

SelectShare - Selective IoT

data sharing

SelectShare Architecture
Authors George C. Polyzos (polyzos@aueb.gr),

George Xylomenos (xgeorge@aueb.gr),
Iordanis Koutsopoulos (jordan@aueb.gr),
Vasilios A. Siris (vsiris@aueb.gr), Nikos
Fotiou (fotiou@aueb.gr), Anna Kefala
(a.kefala@aueb.gr), Evgenia Faltaka
(eugeniafaltaka@gmail.com), Iakovos
Pittaras (pittaras@aueb.gr), Athina Katsari
(ak@pleg.ma), Nikos Ipiotis (ni@pleg.ma),
Spiros Chadoulos (sc@pleg.ma), Stratos
Keranidis (stratos@mydomx.eu),
Polychronis Symeonidis (pol@mydomx.eu)

Version 1.0
Project website https://mm.aueb.gr/projects/selectshare

1 INTRODUCTION
Although the IoT is expected to generate vast amount of data, the potentials of these data are
limited by security and privacy concerns, as well as by the lack of interoperability. A striking
example is the case of smart buildings. Smart buildings employ a variety of IoT devices that
generate data which support various applications, such as energy management, automations
that improve comfort, surveillance for security and safety, etc. These applications are in most
cases siloed and the generated data is only used for the specific purposes of each application.
Nevertheless, these data can be valuable for other stakeholders that can collect and analyse
them to provide “over the top” services such as smart energy profiling and optimizations,
consumption forecasting based on machine learning, recommendation services, visualization
services, and many others.

In all these cases, end-users would be interested in securely making a subset of the data
generated by their IoT devices available to these 3rd parties, in a stratified manner, to benefit
from the added value of the provided services. Nevertheless, several challenges have to be
overcome: a) a uniform and standardized way for advertising/discovering, requesting, and
transmitting data should be in place, b) sensitive information should be stripped from the
shared data without violating data integrity and provenance, c) an efficient, usable
mechanism for expressing and enforcing fine grained access control policies should be
available, d) data access rights should be expressed in a rich and verifiable manner. In addition
to overcoming these challenges, proposed solutions should encourage interoperability and
prevent vendor “lock-in”.

SelectShare aims to deliver a platform for controlled sharing of IoT data. The SelectShare
architecture enables collection of data from IoT systems located in buildings, and facilitates
fine-grained, privacy-preserving data access to controlled subsets of these data, while at the
same time ensuring data integrity, provenance verification, authenticity, and interoperability
with different types of systems. This is achieved by integrating three components. First, an IoT
gateway that collects data from IoT devices and makes them available by following W3C’s
Web of Things specifications facilitating data discovery and data interoperability. Second, an
OAuth 2.0-based Verifiable Credential (VC) issuing mechanism for generating self-contained,
fine-grained access tokens, as well as a corresponding HTTP-proxy that acts as a Policy
Enforcement Point (PEP), for controlling access to the IoT gateway. Third, a data transcoder
that transforms IoT data using a common JSON schema, supporting digital signatures based
on Zero-Knowledge Proofs (ZKPs). These signatures are used to prove the integrity,
authenticity, and provenance of the desired subsets of the original IoT data, while keeping
sensitive data attributes private. Hence, the system provides to data consumers guarantees
about data provenance and integrity while also preserving anonymity and revealing no
sensitive information.

2 PROVIDED FUNCTIONALITY
The SelectShare architecture is an access control solution that relies on widely used standards.
It provides Security and Privacy by implementing VC-based fine-grained access control and
ZKP-based selective data disclosure, and IoT Data Interoperability and Compatibility, by
supporting the WoT TD specifications. In the rest of this section, we detail the technology that
enables these functionalities.

2.1 VC-based Access Control
SelectShare implements fine-grained access control, as well as the principle of least privilege
by leveraging Verifiable Credentials (VCs).

A VC [1] allows an issuer to assert some attributes of a subject. A VC includes information
about the issuer, the subject, the asserted attributes, as well as possible constrains (e.g.,
expiration date). Then, holders of a VC (which in most cases are the same entity as the VC
subject) can prove to a verifier that they possess a VC with certain characteristics. To facilitate
interoperability, the VC data model allows different VC types that define the attributes a VC
should include.

