
REDEMON: Resilient Decentralized Monitoring
System for Edge Infrastructures

Roger Pueyo Centelles∗, Mennan Selimi∗†, Felix Freitag∗, Leandro Navarro∗
∗ Universitat Politècnica de Catalunya, BarcelonaTech, Barcelona, Spain

† Max van der Stoel Institute, South East European University, North Macedonia

Abstract—The Guifi.net community network has evolved dur-
ing the past 15 years into a telecommunications infrastructure
that offers Internet access to more than 80.000 people. The
monitoring system currently in place for this network is lagging
behind the growth of the infrastructure, requiring manual inter-
vention and counting several single points of failure. In this paper
we present REDEMON, a resilient decentralized monitoring
system, hosted on distributed and interconnected edge devices,
for a reliable, eventually-consistent monitoring of the Guifi.net
network, leveraging CRDT-based data structures implemented
on AntidoteDB. We developed the REDEMON system as a
prototype featuring resilience, decentralization and automation,
in order to replace the legacy monitoring system. To assess the
system, this prototype was deployed on resource-constraint edge
nodes in the Guifi.net production network and evaluated under
realistic conditions. The decentralized assignment mechanism
successfully achieves setting the minimum number of monitoring
servers per network device that satisfies the established system
requirements. Besides, by concentrating the workload on the
minimum required number of servers running at their maximum
capacity, the remaining devices can idle away, reducing the
consumption footprint of the system. With regard to computing
resources, we measure a moderate CPU and RAM usage by the
monitoring system on low-capacity devices, while we observe that
a considerable network traffic is required for achieving a resilient
and consistent data storage layer. This resilient and decentralized
architecture could lay the basis for other edge applications in the
cloud computing domain that need to coordinate over distributed
and consistent shared data.

Index Terms—distributed monitoring; edge clouds; CRDT;

I . I N T R O D U C T I O N

The computing capacity at the network edge is growing
and cloud computing, traditionally enabled by infrastructure
service provision in large data centers, is moving to the network
edge. The increasing availability of edge infrastructures is also
pulling applications, which typically run in remote data centers,
to operate on distributed edge devices.

This paper discusses a practical cloud computing use case
consisting of a distributed network monitoring system that
was implemented, deployed and evaluated on distributed edge
devices. This real use case exists in the Guifi.net community
network 1, where thousands of wireless routers as well as
fiber optic equipment are interconnected forming an IP-based
communication infrastructure. Figure 1 shows the network
map of Guifi.net in Barcelona.

The legacy monitoring system for the Guifi.net infrastructure
is built around a centralized database that contains a list with
all the network devices, all the monitoring servers, and the

1 What is Guifi.net? - https://guifi.net/en/what_is_guifinet

Figure 1. Network map of Guifi.net in Barcelona, where the REDEMON
system is operated.

assignments between them (i.e., which monitor is in charge of
monitoring which devices). This system, while in general terms
works and accomplishes its duties, has important limitations
regarding robustness and resilience to cope with varying
conditions of the network and its infrastructure [1] [2]. Because
it lacks such features, it significantly hinders Guifi.net from
keeping its sustained growth and improving its operation.

In this paper we present the design, implementation and
experimental evaluation of REDEMON, a new resilient moni-
toring system for Guifi.net that leverages an edge-based even-
tually consistent database to support distributed and concur-
rent read and writes from monitoring servers. REDEMON
integrates AntidoteDB [3], which implements CRDT-based
(Conflict-free Replicated Data Type) distributed data struc-
tures [4]. The design of REDEMON supports the decentralized
coordination of monitoring servers in the assignment of net-
work devices across them. Furthermore, using AntidoteDB’s
CRDT implementations allows to automate the replication
and distribution of information across different servers, while
keeping data persistent, consistent and reliably stored. The
main contributions of this paper are the following:

• Architecture and implementation of the REDEMON moni-
toring system, discussed in Section III.

• Experimental evaluation of REDEMON in the production
network of Guifi.net, discussed in Section IV.

• Discussion of the results and achieved features, discussed
in Section VI.

Besides them, in Section II we describe the details of the
monitoring use case and we analyze the limitations of the
legacy system. We review the related work in Section V. In
Section VI we discuss our results before the conclusion.



I I . M O N I T O R I N G I N G U I F I . N E T

A. Use case context
Guifi.net is a bottom-up, citizenship-driven technological,

social and economic project with the objective of creating a
free, open and neutral telecommunications network based on a
commons model [5]. The whole network infrastructure can be
seen as a crowdsourced, multi-tenant collection of heteroge-
neous wired and wireless network devices (more than 35.700
nodes) with a routable IP address, interconnected between them
and forming a partially-meshed network. For the heterogeneous
network infrastructure Guifi.net has become, monitoring is a
key network service necessary for the vital operation of the
network. It is a specific challenge for the development of this
use case that the new monitoring system must operate using
the existing distributed edge devices in Guifi.net [1]. Therefore,
usage of remote cloud data centers for storing data and carrying
out a centralized control, which a traditional implementation
of a monitoring system might suggest, is not an approach that
fully matches the characteristics of this network.

B. Legacy monitoring system
The legacy monitoring system currently in production in

Guifi.net is built around a central MySQL database, coupled
with the Guifi.net website, which lists all the nodes in the
network (i.e., devices such as routers, switches, etc.) and
assigns them to the different monitoring servers spread all over
the network. The current system has three main limitations
that make it fragile:
• Each router is monitored by only one server.
• When a monitoring server goes down, this is not automati-

cally reported to the Guifi.net website or the central DB, so
network nodes are left unmonitored.

