1 P2 P3 P1 P2 P3

Aggr. quality 100% 78% 57% 100% 84% 60%
No contributions 97% 100% 75% 98% 100% 80%
Sum rewards 75% 80% 100% 94% 94% 100%

TABLE 4: Worst-case ratio of the scores achieved by the three
types of platforms to the optimum of each objective.

While optimizing for the aggregate quality of contribu-
tions, the nonprofit platform (P1) also approximates well
the revenue achieved by the for-profit platforms (worst-
case approximations 97%, 75%, 98%, 94%). In contrast the
platform that maximizes the sum of payments (P3) gives a
poor aggregate quality (57% and 60% in worst case, 72% in
best case -best case table omitted-). The two for-profit plat-
forms (P2, P3) both approximate well each others’ objectives
(75%, 80%, 80% and 94%). An interesting open question and
direction for future work concerns the deduction of more
general theoretical results as to how these three objectives
and the respective MCS platforms compare with each other.

5 PLATFORMS ISSUING MULTIPLE TASK OFFERS

Now, assume that the mobile app offers two alternatives
(MCS tasks) m1, m2 to each user u, specified by the reward-
distance pairs (rum1

, dum1
) and (rum2

, dum2
). The user may

choose to contribute to one of the two tasks recommended
by the app or decline both offers.

Since FFTs model binary choices, they cannot capture the
decision process in this case. The most relevant heuristic,
which sequentially iterates over lexicographically ordered
cues to single out one out of many (≥ 2) alternatives, is the
Deterministic Elimination By Aspects (DEBA) [14]. DEBA
ranks cues in order of decreasing importance (x1, x2,...).
With discrete cues, the alternatives are readily codified
as ordered sequences of ones and zeros, hereafter called
DEBA encodings, depending on whether they possess or
not a binary attribute. DEBA then inspects the value of all
alternatives on x1 and eliminates those with x1 = 0. The
process is repeated when parsing the second and remaining
cues until a single alternative remains. If more than one
alternatives are left after all cues are inspected, or if there is a
cue eliminating all remaining alternatives, a choice is made
randomly among the currently surviving ones. Continuous
cues, on the other hand, can be discretized by comparing
them with the threshold acceptability values. An alternative
that scores favorably in the cue, e.g., a task with reward
exceeding θur or a task at distance smaller that θud , assumes
an ace in the respective position of its DEBA encoding.
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Fig. 8: Attracted task contributions under four solutions to the optimization problem (P2) vs. task budget: Qm = 1.5.

TABLE 5: Minimum rewards that have to be offered to user u to induce a positive response to a task offer as a function of
her DEBA decision-making class and the task group.

Cue ranking DCR DRC RDC RCD CRD CDR RD DR
Task group

{m ∈Mu : dum ≤ θdu, cm = 1} rmin(110) θur (111) θur (111) θur (111) rmin(101) rmin(110) θur (11) θur (11)
{m ∈Mu : dum ≤ θdu, cm = 0} – θur (110) θur (110) θur (101) – – θur (11) θur (11)
{m ∈Mu : dum ≥ θdu, cm = 1} – – θur (101) θur (110) rmin (100) rmin (101) θur (10) –
{m ∈Mu : dum ≥ θdu, cm = 0} – – θur (100) θur (100) – – θur (10) –
DEBA encoding of virtual choice 100 100 001 010 010 001 01 10

With DEBA, the option of not contributing to either
of the two tasks can be conveniently modeled as a third
virtual task. Then Table 5 is the counterpart of Table 1 for
paired-task offers under the DEBA heuristic. It lists the user
decision-making classes and the minimum rewards, when
such exist, that can induce user contributions to the four task
typesM1-M4 in (1). It also provides the DEBA encodings of
the resulting task offers and the virtual alternative (“do not
contribute”). The eight user decision-making classes stand
in one-to-one correspondence with the eight possible cue
rankings, which reduce to four different reward allocation
classes ({DCR}, {DRC,DR}, {RDC,RCD,RD}, {CRD,CDR}).

We can then use the values in Table 5 as {rum} values in
(P1)-(P3) to solve them under DEBA decision makers. LetPu
be the set of all possible pairs of tasks out ofMu that can be
offered to user u. Depending on the user reward allocation
class and the rewards offered for each task, the user may be
steered to either of the two tasks, or both, or none. This way,
the union of possible task pairs in Pu yields an inflated set of
tuples Tu. Each tuple t uniquely determines the pair of tasks
recommended to user u, the offered rewards for each task,
and the induced task choice of the user, m(t). In turn, this
determines the quality qum(t) of the contribution and the
payment rum(t) to be made to user for this contribution. The
app chooses one of these tuples to offer to each user under
the budget constraints of each task, in order to maximize the
aggregate quality of user contributions to tasks.

