Collective subscriptions: a novel funding tool for crowdsourced network infrastructures

Merkouris Karaliopoulos, Iordanis Koutsopoulos

https://mm.aueb.gr/crescendo/mkaralio.html

IEEE WOWMOM 2020, Cork, 3/9/2020

This research work has received funding from the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT), under grant agreement No 892

Community Networks worldwide : a 20-year long story

- grassroots initiatives in both urban and rural areas
- addressing a broad mix of needs
 - experimentation with technology and DIY, digital divide, autonomy and community ideals

Three good reasons for renewed interest in CNs

1. Bridging the digital divide- connecting the next billion of people

IWIRE

uns Work on 'Westword сек в ры ре то тне

tiled Kids in San Francisc

SA Tests a Plane That E ery, Very Ouie JACK STEWAR

CONDE NAMET

the "local" bottom-up approach to the problem

•

here Cellular Networks Don't Exist, People Are Building Their Own

...as opposed to ambitious global topdown approaches to the problem

Three good reasons for renewed interest in CNs

2. Enabling broadband connectivity agendas: CNs as network infrastructure providers

• e.g., Broadband Europe 2020 and 2025 or 5G mobile systems

South Korea's mobile operators and an ISP will jointly build a nationwide 5G infrastructure which they will share and allow them to save an estimated KRW1 trillion (\$935 million) over the next ten years, Yonhap News Agency reported.

5G Hysteria: Is the Trump Admin Planning a Nationalized Network?

Amid conflicting statements and reports, we break down the leaked proposal and the significant tech challenges associated with building a nationwide 5G network.

f y in 9 🐨 🖬 🕫 72 SHARES

Guide to High-Speed Broadband Investment

Three good reasons for renewed interest in CNs

3. Democratizing the market

• through fostering more open telecom network models against dominant trends for verticals

Economic sustainability of CNs

CN expenses

Capital expenses (CapEx)

- Equipment: access points, routers, antennas, servers
- Installation costs
 - Mounting antennas and access points
 - Digging costs (when deploying fiber)

Operational expenses (OpEx)

- Cost of peering agreements for Internet access (leased lines)
- Maintenance of network nodes
- Software for network management, network monitoring, billing
- Electricity costs

CN revenue sources

• Donations from supporters

crowd-funding, regular or one-time donations, investments in the infrastructure

• Support from public agencies and institutions

public funds from municipalities or local authorities, grants from non-profit institutions

• Funding from private sector

synergies with commercial for-profit service providers under commons-based policies

- Member subscriptions
 - o monthly or yearly
 - All CN success stories rely on their members' subscriptions

Individual subscriptions and free riding

The de-facto subscription scheme is fixed-price subscriptions. The subscription fee

- one the one hand, should maximize inclusion of the community
- on the other hand, should secure sufficient revenue for the CN economic sustainability

Not always an easy task:

• free riding is frequent in these CNs, not least due to affordability

Toy example : 5 users who can afford *15, 13, 12, 8, 5 Euros per month,* respectively, for a subscription. If the subscription fee f_s is set to:

- $f_s \leq 5$, all five users can join, paying up to 5 each
- $5 < f_s \le 8$, the first four users can join, paying up to 8 each
- \rightarrow CN revenue up to 25 Euros
- \rightarrow CN revenue up to 32 Euros

Collective subscriptions - outline

- Idea : instead of charging individual CN users, charge the CN node owners *only* and share the subscription costs with users subscribing to the node
 - o attempt to accommodate the varying amounts users are willing to pay for membership and connectivity

• Outline of the remainder of the presentation

- $\circ\;$ the collective subscriptions optimization problem
 - system model, assumptions, problem formulation, characterization in the general case
- \circ solution of the problem
 - structural properties, enumerative algorithm over a reduced search space
- evaluation of the scheme
 - performance characteristics, comparison with fixed-price individual subscriptions

System model - actors

APs offering wireless coverage to users inside and outside buildings

The illustration is a processed version of a graphic at https://commotionwireless.net

Set of users, U

- assess differently the Internet connectivity value \rightarrow individual **price ceilings** r_i , $j \in U$
- each user *u* prefers to join the subscription of a certain set of CN nodes N_u out of the full CN node set N
 - e.g., those she uses most frequently, close to her house or neighborhood

CN operator, CNO

- sets the node subscription fee f_s and distributes users to node subscriptions
- seeks to maximize revenue but also let as many as possible join the CN