• Data collected about one node are only locally stored in a
single monitoring server.

C. New monitoring system requirements
Based on the shortcomings of the legacy monitoring system,

we identify the following five main requirements for the new
REDEMON monitoring system:
• Redundancy: every network device shall be monitored by

an arbitrary minimum number of servers, greater than one.
This means that monitoring servers should check which
network devices have which monitors assigned and, if below
the minimum number, autonomously decide to become a
monitor for any of these devices.

• Automated assignment: the system shall make the assign-
ment between network devices and monitoring servers
automatically. On a permanent operation basis, the service
should run autonomously without manual intervention.

• Automated reconfiguration: the system as a whole shall
be able to automatically detect faulty monitors (e.g., due
to network or hardware failures) and reassign the affected
network devices to functional monitoring servers. This
process should be carried out without manual intervention.

• Data replication: the collected data shall be replicated and
distributed to different parts of the system. In the event of
network partition or churn of some of the storage nodes,

the data should still be available for being retrieved by the
monitoring service from other parts of the network.

• Load balancing: the monitoring workload should be bal-
anced over the network and the active monitors rather than
concentrated on a few devices.

I I I . R E D E M O N M O N I T O R I N G S Y S T E M

A. System model
A decentralized infrastructure such as Guifi.net relies on

distributed network resources to reach its full potential. This
includes the monitoring system, which plays a critical role in
the network operation. In order to ensure the previously stated
requirements for the monitoring system (Sec. II-C), our goal
is to solve the problem of mapping the available monitoring
servers to cover all network devices.

Guifi.net can be modeled as an incomplete directed graph
G = (N,E), where N is the set of nodes that compose the
network and E is the set of links (wireless or fiber optic)
connecting pairs of nodes. Nodes in N without links to other
nodes (i.e., isolated nodes) are discarded. The two types of
nodes that we consider are: monitoring servers M (M ∈ N)
and network devices to be monitored D (D ∈ N). The links
are characterized by a given bandwidth Bij, ∀(i, j) ∈ E, and
latency Lij, ∀(i, j) ∈ E, while each node has a particular QoSi,
∀i ∈N, derived from the real measurements in Guifi.net. For a
monitoring system deployment, at most Mmax replicas of the
monitoring server can be placed. A monitoring server can be
deployed in a node only if this node has a QoSi greater than
a minimum threshold (QoSmin). A link of a node will be used
if its bandwidth is higher or equal to a given threshold (Be).
All the notation required is gathered in Table I.

The monitoring servers ⇔ network devices mapping prob-
lem must consider the following constraints:

1) Each network device must be monitored by more than one
monitoring server

∀d ∈ D|d_is_monitored_by_mi|
Mmax

∑
i=1

mi ≥ 2 (1)

2) Admission control: At most, k replicas of monitoring servers
can be placed in the network:

|M|= k (2)

B. Design principles
The main design principles of the REDEMON monitoring

system are distribution and decentralization to improve re-
silience and reliability. To do this, REDEMON leverages

Sets Description
G Graph
N Set of nodes
E Set of links

Parameters Description
Mmax Maximum number of monitor-server replicas
Bi j Bandwidth requirement associated with link (i, j)
Li j Latency associated with link (i, j)

QoSi Quality of node i
QoSmin Minimum quality

Table I
N O TAT I O N O F I N P U T VA R I A B L E S



Decentralized coordination

of monitoring servers

D
is

tr
ib

ut
ed

 d
at

ab
as

e

D2

D7

D8

D12 D10

D9

D6

D4

D3

D5

M1

M2 M3 M4 M5

M6

D1
D11

Device Monitoring Server

D1 M1, M2

D2 M2, M3

D3 M1, M2

D7 M3, M6

… …

Figure 2. Conceptual depiction of REDEMON. Each network device in the center is monitored by two or more of the monitoring servers that coordinate
among each other so that no device remains unmonitored. Solid and dashed links between nodes represent fiber and wireless connections, respectively.

distributed data structures to support the decentralized coordi-
nation of monitoring servers. For this purpose, the servers
keep a distributed monitoring servers ⇔ network devices
mapping, which they use to dynamically assign (and unassign)
devices for themselves to monitor. This dynamic mapping
is concurrently modified by any of the participating servers,
incurring in operations that can lead to inconsistent data or
that break the condition in Equation 1. To overcome this, we
use the CRDT technology in the application and delegate data
synchronization and consistency to the underlying data storage
level, which ensures certain properties (e.g., strong eventual
consistency in data replication) to the upper ones.

C. Architecture overview
The new monitoring system aims at solving the limitations

of the legacy monitoring system and at providing compre-
hensive and reliable monitoring data for all network devices
despite network partitions and server failures.

A conceptual depiction of the system is shown in Figure 2.
There, the group of routers in the center represent the ac-
tual Guifi.net network devices, interconnected and creating
a meshed network. Around them, several monitoring servers
are shown, with dotted arrows between them indicating that
they exchange information and coordinate between them.
According to the requirements stated in section II-C, each
of the network devices (i.e., the routers) is assigned to more
than one monitoring server, indicated by the colored lines
linking them. Since each server may have different capacity or
available resources, some of them are in charge of monitoring
more network devices than others. An important element,
shown on the left side of Figure 2, is the proposed monitoring
servers ⇔ network devices mapping, designed as a shared
distributed data object, which is not managed centrally, but
dynamically updated in a decentralized and autonomous way
by the monitoring servers themselves.

The main functions of the monitoring system are conceived
as fetch, assign, ping and snmp, explained below.