Formally, if xut = 1, t ∈ Tu, when a particular tuple is
offered to user u, and xut = 0, otherwise, the optimization
problem faced by the app is

max
x

∑
u∈U

∑
t∈Tu

qum(t)xut (13)

s.t.
∑
u∈U

∑
t∈Tu:m(t)=m

rum(t)xut ≤ Bm ∀m ∈M (14)

∑
t∈Tu

xut ≤ 1 ∀u ∈ U (P4) (15)

xut ∈ {0, 1}, u ∈ U , t ∈ Tu (16)

The problem formulation (P4) is a non-trivial variant of
the Generalized Assignment problem with multiple-choice
type constraints and its solution has independent theoretical
interest. However, regarding our problem, we can show that

Theorem 2. The paired-task offer problem (P4) reduces to the
single-task offer problem (P1).

Proof. Let x∗ be a solution maximizing the objective func-
tion of (P1). From that solution we construct an optimal
solution for (P4) as follows. For each user u let m∗(u) be
the task assigned to u by x∗. We choose any other task m2

and propose the tuple of tasks (x∗(u),m2) to user u, with
rewards rum∗(u) as in Table 1, and rum2

less than the value
given by (3) if the task is in acceptable distance from the
user, else arbitrary. In this way it is obvious that the user
will not choose task m2. We claim that the above solution
maximizes the objective function of (P4).

Suppose that the above solution is not optimal, and
that the optimal solution to (P4) is achieved by some x′.
Assume that this solution proposes to user u the tuple of
tasks t = (mu

a ,m
u
b ) and that, without loss of generality, the

user chooses task mu
a . We introduce a new vector x′′ such

that for all u ∈ U and m ∈ M x′′um = 1 if user u chooses
task m, else x′′um = 0. Since u chooses mu

a , for sure it was
proposed to him with a reward at least as high as what is
given in Table 1, i.e., rum(t) ≥ rumu

a
.

The same holds for all users, thus∑
u∈U

∑
t∈Tu:m(t)=m rum(t)x

′
ut ≤ Bm ⇒

∑
u∈U rumx

′′
um ≤

Bm ∀m ∈ M. Thus, x′′ is a feasible solution to (P1)
achieving higher aggregate quality than x∗, which is a
contradiction since x∗ is an optimal solution to (P1).

In fact, what we proved is even stronger: (P1) and (P4)
are computationally equivalent (the first reduces to the
second and vice versa).

Corollary 2. No better result for the paired task offer problem
is possible other than solving the single task offer problem and
complementing the resulting offers with additional ones that the
users will certainly decline.



Proof. It is apparent from the previous proof, that any better
solution to (P4) would result to a better-than-the-optimal
solution to (P1), leading to contradiction.

Notably, the proofs generalize to when more than two
tasks are simultaneously proposed to users. A platform then
should “pack” tasks together in an offer and choose rewards
so that only m∗(u) is acceptable by the user and the rest are
not. In all cases, we need Table 5, i.e., the minimum rewards
that induce contributions from each user to any task.

6 DISCUSSION AND OPEN ISSUES

6.1 Validating and training the cognitive heuristics

Throughout the paper, we have assumed (a) the relevance of
FFTs (and DEBA) in the MCS setting, and (b) that the MCS
platform knows the FFT model for each user.

Validating the first assumption would demand statisti-
cally large datasets from real MCS applications, which are
missing in literature. Beyond the scale and population cov-
erage requirements (number and type of users, duration),
such datasets should realize the choice settings (task offers,
rewards) that are described in this study. This requirement
to run what is essentially a controlled experiment at a large-
scale make this task a very challenging one. Alternatives
such as online questionnaires and surveys or experimental
apps lack in realism and scale and/or suffer from biases in
the considered populations (e.g., students) [22], [23].

Given such datasets, the cognitive heuristic models can
be trained for each user leveraging customized machine
learning techniques, which fall under the broader domain
of supervised learning [24]. As training sample could serve
past user responses to actual task offers or hypothetical
ones made to users as part of a calibration process triggered
upon their registration with the MCS platform. Parameters
to learn out of the model training process include the set of
relevant cues and their rank, the acceptability thresholds for
continue cues and the type of inspection outcome (positive,
negative) that results in a choice at each FFT level.