SelectShare uses a VC type named CapabilitiesCredential defined by MMlab/AUEB. A VC of
this type includes a property named capabilities that expresses the resources that a VC subject
can access. This property includes pairs of resource names and allowed operations. This
credential type is defined in the context https://mm.aueb.gr/contexts/capabilities/v1.

VCs in SelectShare are encoded as JSON Web Tokens (JWT) which include the following claims

• iss: The URL of the issuer.
• cnf: The public key the VC subject encoded as a JSON Web Key (JWK)
• aud: The URL of the target IoT gateway
• nbf: A timestamp before which the VC is not valid.
• exp: A timestamp indicating VC's expiration time.
• vc: A composite claim that describes the actual capabilities granted, which includes

the following properties:
o type: The type of the credential (i.e., CapabilitiesCredential).
o capabilities: The capabilities property.

Finally, each VC is embedded in a JSON Web Signature (JWS) that can be verified using the
public key of the issuer.

2.2 Data Interoperability
The SelectShare architecture provides IoT data interoperability by implementing an IoT
gateway that abides by Web of Things (WoT) Things Description (TD) [2] specifications.

The WoT architecture attempts to structure well-known Web protocols and tools for
connecting IoT devices to the Web. In the WoT architecture communication model, IoT
devices are made available through REST-based APIs, which can be used to access the device's
properties, to trigger device actions, as well as to receive device-generated events.

To improve the interoperability and usability of IoT platforms, the WoT model uses a common
format for describing IoT devices referred to as the Thing Description (TD). TD is a JSON-LD
encoded file that includes metadata information about the IoT device (such as its id, a title,
security definitions, etc), and defines API endpoints that can be used for accessing/invoking a
device's properties, actions, and events. All these “interaction affordances”' (a term coined by
the WoT Architecture specification) are stored in tuples that map an affordance identifier to
the corresponding access information.

2.3 Zero-Knowledge Proofs
Zero-knowledge proofs (ZKPs) are a fundamental notion in cryptography, in which an entity
(the prover) proves knowledge of a piece of information that satisfies a certain relationship
(for example, knowledge of a discrete logarithm), to another entity (the verifier), without
revealing any information about the piece of information itself. This functionality, combined
with the inherent composability of ZKPs has led to the creation and implementation of many
cryptographic protocols using ZKPs.

One of those protocols is BBS+. BBS+ is a multi-message digital signature protocol, that also
encapsulates ZKPs for a critical part of its functionality. It was first envisioned in [3] (from
where it takes its name), touched again in [4], re-visited in [5] and is currently under
standardization [6] . BBS+ can be thought as a composition of two (interdependent)
components; the digital signature and the ZKP protocol. As a digital signature, BBS+ provides
the ability to sign an array of individual messages (each message consisting of a string of
octets), with only a single constant size signature. The signature can be validated given the
signer's Public Key and the entire array of signed messages; this is equivalent to validating a
``traditional'' digital signature if we consider the array of messages as a single compound
message.

As a ZKP protocol, BBS+ enables any entity that knows the signature and the original signed
array of messages, to create a proof of knowledge of the signature while selectively disclosing
only a sub-array of the signed messages. The proof size will be linear to the number of un-
disclosed messages. The proof can be validated with only the signer's PK and the array of
revealed messages. The whole protocol is zero-knowledge in the sense that, from this
interaction, no information can be derived about the signature or the un-disclosed messages.

3 SPECIFICATIONS
In this section we detail the SelectSchare architecture (also illustrated in Figure 1) based on
the provided functionalities.

Figure 1 Overview of the SelectShare architecture

3.1 VC-based Access Control
SelectShare’s VC-based access control functionality is implemented by the following modules:

• VC issuer
• VC verifier

The VC issuer is an OAuth 2.0 authorization server extended with VC issuing capabilities.
Issued VCs are encoded as JWTs and signed using JWS, improving compatibility and
integration with existing tools. SelectShare considers VCs that describe the capabilities of a
client over a protected resource. Additionally, the SelectShare VC issuer maintains a VC
revocation list.

