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Abstract—We present and experimentally evaluate procedures
for efficient IoT data collection while achieving target require-
ments in terms of data accuracy and privacy protection. The
procedures adjust the time period between consecutive measure-
ments following an additive increase and multiplicative decrease
(AIMD) scheme based on a target data accuracy and add
noise to measurements using differential privacy techniques. The
experimental evaluation involves real temperature and humidity
measurements obtained from two testbeds through the FIESTA-
IoT platform. Our results show that the AIMD adaptation of the
measurement period is robust to different types of measurements
from different testbeds, without having any tuning parameters,
and the addition of noise to the sensor measurements using
differential privacy has a negligible effect on the aggregate
statistics.

Index Terms—data accuracy, adaptive data collection, differ-
ential privacy, testbed experiments

I. INTRODUCTION

The Internet of Things will involve a huge number of
sensors. Periodically collecting data from all IoT sensors will
waste a significant amount of communication and storage
resources, in addition to a significant amount of energy, which
impedes the scalability of IoT systems. Moreover, the collected
data, or even correlating the collected measurements, may
reveal sensitive information related to end-users’ activities.
Naive approaches to (big) IoT data collection - reflecting
the “first collect everything then (try to) analyse everything”
paradigm - can also impede the integration of IoT and Cloud
systems and of IoT and big data analysis, since the immense
amount of data has implications on the amount of network
resources and the amount of computation resources.

Different IoT applications have different requirements in
terms of accuracy, latency, and energy consumption. For
example, an environmental monitoring application can require
monitoring of real world phenomena with some degree of
accuracy, while being tolerant to delays in receiving data
updates from the IoT sensors. On the other hand, time-critical
applications, such as security and critical infrastructure mon-
itoring that involve both monitoring and actuation, can have
strict requirements in terms of the delay for IoT sensor nodes
to transmit their data to the applications. Finally, different
IoT sensors can have different constraints in terms of battery
consumption hence applications can require a different balance
between data accuracy or timeliness and energy consumption.
Motivated by the above, the goal of our work in this paper
is to develop and experiment with procedures for efficiently

collecting IoT data while achieving target requirements in
terms of data accuracy, timeliness, energy efficiency, and
privacy protection.

In summary, the contributions of the paper are the following:
• We define procedures for efficient data collection that

satisfy target requirements in terms of data accuracy
and privacy protection. The data accuracy-driven pro-
cedure adapts the period between measurements using
an additive increase and multiplicative decrease (AIMD)
scheme and has no tuning parameters. The privacy-driven
procedure is based on differential privacy techniques.

• We evaluate the procedures with experiments involving
real temperature and humidity measurements, that are ob-
tained from two testbeds over the FIESTA-IoT platform1.

The rest of the paper is structured as follows: In Section II
we present the overall architecture of our measurement frame-
work, focusing specifically on the data accuracy and privacy-
driven strategies. In Section III we present and discuss our
experimental results. In Section IV we present a brief summary
of related work, identifying how the work contained in this
paper differs. Finally, in Section V we conclude the paper
identifying directions of ongoing and future research.

II. IOT DATA COLLECTION STRATEGIES

Our data collection framework BeSmart implements the
following four strategies:

• Data accuracy-driven: This strategy considers the tradeoff
between the data accuracy and the frequency of measure-
ment requests. Specifically, the frequency of measurement
requests is adapted (temporal adaptation) while maintain-
ing a target data accuracy. Additionally, when there are
many IoT sensors located in the same geographic area,
the collector can exploit the spatial correlation of sensor
measurements to adapt the subset of the sensors from
which measurements are requested (spatial adaptation).

• Time-driven: This strategy ensures that the elapsed time
since the timestamp of the last measurement is below
some maximum delay; this elapsed time corresponds
to the timeliness of data measurements. To select the
appropriate time to request measurements in order to
ensure the maximum elapsed time target, the delay from
the time a request is sent by the collector until the time the

1The FIESTA-IoT platform provides uniform access to IoT data from
heterogeneous testbeds. For more information see http://fiesta-iot.eu/
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Fig. 1. BeSmart data collection architecture.

response (measurement) is received must be considered;
the latter delay can involve the network delay, the delay
of the IoT measurement middleware, and the delay at the
particular IoT testbed where the sensor is located.