1) Fetch component: The purpose of the fetch component
is to fetch the latest network description and feed it to the
distributed database. The monitor-fetch application implement-
ing it needs to be executed during the bootstrapping of the
monitoring system. Its function is to write the required network
infrastructure data to the distributed database. Afterwards, it
can be run periodically (e.g., hourly) or on-demand, when the
network infrastructure accounts for changes (new devices are
added, hardware is decommissioned, etc.). The algorithm of
the fetch component is described in Algorithm 1. As shown
there, the monitor-fetch application parses a specified CNML
(Community Network Markup Language) file and pushes its
contents to the AntidoteDB database.
Algorithm 1 Monitor-fetch application
Require:

CNML . URL of the CNML file containing the network description
dbHost . Hostname/IP address of an AntidoteDB entry point
dbPort . TCP port of an AntidoteDB entry point

Phase 1 – Fetch CNML file

1: procedure F E T C H(CNML)
2: fullCNML← f etch(CNML)
3: devices[]← process(fullCNML)
4: dumpDevicesToDB(devices[])
5: end procedure

2) Assign component: The purpose of the assign component
is to [self-]assign the network devices to be watched by
the monitoring server. The monitor-assign application that
implements it runs on each monitoring server, and takes care
of keeping the global monitoring servers ⇔ network devices
mapping up to date as it is locally updated. For instance, when
a network device is not being monitored by the required mini-
mum number of servers, one or more of them eventually start
watching it, until the requirement is met. This new assignment
is immediately updated to the shared distributed data object
and spread all over the network, eventually reaching the rest
of monitoring servers. The assignment between monitoring



Algorithm 2 Monitor-assign application
Require:

dbhost . AntidoteDB hostname/IP address
dbPort . AntidoteDB TCP port
id . Unique ID of the monitor in the network
minMonitors . Min # of monitors a device needs
maxDevices . Max # of devices the monitor can watch

Phase 1 – Monitor self-registration

1: procedure R E G I S T R AT I O N
2: monitorsList[]← GetGlobalMonitorsList
3: AddMonitorToList(id,monitorsList[])
4: UpdateGlobalMonitorList(monitorsList[])
5: end procedure

Phase 2 – Monitor Self-assignment

6: procedure A S S I G N(id)
7: numDevices← 0
8: devicesInAntidote[]← getDevicesInAntidote()
9: for each deviceInAntidote in devicesInAntidote[] do

10: if (id is in deviceInAntidote.monitors[]) then
11: numDevices++
12: end if
13: end for
14: for each deviceInAntidote in devicesInAntidote[] do
15: if (sizeOf(deviceInAntidote.monitors[]) <

numDevices) && (numDevices < maxDevices) then
16: assignMonitorToDevice(id,deviceInAntidote)
17: end if
18: end for
19: end procedure

Phase 3 – Monitor Self-unassignment

20: procedure U N A S S I G N(id)
21: devicesInAntidote[]← getDevicesInAntidote()
22: for each deviceInAntidote in devicesInAntidote[] do
23: if deviceInAntidote.monitors[] > minMonitors

then
24: unassignMonitorFromDevice(id,deviceInAntidote)
25: end if
26: end for
27: end procedure

Phase 4 – Global assignment sanitization

28: procedure S A N I T I Z E
29: monitorsList[]← GetGlobalMonitorsList
30: localList← GetGlobalMonitorList
31: for each deviceInAntidote in devicesInAntidote[] do
32: for each monitor in deviceInAntidote.monitors[]

do
33: if (monitor is not in monitorsList[]) then
34: unassignMonitorFromDevice(monitor,

deviceInAntidote)
35: end if
36: end for
37: end for
38: end procedure

Phase 5 – Monitor Self-deregistration

39: procedure D E R E G I S T R AT I O N
40: monitorsList[]← GetGlobalMonitorsList
41: RemoveMonitorFromList(id,monitorsList[])
42: UpdateGlobalMonitorList(monitorsList[])
43: end procedure

servers and network devices is dynamic and evolves over
time, as new network devices are added to the network or
removed from it, or as workload balancing at the monitoring
servers requires devices being reassigned from one server to
another. The concurrently operating assign components do not
directly communicate with each other; instead, they indirectly
coordinate by means of shared distributed data objects. Last,
but not least, the assign components can detect if a monitoring

server has failed, retiring it from the system and taking over
its monitoring duties.

The algorithm of the assign component is sketched in
Algorithm 2. As shown there, once the fetch operation is
finished (Section III-C1), servers know the list of nodes to
watch (Phase 1), and coordinate with each other indirectly
over the mutable data object given by the monitoring servers
⇔ network devices mapping in order to perform the actual
monitoring of all nodes. The objective is to assign every
single network device to –at least– the minimum number of
2 monitoring servers. This task can be performed in many
ways. For instance, each monitoring server could start picking,
at random, nodes not yet being watched and assign them to
itself.

3) Ping component: The purpose of the ping component
is to perform ping probes to the devices assigned to the
monitoring server and to write the measurements to the
database. The monitor-ping application implementing it is
found on every monitoring server and takes care of the
actual probing of network devices. The software periodically
pings the assigned list of network devices for assessing their
responsiveness, uptime and network distance (by means of ping
packets’ round-trip-time). All the collected data are stored to
one instance of the distributed database. Replication of the data
among all instances ensures that new data are automatically
replicated and distributed to all database instances, providing
storage redundancy. The algorithm of the ping component is
described in Algorithm 3.