The VC verifier is an HTTPS proxy that intercepts the communication between a client and an
HTTP(S)-based protected resource. The VC verifier is able to verify the validity, the status, and
the ownership of a VC. Additionally, the VC verifier acts as a policy enforcement point by
validating whether or not a VC can be used for executing a particular request over a protected
resource.

Figure 2 Modules implementing VC-based access control

A typical flow in SelectShare includes the following steps:

3.1.1 VC Issuer configuration
This is a step usually executed during a set up phase. With this step an issuer is configured
with policies that specify the capabilities that correspond to a client. Clients are identified
using a username and a password. Hence, the VC issuer maintains a data structure that maps
usernames to lists of capabilities.

3.1.2 VC request and issuance
With this step, a client application requests from the issuer a VC. A VC request is in essence
an OAuth 2.0 access token request using the client credentials grant. Additionally, the client
generates a public-private key pair and instructs the issuer to include the generated public key
in the issued VC. This is achieved using OAuth 2.0 Rich Authorization Requests. The client
proves possession of the corresponding public key using OAuth 2.0 Demonstrating Proof-of-
Possession at the Application Layer (DPoP).

The following request in example of a VC issuance request:

POST /issue HTTP/1.1
Host: <Issuer URL>
Content-Type: application/x-www-form-urlencoded
DPoP: <DPoP>
grant_type=client_credentials

A response to a successful request has the following form:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

Cache-Control: no-store
Pragma: no-cache

{
 "access_token":"<VC>",
 "token_type":"VC+JWT",
 "expires_in":<Seconds>,
}

A VC is the base64url encoding of a JWT singed by the Issuer, as specified by the VC data
model. The generated JWT includes a cnf field, as specified by RFC 7800 that contains the
public key of the client.

Τηε VCs used in SelectShare are of type "CapabilitiesCredential" defined in the context
https://mm.aueb.gr/contexts/capabilities/v1. This type includes an array, called
"capabilities", and each element of this array is a map that maps a "Resource" to a list of
"capabilities". An example of a VC before encoding follows (the signature part is omitted).

{
 "typ": "jwt",
 "alg": "EdDSA"
}.
{
 "jti": "https://zero.corp/credentials/1",
 "iss": "https://zero.corp",
 "iat": 1617559370,
 "exp": 1618423370,
 "cnf": {
 "jwk": <client jwk>
 },
 "vc": {
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://mm.aueb.gr/contexts/capabilities/v1",
],
 "type": ["VerifiableCredential"],
 "credentialSubject": {
 "type": ["CapabilitiesCredential"],
 "capabilities": {
 "Device1": [
 "Read_Temperature",
 "Read_Humidity"
]
 }
 }
 }
}

3.1.3 Resource request
A client application requests an HTTP resource by including in its request the received JWT-
encoded VC and a proof-of-possession of the public key included in the VC; the latter proof is
generated using OAuth 2.0 Demonstrating Proof-of-Possession at the Application Layer
(DPoP). The request is received by the verifier that acts as an HTTP proxy. An HTTP request
must include the Authorization header set to DPoP followed by the base64url encoded VC,
and the DPoP header.

GET /<resource> HTTP/1.1
Host: <resource URL>
Authorization: DPoP <VC>
DPoP: <DPoP proof>

A DPoP proof used for requesting a resource in SelectShare includes the following fields (the
signature is omitted):

{
 "typ": "dpop+jwt",
 "alg": "EdDSA",
 "jwk": {
 "kty": "OKP",
 "crv": "Ed25519",
 "x": "<Ed25519 public key>"
 }
}.
{
 "jti": <96bits pseudorandom>,
 "htm": "<HTTP method>"
 "htu": "<Issuer URL>",
 "iat": <Creation time>,
 "ath":"<base64url encoded SHA-256 hash of the VC>"
}

The verifier initially validates the included VC and DPoP proof. Then it examines the status of
the VC by communicating with the VC issuer, using Revocation List 2020 [7]. In particular, the
issuer maintains a revocation list that concerns all VCs it has issued. This list is a simple
bitstring and each credential is associated with a position in the list. Revoking a VC means
setting the bit corresponding to the VC to 1. Furthermore, each generated VC includes a field
named "revocationListIndex" that specifies the position of the credential in the revocation list.
The revocation list can be downloaded by performing an HTTP GET to this interface.