• Energy-driven: This strategy seeks to maximize the net
benefit, which is the gain for a given data accuracy or
timeliness minus the corresponding power consumption.
The gain for a specific data accuracy or timeliness can
be expressed using a utility function, while the power
consumption depends on the frequency of measurements.

• Privacy-driven: This strategy targets to preserve end-
user privacy by altering the accuracy of the individually
retrieved results, without significantly altering their statis-
tics. In particular, this strategy will (a) try to minimize
the amount of times a specific sensor is requested for
data (using also approaches developed for the data-driven
and time-driven strategies), and (b) add “noise” to the
retrieved results using differential privacy techniques.

The above strategies are implemented solely at the receiver-
side, i.e. at the data collector (see Figure 1). This is the only
option possible if the sensors cannot implement specific col-
lection strategies, as is the case with the FIESTA-IoT platform
which we consider in our experiments. Another advantage
of the receiver-driven approach is that because sensor nodes
typically have small processing and storage capabilities, the
range of strategies they can implement can be limited. This
is not the case with the processing capabilities at the data
collector side.

The architecture of our BeSmart framework is shown in
Figure 1. The strategy layer, which implements the aforemen-
tioned four strategies, determines the time period at which
measurements are requested from the FIESTA-IoT platform.
The FIESTA-IoT platform manages IoT data from heteroge-
neous systems and environments and their entity resources
(such as smart devices, sensors, and actuators), and was
developed by the EU-funded Federated Interoperable Semantic
IoT/cloud Testbeds and Applications project. FIESTA-IoT
enables experimenters to use a single Application Program
Interface (API) for executing experiments over multiple IoT

testbeds that are federated in a testbed agnostic way.
Next we discuss in more detail two of the strategies im-

plemented in our framework: accuracy-driven and privacy-
driven data collection. These two strategies will be evaluated
with measurements obtained from the FIESTA-IoT platform
in Section III.

A. Accuracy-driven data collection

The motivation for the accuracy-driven data collection
strategy is that many applications require a particular data
accuracy, and providing a higher accuracy offers no advan-
tages. Hence, the goal of this strategy is not to select the
period between measurement requests such that the time series
of data measurements have the smallest deviation from the
actual sensor values, which indeed can be period at which
the IoT sensor obtains measurements for a particular phe-
nomena. Rather, the strategy seeks to reduce the frequency
of the measurements, hence reduce the amount of resources
(processing, communication, and storage) necessary for data
collection, while achieving a target data accuracy.

The data accuracy-driven strategy seeks to achieve a target
accuracy according to which the last measurement obtained
differs from the current sensor value by at most a target
accuracy; this target accuracy can be expressed as a simple
percentage, e.g. the last measurement differs from the current
sensor value by at most 10%. Of course, only an Oracle
with knowledge of all the future sensor values can achieve
the above goal 100% of the time. Figure 2 illustrates when
measurements are requested by the Oracle, with knowledge of
all future measurement values. A target data accuracy defines
an accuracy interval corresponding to the last measurement
that was obtained. A new measurement is requested whenever
the current sensor value is outside the accuracy interval of the
last measurement. Observe from Figure 2 that measurements
are requested more frequently, i.e. the period between con-
secutive measurement requests is smaller, when the measured
values change at a higher rate. We will use the Oracle as
a benchmark to compare the performance of the proposed
adaptation procedure that we describe next.
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Fig. 2. Given a data accuracy target, which defines an accuracy interval, the
goal is to request measurements such that at any time the current sensor value
falls within the accuracy interval of the lasted measurement. Only an oracle
can achieve this 100% of the time.



Since the value of future measurements is not known, the
Oracle cannot be applied in practise. Instead, we propose that
the time period between consecutive measurement requests is
initially equal to some small value, which can be the interval
in which the sensor produces (or obtains) its measurements,
which we will refer to as unit interval. The time period
T between consecutive measurements is increased by one
unit interval, i.e. it increases linearly, as long as the current
measurement is inside the accuracy interval based on the
measured value when the interval T was last adapted. If the
current measurement is outside this accuracy interval, then
T is reduced to half its value, i.e. it decreases multiplica-
tively. The above additive increase and multiplicative decrease
(AIMD) procedure resembles the AIMD adaptation of TCP’s
congestion window. Indeed, the motivation for the additive
increase is that the procedure slowly tests larger periods
between consecutive measurements, while the reduction to half
is conservative to avoid requesting measurements to far apart,
hence have measurements that deviate from the actual sensor
values. A key feature of the proposed AIMD adaptation of the
measurement period is that it is not based on some data model
and involves no tuning parameters.