Algorithm 3 Monitor-ping application
Require:

dbhost . AntidoteDB hostname/IP address
dbPort . AntidoteDB TCP port
id . Unique ID of the monitor in the network
localAssignCheckInt . Interval to check local assignment
pingCheckInterval . Interval to perform ping requests

Phase 1 – Continuous periodic update of the list of assigned devices

1: procedure L O C A L A S S I G N U P D AT E(id)
2: localAssignTicker← localAssignCheckInt()∗ time
3: while localAssignTicker do
4: localAssignList[]← RefreshAssignationList
5: end while
6: end procedure

Phase 2 – Continuous periodic ping requests to assigned devices

7: procedure P I N G R E Q U E S T(id)
8: localPingQueryTicker← pingCheckInterval()∗ time
9: while localPingQueryTicker do

10: for each deviceToMonitor in localAssignList[] do
11: for each IPv4 in deviceToMonitor.IPv4[] do
12: PingData← getPingData(IPv4)
13: if PingData.status ! = OFFLINE then
14: SavePingData[](deviceToMonitor,id,PingData[])
15: break
16: end if
17: end for
18: end for
19: end while
20: end procedure

4) Snmp component: The purpose of the snmp component
is to perform SNMP requests to the devices a monitoring
server is assigned to and write the gathered SNMP values
to the AntidoteDB database. The monitor-snmp application
implementing it runs on every monitoring server and takes



care of the actual SNMP requests to the network devices. All
the collected data are stored to an instance of the distributed
database. Again, replication of the data among all instances
ensures that the new data are automatically replicated and
distributed to all database instances. The algorithm of the snmp
component is depicted in Algorithm 4. It can be seen that
the monitor-snmp application periodically asks the different
devices for their SNMP information to get details about their
interfaces and the inbound/outbound traffic.
Algorithm 4 Monitor-snmp application
Require:

dbhost . AntidoteDB hostname/IP address
dbPort . AntidoteDB TCP port
id . Unique ID of the monitor in the network
localAssignCheckInt . Interval to check local assignment
snmpQueryInterval . Interval to perform SNMP queries

Phase 1 – Continuous periodic update of the list of assigned devices

1: procedure L O C A L A S S I G N U P D AT E(id)
2: localAssignTicker← localAssignCheckInt()∗ time
3: while localAssignTicker do
4: localAssignList[]← RefreshAssignationList
5: end while
6: end procedure

Phase 2 – Continuous periodic SNMP queries to assigned devices

7: procedure S N M P Q U E RY(id)
8: localSNMPQueryTicker← snmpQueryInterval()∗ time
9: while localSNMPQueryTicker do

10: for each deviceToMonitor in localAssignList[] do
11: if deviceToMonitor.SNMPInterfaces[] ==

EMPTY then
12: for each IPv4 in deviceToMonitor.IPv4[] do
13: SNMPInterfaces[] ←

querySNMPInterfaces(IPv4)
14: if SNMPInterfaces[] ! = EMPTY then
15:

deviceToMonitor.SNMPInterfaces[]← SNMPInterfaces[]
16: break
17: end if
18: end for
19: end if
20: for each SNMPInterface in

deviceToMonitor.SNMPInterfaces[] do
21: for each IPv4 in deviceToMonitor.IPv4[] do
22: SNMPInterface ←

querySNMPInterfaceData(SNMPInterface)
23: if SNMPInterface.data ! = EMPTY then
24: break
25: end if
26: end for
27: end for
28: SaveSNMPData()(deviceToMonitor,id,SNMPData[])
29: end for
30: end while
31: end procedure

D. Distributed data structures
The monitoring system manipulates the data drawn from

two sets of objects and creates a mapping between them. The
first set contains a list with all the devices in Guifi.net that have
to be monitored. All the Guifi.net devices are identified by a
unique numeric ID (e.g., 58266), which remains immutable
through all its lifespan. Additional information, such as the
associated IPv4 addresses (e.g., 10.1.33.35) may be attached
as a string-formatted JSON item. The nodes list of the whole
Guifi.net contains around 35,700 nodes, and grows at a rate
of 25 nodes per day. The data in this first set is only modified

by authoritative updates issued from the Guifi.net website; the
monitoring servers only read it but do not modify it.

The second set contains a list with all the active monitoring
servers. Servers are also identified by a unique numeric ID,
being the servers list a subset of the nodes list (a monitoring
server is indeed a device inside the network, with its own IP
address, etc. that must be monitored too).

The mapping between the nodes list and the servers list is
a collection of one-to-one relations between devices from the
two lists. Any monitoring server may modify the mapping
between nodes and servers (add, update or remove these
relations) at any time. According to different criteria –such as
current workload, network status and other– each monitoring
server will, for instance, assign itself a number of nodes and
will update the monitoring servers⇔ network devices mapping
accordingly. This assignment (Phase 2 of Algorithm 2) needs
to change over time, as new nodes are added to the list, the
network conditions change, workload is redistributed, moni-
toring servers join or exit the pool, etc. As a consequence, each
monitoring server continuously –and not in synchronization
with the other servers– reads and writes to the shared mapping
object.

Given the nature of the application, and in order to success-
fully deal with concurrent updates of the mapping, eventual
data consistency and integrity between the distributed database
instances are required. By leveraging these properties, it can be
ensured that all network nodes end up being properly assigned
to monitoring servers.