GET /status HTTP/1.1
Host: <Issuer URL>

The revocation list is also a JWT-encoded credential. E.g.,

{
 "typ": "jwt",

 "alg": "EdDSA"
}.
{
 "iss": "https://mm.aueb.gr/as",
 "iat": 1617559370,
 "exp": 1618423370,
 "vc": {
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://w3id.org/vc-revocation-list-2020/v1"
],
 "type": ["VerifiableCredential",
"RevocationList2020Credential"],
 "credentialSubject": {
 "type": "RevocationList2020",
 "encodedList": "H4sIAAAAAAAAA-3BMQEAAADCo…wM92tQwAAA"
 }
 }
}

Finally, the verifier, verifies the included VC based on a set of verification rules defined by the
resource owner during the set-up phase. If all checks succeed, the verifier forwards the
request to the protected resource. In particular, the VC verifier examines if the user is
authorized to access the “field” of the “deviceID” includes in the request URL: this is simply
implemented by examining if these two parameters are included in the provided VC. In order
to achieve this functionality, the corresponding filtering rule of the VC Verifier configuration
file looks like this:

"filters" :[
 ["$.vc.credentialSubject.capabilities.#deviceID[*]", "#field"]
]

3.2 Data Interoperability

Figure 3 Modules implementing Data Interoperability

SelectShare provides a universal interface for accessing IoT resources that may use their own
data model. This is achieved by using data Transcoders and a WoT Gateway (Figure 3). The
role of a transcoder is to transform data received from an IoT device into JSON objects that
follow a schema defined by the SelectShare architecture. The following listing includes the
used schema:

{
 "$id": "https://mm.aueb.gr/contexts/capabilities/v1/schema.json",
 "$schema": "https://mm.aueb.gr/contexts/capabilities/v1",
 "type": "object",
 "properties": {
 "deviceID": {
 "type": "string"
 },
 "measurements": {
 "type": "array",
 "items": {"$ref": "#/$defs/measurement"}
 }
 },
 "$defs": {
 "measurement": {
 "type": "object",
 "properties": {
 "field": {
 "type": "string"
 },
 "values": {
 "type": "array",
 "items": {"$ref": "#/$defs/value"}

 }
 }
 },
 "value":{
 "type": "object",
 "properties": {
 "time": {
 "type": "string"
 },
 "value": {
 "type": "string"
 }
 }
 }
 }
}

SelectShare’s WoT gateway provides a universal API for accessing IoT data measurements.
This API is specified using WoT TD specifications. The current TD of the SelectShare WoT is
included in the following listing:

{
 "@context": "https://www.w3.org/2022/wot/td/v1.1",
 "@type": "Thing",
 "security": [
 "nosec_sc"
],
 "properties": {
 "device": {
 "type": "object",
 "readOnly": true,
 "uriVariables": {
 "deviceID": {
 "type": "integer"
 },
 "field": {
 "type": "string"
 },
 "startTime": {
 "type": "string"
 },
 "endTime": {
 "type": "string"
 }
 },
 "forms": [
 {
 "href":
"http://:8080/building01/properties/device{?deviceID,field,,startT
ime,endTime}",
 "contentType": "application/json",

 "op": [
 "readproperty"
],
 "htv:methodName": "GET"
 }
],
 "writeOnly": false,
 "observable": false
 }
 },
 "title": "Building01",
 "description": "SelectShare sample WoT",
 "id": "urn:uuid:727dddd4-a207-401d-9e3e-93e60d0a6bd3",
 "forms": [
 {
 "href": "http://10.0.2.15:8080/building01/properties",
 "contentType": "application/json",
 "op": [
 "readallproperties",
 "readmultipleproperties"
]
 }
],
 "securityDefinitions": {
 "nosec_sc": {
 "scheme": "nosec"
 }
 }
}

3.3 Selective Disclosure using ZKPs
SelectShare uses BBS+ signatures to enable selective disclosure of IoT data. Recall that the IoT
Data have been encoded as a JSON object and signed by transcoders. Selective disclosure
involves three algorithms: data framing, canonicalization, and ZKP generation.