B. Privacy-driven data collection

This strategy targets to preserve end-user privacy by altering
the accuracy of the retrieved results. This is achieved by adding
“noise” to the retrieved results using differential privacy [1]
techniques.

The goal of differential privacy is to allow the extraction
of statistics for a population of users without revealing any
information about particular individuals. This is achieved
with the addition of some “noise” to the statistics extraction
process. This noise guarantees that the contribution of a
single individual to the calculated statistics is not “significant.”
Hence, differential privacy guarantees that the output of the
statistics calculation process is only slightly impacted by
the contributions of a single individual. However, extracting
information about a group of users in a privacy preserving way
provides only partial security: a provider should still be trusted
to collect and maintain user-provided sensitive information.
This is not necessary if noise is added at the source during
the data collection phase and not during the data processing
phase. A trivial approach for implementing this functionality
is the so-called “survey based on random responses” [2]. In
a nutshell, with this approach, if a user is asked a question
that can be answered with a “Yes” or “No,” (for example, “Is
your access network congested?”), then she flips a fair coin, in
secret, and answers the truth if it comes up tails. Otherwise she
flips another coin in secret and answers “Yes” if it comes up
tails or “No” otherwise. This approach allows users to retain
very strong deniability, while at the same time the real ratio of
“Yes” answers can be accurately estimated using 2∗(Y −0.25),
where Y is the portion of “Yes” responses.

For our privacy-driven strategy we use the RAPPOR pro-
tocol. The RAPPOR protocol [3] is an extension of the
random responses approach, developed by Google and used

in Google Chrome for collecting user statistics. This protocol
allows questions with a richer dataset of possible answers
(nevertheless, this dataset has to be pre-defined) and protects
users’ privacy even if the same question is asked many times.
The RAPPOR data collection process is extremely lightweight,
hence it can be implemented even in constrained devices. The
basic idea behind RAPPOR is that whenever a user is asked a
question, she is provided with a set of options. For each option
the user plays the “random response” game. Eventually the
user responds with a bit vector of size equal to the options’
set: a bit in the vector set to 1 means that the corresponding
option is selected by the user as one of the answers to the
question. Due to the randomness of the response process, a
user may select multiple options or none of the options, and
an option may or may not correspond to the user’s real answer.

III. EXPERIMENTS

In this section we present experiments for the data accuracy-
driven and the privacy-driven data collection strategies. Our
experiments consider measurements of different data types
(phenomena), namely temperature and humidity, obtained
from the SmartSantander and FINE testbeds through the
FIESTA-IoT platform. The SmartSantander testbed is located
in Santander, northern Spain. The FINE testbed is located on
the island of Crete, Greece.

A. Accuracy-driven data collection

Figure 3 shows the temperature measurements for the Or-
acle, which has knowledge of the future temperature values,
and the AIMD adaptation procedure, for two data accuracy
targets: 10% and 20%. At time periods where the graph for
the Oracle and the AIMD adaptation procedure is horizontal,
measurements are requested only at the beginning of the cor-
responding period. Hence, measurements are requested when
the graph increases or decreases. Observe in Figure 3 that the
measurements for the Oracle, compared to those for the AIMD
adaptive scheme, are farther from the actual sensor values but
still within the target accuracy interval; this is expected since
the Oracle tries to reduce the number of measurements while
allowing the maximum deviation of the measurements from
the actual sensor values to be equal to the target data accuracy.
Comparing Figure 3(a), which was obtained for target data
accuracy 10%, with Figure 3(b), which was obtained for target
data accuracy 20%, we observe that a larger data accuracy
results in fewer measurements for both the Oracle and the
AIMD adaptation procedure.