E. Implementation
The new monitoring system uses AntidoteDB to implement

a CRDT-based geo-replicated and distributed storage back-end.
By leveraging on AntidoteDB, the monitoring components
can use CRDT-based data structures for concurrent read
and write of the assignments between network devices and
monitoring servers. Furthermore, using AntidoteDB relieves
the development tasks from the complexity of implementing a
synchronization protocol for the monitoring servers to manage
data coherency through all the system regardless of eventual
failures or network partitions. Additionally, AntidoteDB pro-
vides an automatic mechanism to replicate and distribute the
monitoring data all over the network, avoiding the burden of
having to request monitoring data from different servers and
assembling them in order to obtain detailed information about
a specific device.

The monitoring servers host the designed components
(fetch, assign, ping, snmp), as depicted in Figure 3. A typical
monitoring server (i.e., a full-blown monitor) runs a local
AntidoteDB instance that connects with the other AntidoteDB
instances running in other places of Guifi.net, in order to
provide the underlying highly available, geo-replicated and
distributed storage for other monitoring server components to
interact with. Also in the same figure, to the right, lightweight
monitoring servers consist of the same components, but lack
a local AntidoteDB instance; instead, they rely on a remote
AntidoteDB instance running on another monitoring server to
assist in the coordination process and provide the required
storage.



Full-blown monitoring servers Lightweight monitoring server

fetch assign ping snmp fetch assign ping snmp fetch assign ping snmp

Figure 3. High level architecture of the monitoring servers. Full-blown servers run an instance of the geo-replicated AntidoteDB database and, on top, the four
components involved in the monitoring tasks. Lightweight servers do not run a local AntidoteDB instance but rely on remote ones running in other servers.

We developed the four monitoring components (fetch, assign,
ping and snmp) as a prototype implementation that uses the Go
language and interacts with AntidoteDB through its Go client 2.
The source code is available at our GitLab repository 3.

I V. E VA L U AT I O N

A. Objectives
We first study, in the assign operation, the decentralized

coordination among monitoring servers. Then we focus our
evaluation on the resource consumption of the monitoring
system (CPU, RAM memory and bandwidth). In the context
of our use case, these metrics are of high importance, since
in Guifi.net the devices hosting the monitoring system are not
dedicated. A moderate resource consumption of the monitoring
system is desirable since the available computing resources
on a device and in the network need to be shared with other
applications.

B. Testbed
In order to achieve the objective explained above , it is

needed to conduct the evaluation of the monitoring system
in a real deployment (i.e., production network). In the real
Guifi.net environment, monitoring servers consist of different
hardware, which can range from resource-constraint single-
board computers (SBCs) to desktop computers. In order to
represent this situation, we have installed several x86 mini-
PCs and Raspberry Pi boards in a wireless mesh network part
of Guifi.net (at users’ homes) to form a testbed in which these
devices operate as monitoring servers. 4

Figure 4 illustrates the deployed testbed and provides some
information about the network characteristics (IP, bandwidth
between nodes and RTT). The eight black nodes correspond
to Minix Neo Z83-4 devices (Intel Atom x5-Z8350 4-cores
CPU @ 1.44 GHz, 4 GB of DDR3L RAM and 32 GB
eMMC) running Debian Strech. Each Minix device hosts
an AntidoteDB instance. Most of the Minix devices are
geographically far from each other with a few hops of wireless
links between them. The ten red nodes correspond to Raspberry
Pi 3B+ devices.

For the storage of the monitoring system data we run one
AntidoteDB instance configured as data center (DC) inside
a Docker container per Minix device. Having eight Minix

2 https://github.com/AntidoteDB/antidote-go-client
3 https://lightkone.guifi.net/lightkone
4 The wireless mesh network is GuifiSants; nodes and network topology

can be found at http://dsg.ac.upc.edu/qmpsu/index.php

Minix device running AntidoteDB Remote RPi monitoring clients
10.1.24.41 4

10.228.201.91 1
Table II

M I N I X D E V I C E S W H E R E M E A S U R E M E N T S W E R E TA K E N .

devices, there are a total of eight DCs which are interconnected
with each other. The data of each DC are fully replicated on
the seven other ones.

For the experimentation the monitoring system clients are
located on 10 Raspberry Pi boards. On each Raspberry Pi
we have installed four monitoring system components (fetch,
assign, ping, snmp) to perform all the operations of the
monitoring system. We take measurements at two of eight
Minix devices, with a different number of connected Raspberry
Pi clients (Table II). All ten Raspberry Pi clients were writing
assign and monitoring data.

C. Characterization of the assign operation

The objective of this experiment is to observe the evolution
of the assignment of network devices when the monitoring
clients performing the assign operation join and leave. For
conducting the experiment, first, using the fetch component,
a data file with 54 devices of a small region of the Guifi.net
infrastructure is stored in an AntidoteDB instance in order to
have network devices to be assigned to monitoring servers.
For observing the assign operation in this experiment, a
customized setting with shorter routine periods of 10 sec
is configured (instead of the default value of 150 sec). The
required minimum number of monitors per device is set to 4
monitors. A maximum number of network devices per monitor
is set to 30 devices. The assignment state is dumped every 5
sec, which is half of the period of the assign operations. The
experiment is run for around 10 minutes. Up to 10 monitor
assign clients are joining, one by one, and after approximately
6 minutes, are gradually leaving until having 0 clients at the
end of the experiment.

Figure 5 shows the evolution of the number of monitors
per device. It can be seen, in the red line, how the number of
monitors reaches 10 monitors after around 340 sec. It can be
seen in the dotted blue line that, when 9 monitors are running,
the required minimum number of 4 monitors per device is
assigned to all network devices. When the number of monitors
decreases after 400 sec, it can be seen in the blue line that the
total monitoring capacity decreases as well and some devices
get assigned less than 4 monitors.