In [11], two heuristic algorithms are proposed for extract-
ing the cue rank and the type of inspection for each cue. Both
algorithms use the medians of the cue values in the training
sample as acceptability threshold values for the cue. In [24]
the cue order in the FFT, the inspection type that results in
a decision at each level and the acceptability thresholds are
simultaneously determined out of a more computationally
intensive learning process with enumeration flavor.

6.2 Catering for model stochastic effects

6.2.1 Deviations from FFT model prescriptions

FFTs are deterministic models of human decision-making.
In practice, however, a user may deviate from her usual
behaviour and not follow the model prescriptions. We
can model this phenomenon by introducing a probability
au ∈ [0, 1] that user u deviates from the assumed FFT model.
Setting a = maxu∈U au we can prove the following.

Proposition 2. The deterministic model achieves at least a (1−
a) approximation of the real outcome, assuming that the players
follow the proposed FFT model with probability (1− au).
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Fig. 9: The impact of normally distributed {qum} values on
the approximately optimal solution of (P1): R = 1000, θur ∼
U(0.5, 3.5), θud ∼ U(170, 1000), rmin = 0.25.

Proof. The worst thing that can happen under such model
deviations is that a user rejects a task offer that she would
accept according to the FFT model. Let yum be a random
variable that takes the value 1 or 0 depending on whether
the player u will undertake the task m, taking into account
the solution of (P1) and the probability au that she does not
follow the model. Namely, yum = x∗um if the user follows
the model, else yum = 0. Then the expected value of our
objective function becomes

E[
∑
u,m

yumqum] =
∑
u,m

qumE[yum] ≥ (1− a)
∑
u,m

qumx
∗
um

This analysis is meaningful when the parameters au,
and hence a, are adequately small. A large au value would
suggest that the FFT is not a good model for the user at hand
and would call for research on alternative (deterministic or
purely probabilistic) models for capturing her choices. In
practice, the parameters au could correspond to the training
accuracy figures that emerge out of the FFT model training
process (see section 6.1).

6.2.2 Variations in the quality of user contributions
Likewise, we can reasonably assume that the quality of
users’ contributions is not constant and perfectly known to
the MCS platform. Instead, the platform estimates it taking
into account the task specification and information about
the user profile and the technical characteristics of her smart
device. For any given task m, relevant skills of user u can
be inferred from her involvement in related special interest
social media, usage stats of mobile apps or explicit inputs
about her hobbies.The smart device capabilities, on the other
hand, are reflected in its technical specifications, e.g., camera
resolution or sensors’ precision standards. User skills and
device capabilities could then be quantified on a simple
rating scale and combined to yield an estimate about qum.

We can model the {qum} values as normally distributed
random variables Zum ∼ N (µum, σ

2
um), a larger mean µum

and smaller standard deviation σum denoting that user u is
better qualified for task m. We can then revisit the problems
we formulated in sections 3 and 4.

In Fig. 9, we complement the simulation runs of Fig. 2
with two additional sets of runs. In one of them, we first
solve (P1) with qum ≡ µum, then we draw samples {zum}
of the variables {Zum : xum = 1} for the actually evidenced
quality of the user contribution and compute the aggregate



quality accordingly. In the other set, we first sample all
normal variables and then solve (P1) with qum ≡ zum.
This second experiment has theoretical value: it yields an
estimate of what additional benefit we could obtain had we
known in advance the precise quality of user contributions.

In both cases, we set σum = (1 − µum)/s. Hence, the
variance of contributions’ quality decreases with the mean,
whereas s is a scale parameter that controls horizontally the
quality variation around its mean for all users. Two remarks
are due out of Fig. 9. First, the curves obtained with the first
set of runs practically coincide with those corresponding to
deterministic {qum}. The variations of the random variables
around their mean cancel out and the overall sum tends
to the quantity

∑
u,m x

∗
umµum, {x∗um} being the matches

we determine when solving (P1) with {µum}. Second, the
theoretical gain in terms of aggregate quality of task contri-
butions, under perfect knowledge of the instantaneous qum
values, is relatively small, even for high variance (s=1), and
fades out fast, practically disappearing for s > 3.