TABLE I
TEMPERATURE, SMARTSANTANDER, 96 HOUR TIME WINDOW, TOTAL # OF

SENSOR VALUES: 1.147
Target Oracle AIMD adaptation
accuracy
10% measurements: 68 (5,9%) measurements: 86 (7,5%)

deviations: 56 (4,9%)
20% measurements: 9 (0,8%) measurements: 48 (4,2%)

deviations: 2 (0,05%)
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Fig. 3. Measurements with the Oracle and the AIMD adaptation procedure.
Comparison of the two graphs illustrates the tradeoff between the target data
accuracy and the number of measurements.

Table I quantifies the gains in terms of the reduced number
of measurements of the Oracle and the AIMD adaptation
procedure, for a 96 hour time window that includes a total
of 1.147 temperature values with an interval of approximately
5 minutes between consecutive values. Both the Oracle and the
AIMD adaptation procedure reduce the number of measure-
ments by over 90%. In particular, for 10% target data accuracy,
with the AIMD measurement period adaptation procedure only
86 out of the total 1.147 temperature values are requested
(7,5%), which is very close to the number of measurements
requested with the Oracle, which is 68 (5,9%). Moreover, the
gains increase when the target data accuracy increases from
10% to 20%, i.e. the data accuracy becomes less stringent.
The percentage of measurements which are outside the target
data accuracy interval for the AIMD adaptation procedure is
4,9% and 0,05% of the total number of sensor values (1.147),
for a target data accuracy 10% and 20%, respectively; this
means that, for a 10% target data accuracy, only 56 out of
the 1.147 temperature values (4,9%) were outside the 10%
accuracy interval of the last measured value. For a 20% target
data accuracy, only 2 out of the 1.147 (0,05%) temperature
values where outside the 20% accuracy interval. On the other
hand, since it has knowledge of future temperature values,
which of course in practise is not possible, the Oracle can
request measurements such that they all differ from the actual
sensor values by at most the target data accuracy.

TABLE II
HUMIDITY, SMARTSANTANDER, 96 HOUR TIME WINDOW, TOTAL # OF

SENSOR VALUES: 977

Target Oracle AIMD adaptation
accuracy
10% measurements: 34 (3,5%) measurements: 134 (13,7%)

deviations: 51 (5,2%)
20% measurements: 11 (1,1%) measurements: 56 (5,7%)

deviations: 52 (5,3%)

Table II quantifies the gains in terms of the reduced
number of humidity measurements. The AIMD procedure
again achieves significant gains by reducing the number of
measurements requested by more than 85%. The results in
Table II also illustrate the tradeoff between data accuracy and
number of measurements, for both the Oracle and the AIMD
adaptive procedure. Observe that the difference in performance
of the Oracle and the AIMD procedure is larger for the hu-
midity measurements than for the temperature measurements,
Table I; this is because the humidity changes more abruptly
compared to the temperature, for the time window in which
the experiments were performed.

Table III quantifies the gains in terms of the reduced num-
ber of measurement requests for temperature measurements
obtained from the second testbed, FINE, whose temperature
sensors provided measurements every 10 minutes. Compared
to the results in Table I, the number of measurements for both
the Oracle and AIMD adaptation procedures is higher, but the
gains are still significant: the AIMD procedure achieves over
80% reduction of the total number of measurements for a 10%
target data accuracy, with only 5% deviations.

Figure 4(a) shows that the AIMD adaptation procedure
can follow the varying trend of the temperature quite well,
even though the values of the temperature exhibit periodicity
and non-stationarity. Figure 4(b) shows the adaptation of the
measurement period of the AIMD procedure, illustrating its
additive increase and multiplicative decrease behavior. Finally,
Figure 4(c) shows that the magnitude of the deviations for the
AIMD procedure, i.e. the relative difference of the measured
values compared to the sensor value when the measured values
are outside the target accuracy, is typically less than 10%

B. Privacy-driven strategy

For the evaluation of the privacy-driven strategy we im-
plemented the basic one-time RAPPOR algorithm, described
in [3], and applied it for calculating averages of temperature
measurements performed by sensors in the Smart Santander

TABLE III
TEMPERATURE, FINE, 96 HOUR TIME WINDOW, TOTAL # OF SENSOR

VALUES: 628
Target Oracle AIMD adaptation
accuracy
10% measurements: 48 (7,6%) measurements: 109 (17,4%)

deviations: 32 (5,1%)
20% measurements: 22 (3,5%) measurements: 66 (10,5%)

deviations: 29 (4,6%)
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Fig. 4. Performance of the AIMD adaptation procedure in a 96 hour time
window of temperature measurements from SmartSantander.

testbed. In particular, we applied the algorithm over the
measurements of 70 sensors in order to calculate hourly
average temperatures. Each sensor was provided with a set
of possible temperatures and for each element in the set the
random responses game was executed. Hence, each sensor
could respond “Yes” to some/all/none temperatures and its
responses may or may not include the real measurement.
Figure 5 illustrates2 the distribution of measurements when
the set of possible temperatures is confined by the actual
minimum and maximum temperature, Figure 5(a), and when
its boundaries are broader, Figure 5(b).