9/20

Collective subscriptions: three assumptions/properties

- No discrimination at node subscription level
 - \circ the fee f_s charged by the CNO is common for all CN nodes
- No discrimination at user level within a given node
 - if *k* users join a node subscription, the fee share each one pays is f_s/k
 - o however, users assigned to different nodes may end up paying different amounts
 - the more users join a CN node subscription, the less the fee share for each user (positive externality)
 - \Rightarrow an incentive for CN node owners to recruit more users
- The CNO is aware of the true price ceilings of users
 - the strongest assumption (and the main subject of current follow-up work)

10/20

ASS1

ASS2

ASS3

Optimizing collective subscriptions

Let $P = (p_0, p_1, p_2, ..., p_N)$ be a partition of CN users to the N nodes

- $k_n = |p_n|$, the number of users joining the subscription of node n
- p_0 : set of users who do not join the CN (they cannot afford the fee)
- α : an upper bound on the number of users who cannot afford the subscription

Then:

- The maximum fee the CNO can collect out of node *n* is : $fee(n) = k_n \min_{u \in p_n} r_u$
- The total fee that the CNO can collect out of the CN is : $R_{CNO}(p) = \min_{\substack{n \in N \\ k_n > 0}} fee(n) \cdot \sum_{n \in N} 1_{k_n > 0}$
- The objective of CNO is to $\max_{p} R_{CNO}(p) \qquad (OPT)$ s.t. $k_{n} = \sum_{u:n \in N_{u}} x_{un} \quad \forall n \in N \cup n_{0}$ $\sum_{n \in N_{u} \cup n_{0}} x_{un} = 1 \quad \forall u \in U \qquad \text{assignment constraints}$ $k_{0} \leq \alpha \qquad \text{inclusion constraint}$ $x_{un} \in \{0,1\} \quad u \in U, n \in N \cup n_{0}$

Problem characterization

The problem (OPT) is NP-hard in the general case

- non-identical user price ceilings
- non-identical user subscription preferences (distinct sets N_u)

The problem simplifies under special cases

• identical user price ceilings ($r_u = r_v = r \quad \forall u, v \in U$)

o the problem reduces to a special case of the restricted max-min fair allocation problem

• identical user price ceilings **and** subscription preferences $(N_u = N)$

trivial solution to the assignment problem

• identical user subscription preferences ($N_u = N$), equivalently: user indifference to the subscription assignment

 $\ensuremath{\circ}$...see the remainder

Collective subscriptions : identical user subscription preferences

Idea : enumerate possible solutions albeit in a significantly reduced search space

Definition : r - ordered partition $p_{ord}(k_0, k_1, k_2, ..., k_N)$ with $k_j \ge k_{j+1}$, $j \in [1..N-1]$

The single partition p (of users to node subscriptions) out the set of all partitions $P(p_0, p_1, p_2, ..., p_N)$ such that

- $|p_j| = k_j, j \in [1..N]$
- $\max_{u \in p_j} r_u \leq \min_{u \in p_{j+1}} r_u$, j \in [1..N-1]

<u>Example</u>: N = 4, U = 13, \overline{r} = [2,3,3,5,6,7,8,10,12,14,15,15,16]

Then:

 $p_{ord}(1,4,3,3,2) = \{\{2\},\{3,3,5,6\},\{7,8,10\},\{12,14,15\},\{15,16\}\}$ $p_{ord}(1,5,4,2,1) = \{\{2\},\{3,3,5,6,7\},\{8,10,12,14\},\{15,15\},\{16\}\}$ $p_{ord}(0,5,4,2,2) = \{\emptyset,\{2,3,3,5,6\},\{7,8,10,12\},\{14,15\},\{15,16\}\}$

Collective subscriptions : identical user subscription preferences

Proposition : Any partition $p(k_0, \sigma(k_1), \sigma(k_2), ..., \sigma(k_N))$, where σ is an arbitrary permutation of the set $\{k_1, k_2, ..., k_N\}$, can be converted to an r – ordered partition $p_{ord}(k_0, k_1, k_2, ..., k_N)$ so that $R_{CNO}(p) \leq R_{CNO}(p_{ord})$