Figure 4. Testbed for REDEMON monitoring system deployment. The testbed is deployed in the GuifiSants wireless mesh network. 4

Figure 6 shows the evolution of the assigned devices to all
monitors. It can be observed that for the 54 network devices
contained in the dataset used, 10 operational monitors turn into
216 device assignments in total, which corresponds correctly
to the required 4 monitors per device.

Overall, for the assign operation it can be seen from the
experimental results that, as the monitoring capabilities become
available, the decentralized assign operations are able to fulfill
the system requirements with regards to assigning the required
minimum number of monitors to the network devices. It is
worth noting the policy, which the assign component applies for
its decision. It can be seen in Figure 5 that the MaxMonPerDev
value does not go beyond 4, even if more monitoring capacities
by a large number of servers are in the system. The reason is
that once the configured system requirement of a minimum of
4 monitors per device is achieved, new monitors do not assign
themselves in addition to monitor this device. This policy
actually aims to fulfill the requirements with the minimum
number of monitors and operating them at their maximum
capacity, which reduces the consumption footprint of the
system. Since this might conflict with other requirements
from Section II-C, alternative policies could seek to maximize
balancing the monitoring task among all monitoring servers.
In that case, however, each monitoring server would operate
below its maximum monitoring capacity.

D. Results on resource consumption of monitoring operations
1) Fetch operation: The fetch component parses a specified

CNML file and pushes its contents to AntidoteDB. For these
experiments we use the description of the Barcelona sub-
network, which consists of 1602 devices. The fetch operation
is done from only one monitor-fetch component to an Anti-
doteDB instance. In our experiment, fetch was done from a
Raspberry Pi client with IP 10.1.24.150 to the Minix device
with IP 10.1.24.41. Link bandwidth with iperf was obtained

at 150 s, minimum number 
of monitors (4) per device 

is reached

when 9 monitors are running, 
all devices had assigned 
the required minimum 
number of monitors (4)

Figure 5. Evolution during ten minutes of assigned monitors per device with
increasing number of joining monitors up to minute 6 and decreasing number
until minute 10.

to be approx. 8 Mbps, symmetric. Traceroute indicated 3 hops
between the two nodes.
CPU and memory consumption: We measure CPU load and
memory consumption at the Minix node with IP 10.1.24.41,
which receives the writes from the fetch operation.

Figure 7 shows the CPU and memory consumption during
the fetch operation of the barcelona.xml file. It took around
one minute to store these data in the AntidoteDB instance of
the Minix device. It can be observed that less than 1 core out
of the 4 cores is fully used, and the memory consumption is
low with regards to the available 4 GB of RAM.
Bandwidth consumption: We measure traffic produced dur-
ing the fetch operation at the same Minix node.

Figure 8 shows the bandwidth consumption during the fetch
operation. Since AntidoteDB is used with full replication
of data, the traffic observed is not only produced by the
communication with the monitor-fetch operation in the remote



54 devices in dataset, each monitoring

server (in total 10) monitors min 4 


devices, in total 216 devices (54x4=216)

Figure 6. Evolution of the totally assigned devices to monitors as monitors
join and leave during ten minutes.

1 core of CPU

2 cores of CPU

Monitor-fetch operation

~90% of CPU (less than 1 core)

Monitor-fetch operation

~165 MB of memory (out of 4GB)

Figure 7. CPU and memory usage of AntidoteDB during fetch in node
10.1.24.41, to which the monitoring client writes to.

Raspberry Pi, but it is also produced from synchronizing the
received data with the other AntidoteDB instances.

2) Assign & ping & snmp operations: These three oper-
ations are executed on each monitoring server (i.e., the ten
Raspberry Pi). The purpose is to assign to the servers the net-
work devices to monitor. Along with monitor-assign, monitor-
ping runs on each monitoring server, pinging the assigned
network devices and writes the obtained data to AntidoteDB.
Also, monitor-snmp runs on each server, requesting SNMP data
from the assigned network devices and writing the obtained
data to AntidoteDB. The three components use the data storage
provided by AntidoteDB. Assign uses a shared mutable data
object, with concurrent read and writes from each monitor-
assign component, while ping and snmp write immutable
monitoring data. For the monitor-assign, monitor-ping and
monitor-snmp operations the default settings are applied, in
which periodically every 150 sec the ping and snmp monitoring
operation is performed to the assigned network devices.
CPU and memory consumption: We measure CPU load
and memory consumption at two out of the eight monitoring
servers that host the AntidoteDB instances at the level of the
AntidoteDB Docker container, when executing the assign, ping

Figure 8. Traffic produced at the AntidoteDB instance during fetch in node
10.1.24.41, to which the monitoring client writes to.

1 core of CPU

2 cores of CPU
monitor-assign + monitor-ping + monitor-snmp

Figure 9. CPU and memory usage of AntidoteDB during assign, ping and
snmp in node 10.1.24.41.

and snmp operations from the ten remote Raspberry Pi, which
are connected to the hosts of the AntidoteDB instances as
indicated in Figure 4.

Figures 9 and 10 show the CPU and memory consumption
during continuous assign, ping and snmp operations for 30
minutes. It can be observed that around 1 core out of the 4
cores is fully used, and the memory consumption is low with
regards to the available 4 GB of RAM.
Bandwidth consumption: We measure traffic produced at two
out of eight monitoring servers that host AntidoteDB instances,
at the level of the Docker container, when executing the assign,
ping and snmp operations from the ten remote Raspberry Pi.