2In this paper we include a subset of our results. Interested users are en-
couraged to use our live demo located at https://mm.aueb.gr/fiesta/privacy.php
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Fig. 5. Distribution of measurements with and without noise addition with
the limits of the possible temperatures (a) equal to the actual min and max
temperature, (b) expanded.
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Fig. 6. Calculated average temperature per experiment.

Since the sensor responses are randomized, every time an
experiment is repeated the sensor responses (and hence the
calculated average temperature) differ. Figure 6 illustrates the
calculated average temperature for a specific hour3 compared
to the real average temperature, when the set of possible
temperatures is confined by the actual minimum and maximum
temperature and when its boundaries are broader. The graph
shows that the calculated averages are very close to the real
averages, despite the addition of noise.

3The graphs for all other hours follow a similar pattern.



IV. RELATED WORK

Prior work on data collection in wireless sensor networks
has proposed schemes that trade the quality of the data col-
lected for energy efficiency. This work includes schemes based
on models at the data collector that capture the correlation of
data to reduce the number of data queries to sensors [4], [5],
[6]. Some proposals combine pull-based (located at the data
collector) and push-based (located at the sensors) mechanisms
for reducing the number of messages [7], [8], [6] or consider
purely push-based update strategies [9]. The data collection
strategies investigated in this paper differ from the above in
that they do not rely on models, as in [5], [4], [6], but rather
adapt the period between consecutive measurements based on
whether the measurements lie inside a target data accuracy
interval. Moreover, the proposed data collection procedures
are implemented solely at the data collector side (pull-based),
hence do not require mechanisms at the sensor side, which
is not possible when the sensor testbeds are not directly
accessible or are under different administrative control, as
is the case of the testbeds federated under the FIESTA-IoT
platform.

In addition to the temporal correlation of data measure-
ments, the spatial correlation of measurements from sensors
located in the same area can be exploited, as in [10], [11], [12],
which investigate in-network mechanisms for quality-driven
sensor cluster construction and estimation of probabilistic
models for capturing the temporal and spatial correlation. As
noted above, our approach differs in that we consider pure
pull-based procedures. The work in [13] proposes a utility-
based model for optimally assigning data queries to sensors
in a participatory sensing system, while [14] investigates a
quality-driven function to select a fixed number of sensors for
accomplishing a sensing task.

The trade-off between privacy and accuracy is a well studied
problem which still attracts researchers’ attention; see for
example [15], [16], [17]. These works try to add as much
noise as possible to the individual sensor measurements, while
influencing as little as possible the aggregate statistics. The
contribution of this paper is to evaluate the efficiency of these
techniques using real IoT measurements.

V. CONCLUSIONS AND FUTURE WORK

The proposed accuracy-driven data collection procedure
employs an additive increase / multiplicative decrease (AIMD)
adaptation of the time period between consecutive measure-
ments. Experiments have shown that such an AIMD pro-
cedure is highly robust for measurements of different data
types (phenomena), namely temperature and humidity, and
for measurements from two different testbeds. The AIMD
adaptation procedure is able to track the trends of the values
measured in the presence of periodicity and non-stationarity.
Moreover, unlike other proposed data collection schemes, it
has no tuning parameters. The experiments for the privacy-
driven strategy have shown that, despite the small number
of sensors, the addition of noise to the sensor measurements

using differential privacy has a negligible effect on the ag-
gregate statistics. Ongoing work is investigating the tradeoff
between data accuracy and power consumption. Additionally,
we are combining the adaptation of the measurement period
(temporal adaptation) with the dynamic selection of the subset
of sensors to request measurements from (spatial adaptation);
such an approach can yield higher energy efficiency, without
sacrificing data accuracy.
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