6.3 From individual user skills to MCS task quality
Building on the analysis in 6.2.2, each qum could be viewed
as the expected value of a latent random variable Xum with
normal distribution, Xum ∼ N (um, σ

2
um). Our modeling

has implicitly assumed that the overall task quality obtained
out of the individual contributions exhibits cumulative effects,
i.e., it equals the sum of the expected values of those con-
tributions. This is why the {qum} values are added in the
objective (1) of (P1) or in the constraint (9) of (P2).

In general, the way the total benefit for the task relates to
individual contributions it attracts may vary. Formally, this
can be expressed by a set function F : P(U) → R, which
maps the quality of task contributions from any subset S of
users, S ⊆ U , to a total quality for the task.

One extension to the work in this paper would be to
revise (P1) and (P2) under different instances of the function
F , e.g., when its value for a task m is the maximum quality
of all attracted contributions. This would entail answering
how the aggregate task quality metric relates to (some
function of) Xum (see e.g., [25] and the related thread on
the team selection problem).

6.4 Implications for other applications areas
As a final note, bounded rationality bears implications for a
broader set of application areas beyond mobile crowdsens-
ing, in which end-users make choices through the mediation
of mobile platforms. For example, in smart-energy apps,
energy-saving recommendations and consumption plans
are issued to the user through the app with the goal to
optimize energy savings. In mobile advertising, ads or offers
are projected to users, and the aim is to optimize revenue
through user response to ads. Common to these platforms
is the mission to engineer the offered alternatives to users,
exploiting recommender systems’ practices, and tailor in-
centives to user preferences so as to nudge them towards
desirable choices for the user and platform welfare.

7 RELATED WORK

Research on mobile crowdsensing has flourished over the
last fifteen years. Recent surveys such as [1] and [2] provide

exhaustive records of the different paths the research on
MCS optimization has taken, including different objectives
(e.g., minimize the number of participants, maximize num-
ber of accomplished tasks, minimize budget expenditure);
different concerns (e.g., privacy, truthfulness); and the use
of different tools (e.g., mechanism design) for the static
(offline) or dynamic (online) treatment of the optimization
problems. Our work is particularly relevant to studies that
explicitly consider the quality of user contributions either as
a constraint or as an objective in their work.

Hence, in [26], [27] payment methods are studied as
a function of the quality of user contributions. This is in
stark contrast with our work, where the minimum required
rewards that elicit user contributions are a function of other
cues and they are allocated to maximize the aggregate
quality of user contributions to tasks. On the other hand,
revenue maximization in MCS platforms is ofter pursued
through Knapsack-based formulations, e.g., in [28]. Contrary
to our formulations for for-profit platforms, these studies in-
troduce constraints on the number of recruited participants
rather than on the individual task quality.

In [29] the authors overview existing work on assessing
Quality of Information and propose a framework to enforce
it. The possibility to infer and predict context and user
behavior (like user destinations) is studied in [30], [31]. Con-
trary to these studies, we use the acquired knowledge about
user behaviour to infer minimum prices. Fewer studies have
devoted effort to learning user preferences and inferring
decision-making processes, either through online question-
naires [32] or combining real data from social networks [3].

One step closer to the work in this paper are the studies
in [33], [34], [35], which address the task allocation process
for (data) quality maximization under monetary or effort-
related budget constraints. The participant selection task
leverages GAP-based formulations and corresponding al-
gorithms in [36], whereas it explicitly takes into account
distance, energy and sociability in [37], [38]. Contrary to
these last few studies, as well as all the aforementioned ones,
our starting point is the accumulated experimental evidence
about the bounded rationality of human choices. Hence, we
model MCS users after heuristics from the field of cognitive
psychology and let these models drive the optimization of
the MCS platform’s operations.

8 CONCLUSIONS

Concepts from behavioral science remain, to the best of
our understanding, largely unexploited by the (wireless)
networking community. In this work, we have made a
first attempt to accommodate the extensive experimental
evidence on the bounded rationality of human-decision
making in the problem of MCS task recommendation and
incentive allocation. We have relied on heuristic models
from the field of cognitive psychology to this end.

We use those models to infer minimum rewards that can
be offered by the platform to elicit users contributions to
MCS tasks and reduce the optimization problems faced by
the platform to generalized assignment and other (bi)linear
problems. This approach leads to significantly better results
for both non-profit and for-profit platforms when compared
to solutions that do not account for the bounded rationality
of the human decision-making.
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