Figures 11 and 12 show the bandwidth consumption during
the continuous assign, ping and snmp operations. Node 10.1.24.
41 is a Minix device, which receives direct data writes from
the three remote Raspberry Pi clients. Node 10.228.201.91
receives direct writes of data from one remote Raspberry Pi
client. The traffic observed corresponds to these writes and
to the synchronization traffic between the data replicas of the
AntidoteDB instances. The periodicity that can be observed
in Figure 12 can be explained by the period of 150s by which
the assign, ping and snmp operations are performed. This
periodicity cannot be observed clearly in the node 10.1.24.41



1 core of CPU

2 cores of CPU
monitor-assign + monitor-ping + monitor-snmp

Figure 10. CPU and memory usage of AntidoteDB during assign, ping and
snmp in node 10.228.201.91.

Figure 11. Traffic produced at the AntidoteDB instance during assign, ping
and snmp in node 10.1.24.41.

of Figure 11, where the intense writes of their remote clients,
each operating the assign, ping and snmp, are more continuous.

V. R E L AT E D W O R K

There are many solutions running on top of public and
private clouds that monitor cloud resource usage (e.g., CPU,
memory, disk and network bandwidth). For instance, Amazon
CloudWatch [6] is a monitoring and management service
that monitors virtual resources of users such as Amazon
EC2 instances. IBM Tivoli Monitoring [7] and HP Open
View [8] are other monitoring systems aiming to optimize
the performance and availability of IT infrastructures by
focusing on the physical resources. GMonE [9] is a general-
purpose cloud monitoring tool which proposes a unified cloud
monitoring taxonomy based on which it defines a layered
cloud monitoring architecture. PCMONS [10] is a private
cloud monitoring system that can be adapted for use by
cloud telephony providers to gather and centralize monitoring
information, which should improve quality of services. PC-
MONS does not collect the information needed to map virtual
resources to physical resources. MonPaaS [11] is an open
source adaptive monitoring platform as a service (MonPaaS).
MonPaas integrates Nagios [12] and OpenStack. MonPaas

Figure 12. Traffic produced at the AntidoteDB instance during assign, ping
and snmp in node 10.228.201.91.

monitors physical and virtual resources and also updates any
change in physical or virtual infrastructure. The disadvantage
of MonPaas is that it consumes extra physical resources.
DOCTraMS [13] is system that monitors and disseminates
traffic conditions using a decentralized infrastructure.

The above mentioned works mostly consider data-centers
or micro-data centers as their environment, where in our case
distributed resource-constrained devices such as Raspberry Pi
boards and mini PCs form the monitoring system infrastructure.
Furthermore, in the conditions of Guifi.net the individual
monitoring servers are not under a centralized control. In
[14], we presented an initial version of the monitoring system,
however it was limited to the fetch and assign operation. In
REDEMON, all the monitoring operations are developed and
the system is evaluated in a realistic testbed environment.

V I . D I S C U S S I O N O F R E S U LT S

Achieved features: With reference to the requirements, we
conduct in Table III a comparison of the achieved features
of REDEMON (the new monitoring system) with those of
the legacy monitoring system. We can observe that with
REDEMON we achieved an increased resilience of the moni-
toring system to the conditions in Guifi.net, where network
partitions and server failures may happen, and where low
capacity computing nodes are geographically distributed.

Robustness: The experiments were conducted in the real
Guifi.net network such that the testbed nodes were exposed to
all real network conditions [1] [5]. The workload was varied
by experimenting with the default and other configurations
of the monitoring system. A concrete operation limit of
the monitoring system for a determined network or resource
situation could not be identified, but it is in general clear
that incrementing in magnitudes the periodicity of the assign,
ping and snmp operations (default is 150 sec) will need a
careful timing. For instance, in SNMP requests to the network
devices, there are a few core routers in Guifi.net with a very
large number of interfaces. An SNMP request to such routers
consumes more resources than those to a low-cost wireless
router used at the network edge.

Multi-tenancy: Full-blown monitoring servers and light-
weight monitoring servers were deployed on Minix devices



REDEMON features Legacy system
Automated assignment: The developed as-
sign component is started without any pre-
vious network device assignment. It assigns
to itself a number of network devices to be
monitored according to a configured moni-
toring capacity of the server.

The network devices to
be monitored are man-
ually assigned to moni-
toring servers by the net-
work administrator.

Automated reconfiguration: The assign
component review with a configurable deter-
mined periodicity the current monitor-device
mapping and reconfigures according to the
current situation (e.g. deletes unresponsive
servers, increases monitors for network de-
vices which are undermonitored).

There is no automated up-
date of the initial monitor-
device mapping.

Redundancy: Each assign component
checks periodically that every networking
device is monitored by several servers (i.e.,
the monitoring servers check which network
devices have less monitors and decide
autonomously to become a monitor for any
of these devices).

Each network device is
monitored by only one
monitoring server.

Load balancing between servers: Self-
assignment decisions take into account the
monitoring server capacity by configuration.

There is no specific mech-
anism to achieve load ba-
lancing among servers.

Data replication: The collected data is
replicated on the distributed AntidoteDB
instances. In the event of network partition
or churn of monitoring servers the data is
still available on the replicas.

The monitoring data stor-
age is done at the local
server and is lost in case
of network partition or
server failure.