Algorithm 1 Transformation of an arbitrary partition to its

Example:

arbitrary partition (1 4 2 2 2)	<i>r</i> -ordered counterpart	C	ordo	radr	ortiti	on (1	1 2	ר כ
arbitrary partition (1,4,5,5,2)	Input: Partition subset p_0 and subsets $p_1,,p_N$, indexed in	<i>i-ordered</i> partition (1,4,3,3,2)						
$\mathbf{p}_0 \mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_3 \mathbf{p}_4$	order of decreasing cardinality Output: Subsets n_0 , n_1 , n_N of the <i>r</i> -ordered partition		p ₀	p ₁	p ₂	p ₃	p ₄	
3 5 6 15 2	1: for every subset $i \in [0, N-1]$ do		2	5	10	15	16	
15 7 12 10	2: $z = \max$ value in subset j , $w = \min$ value over subsets			3	7	12	15	
8 16 3	indexed in $[j+1N-1]$, m = subset hosting w			6	8	14		
14	3: while $w < z do$			3				
5 42	4: move z to the subset m and w to p_j			_				
$R_{CNO} = 12$	5: $z = max$ value in subset j , $w = min$ value in subsets indexed in [j+1N-1], $m =$ subset hosting w	$R_{CNO} = 48$						
	6: end while							
	7. and for							

7: end for

Collective subscriptions : identical user subscription preferences

Corollary: To find the the optimal partitions of end users to CN node subscriptions, it suffices to search through the set of r - ordered partitions featuring $k_0 \le a$

 search complexity becomes polynomial O(N^U) instead of exponential O(U^N) to the number of users (note that typically U >> N)

Evaluation of the scheme

Main questions

- How well can collective subscriptions trade off community inclusion (number of abstainers, U_{abs}) with achievable revenue (R_{CNO})?
 - How do they compare in this with fixed individual subscriptions?
- What other variants of the scheme are possible?

Methodology

- Get (N,U) pairs from real data (drawn from a Greek rural CN) or generate synthetic data
- Synthetic distributions for price ceilings, $r_u \in \{r_{min} . . r_{max}\}$

Collective vs. individual fixed price subscriptions

- Solve OPT with $\alpha = 0$ (include everyone in the CN)
- Collective subscriptions consistently achieve higher revenue than individual subscriptions
 - even if users with low price ceilings are excluded from the CN
 - CNO revenue gains range from 12.5% to 43% across experiments

Does this experimental evidence generalize?

Proposition : For any given set of users and their corresponding price ceilings, collective subscriptions yield (R_{CNO} , U_{abs}) values that Pareto — dominate those obtained under fixed price individual subsriptions

- upon the condition that $U U_{abs} = \delta \cdot N, \delta \in Z^+$
- there are (rare, quite extreme cases) that proposition does not hold, i.e., when U is prime and $r_u = r_v \quad \forall u, v \in U$

Revenue vs. community inclusion under collective subscriptions

Filled markers correspond to (U = 40, N = 5). Empty ones correspond to (U = 30, N = 4).

Solve (OPT) with the inclusion constraint turned to equality $(k_0 = a)$

- For uniform (middle plot) and positively skewed distributions (left plot) of user price ceilings revenue and participation are simultaneously maximized
- Under negative skew, the revenue may increase when excluding a few users with the lowest price ceilings

18

Collective subscriptions with unequal node subscription fee shares

Solve a modification of OPT with $fee(n) = \sum r_u$ and $a = 0 \rightarrow multi-way partitioning problem$

- \mathbb{E} The revenue is consistently higher when the node subscription fee sharing becomes more flexible
 - $\odot\,$ gains in the order of 10% to 25%
 - on the downside, the introduced discrimination among users who share the subscription of the same node strengthens the motivation to misreport the price ceilings

19

Concluding and the way forward

- We have proposed an innovative subscription mechanism for community networks to self-fund their activities and took some steps in analyzing it
 - o the mechanism matches well the strong sharing ideals of these crowdsourced infrastructures
- The mechanism demonstrates a clear performance advantage over fixed-price individual subscriptions
 - o resulting in higher revenue for the CNO and better inclusion of the end users
 - serves as incentive for recruiting more members to the CN and sharing the subscription cost
- The strongest assumption that has to be relaxed is that end users declare truthfully what they are willing to pay for Internet access
 - users are tempted to underbid in the expectation that they will end up with lower cost shares, possibly at the expense of other users
 - we currently explore how to shape collective subscriptions into a mechanism that induces truthfulness as an equilibrium

Collective subscriptions: a novel funding tool for crowdsourced network infrastructures

Merkouris Karaliopoulos, Iordanis Koutsopoulos

https://mm.aueb.gr/crescendo/mkaralio.html

IEEE WOWMOM 2020, Cork, 3/9/2020

This research work has received funding from the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT), under grant agreement No 892