3.3.1 Data Framing
Framing refers to the derivation of a “sub-item” from an item, that contains only part of the
original one. Data framing is used to enable selective disclosure of the data item's information.
More specifically, the framing algorithm accepts the original item and a frame as input and
returns a new item that only contains the key-value pairs specified by the frame. The frame
itself is a JSON structure that specifies the parts of the original item that should appear in the
resulting one (and be disclosed in the end). For this purpose, the frame contains the keys (not
the values) that lead to the values that the prover will want to reveal. For example, using as
input the following JSON item:

{
 "measurements": {
 "temperature":"30oC",
 "humidity":"60%"

 }
}

And the following frame:

{
 "measurements": {
 "temperature":"",
 }
}

The framing algorithm will output the following sub-item

{
 "measurements": {
 "temperature":"30oC",
 }
}

The framing algorithm used in SelectShare is inspired by the framing technique introduced
and used for JSON Linked Data (JSON-LD), but simplified and adapted to work on JSON-
encoded items.

3.3.2 Canonicalization
As discussed previously, BBS+ signatures act on arrays of messages and not on structured data
formats like JSON. In order for an owner to be able to sign a data item, as well as in order for
a storage node to be able to derive ZKPs, data items must be canonicalized. Various
canonicalization algorithms have been proposed by related efforts. A canonicalization
algorithm serializes a JSON-encoded item into an array of messages, which can then be signed
by a multi-message digital signature system like BBS+.

There are various security requirements that those algorithms must be conformant with, in
order to not compromise the security of the system. In this work, we are using the JCan
algorithm [8] which is a lightweight, provably secure, JSON canonicalization proposal,
designed to work with any data model.

3.3.3 Proof generation
Any entity can generate a sub-item of a content item based on a frame and provide a ZKP that
proves its correctness as follows. Initially, that entity applies the framing algorithm to derive
the sub-item. After framing, the same entity canonicalizes the resulting sub-item, gets the
array of messages that correspond to the revealed information (from the security properties
of the canonicalization algorithm, this array is guaranteed to be a subset of the signed array
that resulted from the canonicalization of the original item) and uses that array to derive a
ZKP using BBS+.

3.4 Selective disclosure in SelectShare
The function of selective disclosure is implemented in a distributed manner by the transcoder
and the proxy module (see also Figure 4). In particular, transcoders are responsible for signing
the generated JSON objects using BBS+ signatures. The signed object is forwarded through
the WoT gateway to the proxy. Then the HTTP proxy is responsible for framing the signed
object and for generating the corresponding ZKP. The framing operation is implemented by
taking into consideration the “field” option included in the request URL. It should be
highlighted that the proxy assumes that the user is authorized to access this field: this is true
since if the user was not authorized, the incoming request would have been blocked by the
VC verifier.

Figure 4 Modules implementing selective disclosure using ZKPs

4 REFERENCES
[1] Verifiable Credentials Data model v1.1, available at https://www.w3.org/TR/vc-data-

model/
[2] Web of Things (WoT) Thing Description, available at https://www.w3.org/TR/wot-

thing-description/
[3] Dan Boneh, Xavier Boyen, and Hovav Shacham. 2004. Short Group Signatures. In

Annual International Cryptology Conference. Springer, Heidelberg, DE, 41–55
[4] Man Ho Au, Willy Susilo, and Yi Mu. 2006. Constant-Size Dynamic k-TAA. In

International Conference on Security and Cryptography for Networks. Springer,
Heidelberg, DE, 111–125.

[5] Jan Camenisch, Manu Drijvers, and Anja Lehmann. 2016. Anonymous Attestation
Using the Strong Diffie Hellman Assumption Revisited. In International Conference
on Trust and Trustworthy Computing. Springer, Heidelberg, DE, 1–20

[6] Andrew Whitehead, Mike Lodder, Tobias Looker, and Vasilis Kalos. 2022. The BBS
Signature Scheme. https://identity.foundation/bbssignature/draft-bbs-
signatures.html

[7] WCC Group. (2020) Revocation list 2020. [Online]. Available: https://w3c-
ccg.github.io/vc-status-rl-2020/

[8] V. Kalos, G.C. Polyzos, "Requirements and Secure Serialization for Selective
Disclosure Verifiable Credentials", in IFIP Sec 2022