Table III
C O M PA R I S O N O F R E D E M O N F E AT U R E S W I T H T H E L E G A C Y

M O N I T O R I N G S Y S T E M .

and Raspberry Pi boards. The testbed nodes were not dedicated
to our experiments, but were running other services as well
(independently run by the node owner) [15]. A low resource
consumption of the storage system is important in order to
allow multi-tenancy on a node without the monitoring system
affecting other applications. Overall, we observed on the used
Minix devices a moderate CPU and memory consumption by
the monitoring system, leaving sufficient computing resources
available to operate other services on the same devices.
Bandwidth consumption of the monitoring system, however,
may be an issue if it runs on a node with a very poor link.

V I I . C O N C L U S I O N A N D O U T L O O K

The computing capacity at the network edge grows, pulling
applications that traditionally run in remote data centers to op-
erate on distributed edge devices. In this paper, a practical use
case of cloud computing, consisting of a distributed monitoring
system for the Guifi.net community network, was designed and
evaluated. Its implementation integrated a distributed storage
service leveraging AntidoteDB. In order to coordinate the
monitoring servers, a shared distributed data object was applied,
which uses AntidoteDB’s CRDTs for providing strong eventual
consistency of the data.

Results obtained were: first, concurrent writes to the
database were successfully carried out from multiple locations
with a number of workloads of different intensity, allowing to
correctly perform the policy of the assign operation; second,
CPU and memory consumption of the monitoring system on
the edge nodes was moderate, where CPU was from around a
forth up to half of the available cores. Memory consumption
from 400 to 700 MB was low for the available 4 GB of RAM in
the Minix devices that were used; third, traffic produced by the

synchronization of the replicas in the distributed database was
considerably high with observations of up to around 3 Mbps,
which might be an issue to take into account for low bandwidth
wireless links.

The design of the monitoring system applies a decentralized
coordination among nodes. Each node reads the instantaneous
coordination state to control its individual actions (i.e., which
devices to monitor). This decision then starts the actual
monitoring operation, which is conducted like in a traditional
centralized system. It remains to be seen for future work if
this design of organizing the operations into a decentralized
control and a centralized processing can be generalized to other
edge-based applications.

A C K N O W L E D G M E N T

This work was supported by the European H2020 framework
programme project LightKone (H2020-732505), by the Span-
ish State Research Agency (AEI) under contracts PCI2019-
111850-2 and PCI2019-111851-2, and the Catalan government
AGAUR SGR 990.

R E F E R E N C E S

[1] M. Selimi, L. Cerdà-Alabern, F. Freitag, L. Veiga, A. Sathiaseelan, and
J. Crowcroft, “A lightweight service placement approach for community
network micro-clouds,” Journal of Grid Computing, vol. 17, no. 1, pp.
169–189, Mar 2019.

[2] M. Selimi, L. Cerdà-Alabern, M. Sánchez-Artigas, F. Freitag, and
L. Veiga, “Practical service placement approach for microservices archi-
tecture,” in 2017 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), May 2017, pp. 401–410.

[3] “AntidoteDB: A planet scale, highly available, transactional database,”
https://www.antidotedb.eu/, 2019.

[4] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-free
replicated data types,” in Stabilization, Safety, and Security of Distributed
Systems, X. Défago, F. Petit, and V. Villain, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 386–400.

[5] D. Vega, R. Baig, L. Cerdà-Alabern, E. Medina, R. Meseguer, and
L. Navarro, “A technological overview of the guifi.net community
network,” Computer Networks, vol. 93, pp. 260 – 278, 2015.

[6] Amazon, “Amazon CloudWatch,” https://aws.amazon.com/cloudwatch/.
[7] IBM, “IBM Tivoli Monitoring,” https://www.ibm.com/support/

knowledgecenter/en/SS3JRN_7.2.0/com.ibm.itm.doc/itm_install06.htm.
[8] HP, “HP BTO OpenView,” http://www.hp.com/hpinfo/newsroom/

press_kits/2010/HPSoftwareUniverseBarcelona2010/HP_Applications_
Portfolio_brochure.pdf, 2019.

[9] J. Montes, A. Sánchez, B. Memishi, M. S. Pérez, and G. Antoniu,
“Gmone: A complete approach to cloud monitoring,” Future Generation
Computer Systems, vol. 29, no. 8, pp. 2026 – 2040, 2013.

[10] S. A. De Chaves, R. B. Uriarte, and C. B. Westphall, “Toward an
architecture for monitoring private clouds,” IEEE Communications
Magazine, vol. 49, no. 12, pp. 130–137, December 2011.

[11] J. M. Alcaraz Calero and J. G. Aguado, “Monpaas: An adaptive
monitoring platformas a service for cloud computing infrastructures
and services,” IEEE Transactions on Services Computing, vol. 8, no. 1,
pp. 65–78, Jan 2015.

[12] “Nagios: The Industry Standard In IT Infrastructure Monitoring,” https:
//www.nagios.org/, 2019.

[13] T. T. de Almeida, J. A. M. Nacif, F. P. Bhering, and J. G. R. Júnior,
“Doctrams: A decentralized and offline community-based traffic moni-
toring system,” IEEE Transactions on Intelligent Transportation Systems,
vol. 20, no. 3, pp. 1160–1169, March 2019.

[14] R. Pueyo Centelles, M. Selimi, F. Freitag, and L. Navarro, “Dimon:
Distributed monitoring system for decentralized edge clouds in guifi.net,”
in 2019 IEEE 12th Conference on Service-Oriented Computing and
Applications (SOCA), Nov 2019, pp. 1–8.

[15] M. Selimi, A. M. Khan, E. Dimogerontakis, F. Freitag, and R. P.
Centelles, “Cloud services in the guifi.net community network,”
Computer Networks, vol. 93, pp. 373 – 388, 2015, community
Networks.


