IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 8, 2020, accepted November 21, 2020, date of publication December 4, 2020,

date of current version December 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3042616

Practical Methods for Efficient Resource
Utilization in Augmented Reality Services

GEORGE KOUTITAS', (Member, IEEE), SHASHWAT VYAS', CHAITANYA VYAS',
SHIVESH SINGH JADON', AND IORDANIS KOUTSOPOULOS 2, (Senior Member, IEEE)

IIngram School of Engineering, Texas State University, San Marcos, TX 78666, USA

2Depa.rtment of Informatics, Athens University of Economics and Business, GR 104 34 Athens, Greece

Corresponding author: George Koutitas (george.koutitas @txstate.edu)

The work of Iordanis Koutsopoulos was supported by the EU CHIST-ERA Project “LeadingEdge” (call 2018).

ABSTRACT This work presents a novel approach that adopts content caching techniques towards reducing
computation and communication costs of Augmented Reality (AR) services. The application scenario under
investigation assumes an environment of static objects, each one associated to a holographic content. The goal
is to devise practical low-overhead methods so as to reduce the amount of resources above that are needed
for the most resource-demanding AR process, namely object recognition. The proposed method is based on
caching images using a combination of metrics to rank them such as: (i) an object popularity index which
favours objects that are most probable to be requested for recognition, (ii) the percentage of times when the
object label has been encountered in the past, (iii) the probability that an image is similar enough with already
encountered past images with the same label. The aforementioned image caching method drastically reduces
database searches and returns the matched object that satisfies the needs of object recognition. We also
devise a binary decision operator that initiates the object recognition process only upon comparison of spatial
data of the AR device with the targeted object. The resulting performance is measured using a client-server
architecture and components such as Wireshark, Unity Profiler, and Python. For our proposed architecture we
deploy an edge server to satisfy the demands of the AR service. Results indicate that the proposed methods
can significantly reduce both the computational resources and the induced network traffic, thus improving
user experience.

INDEX TERMS Augmented reality services, object caching, edge computing, network offloading, resource

allocation.

I. INTRODUCTION

Augmented Reality (AR) and Virtual Reality (VR) are soon
expected to create new opportunities that will drastically
change various sectors of modern economy. Typical applica-
tions of VR are the online gaming and the education indus-
tries [1]. AR technologies allow users to maintain visual
connection to the physical world, while holographic content
is overlaid onto the physical image. AR is usually referred
to as Mixed Reality (MR) when the hologram can interact
with the physical environment through the occlusion mecha-
nism [2]. AR is expected to open new frontiers in smart-city
services, retail shopping, operational teams’ training, and
customer engagement and experience because it enables a

The associate editor coordinating the review of this manuscript and

approving it for publication was Yanjiao Chen

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

mixed experience for users through a combination of physical
and holographic spaces [3], [4].

AR services require high bandwidth and processing power,
primarily due to the object detection and object recognition
processes that are employed in the holographic visualization
on the physical space. The recent study [5] posits that in 5G
networks, the bandwidth needs for AR and VR visual content
streaming will range between 5-25Mbps for 3D image mod-
els, data visualization and telepresence. For 360-degree High
Dynamic Range (HDR) video, bandwidth requirements are
in the range of 10-50Mbps, while for 6 Degrees of Freedom
(6DoF) and Point Cloud streaming the corresponding range
is 0.2-1Gbps [5]. Another important challenge to address
is service latency that determines User Experience (UX) in
interactive and continuous AR services [6].

In AR services, object recognition is the process that
accounts for the largest portion of communication and

220263

https://orcid.org/0000-0001-7699-5276
https://orcid.org/0000-0002-1382-0679

IEEE Access

G. Koutitas et al.: Practical Methods for Efficient Resource Utilization in AR Services

computation resources, since the system continuously needs
to recognize objects from images that fall within the Field
of View (FoV) of the user headset, in real time [7]. Several
tasks are involved along this process, such as image database
search, frame capture and transmission, feature extraction,
object classification, object recognition, template matching,
object tracking and annotation [7]. There exist two different
approaches of existing Software Development Kits (SDKs)
regarding the location where the tasks above take place. In the
first one, the tasks are executed only at the client side (i.e.
at the AR headset) in an effort to reduce latency and network
traffic. In the second approach, the majority of tasks are
processed entirely at a cloud server, thus having the client
at continuous offloading mode. Clearly, the first scenario
increases the processing needs at the client side and drains
its battery faster, whereas the second case incurs additional
transfer delays.

An edge computing architecture may provide the right
balance between these extreme scenarios. Continuous AR
applications need to process captured frames at a rate of about
30 frames per second (fps), thus leading to a target latency
of about 33msecs for acceptable user experience. There exist
several ways to reduce latency, such as through eliminating
unnecessary transmissions to the cloud or by using powerful
CPUs or GPUs, but most of them rely on additional, expen-
sive computational resources.

This article presents two novel and practical approaches
that can help reduce computation and communication costs
involved in AR services by introducing, implementing and
evaluating a low-cost edge computing architecture specifi-
cally suited for AR scenarios. The main novel aspects of our
method are summarized as follows:

« In an effort to reduce computation costs, we propose an

edge cache-based architecture that uses object caching.
The proposed method is based on caching images using
a combination of metrics such as: (i) an object popularity
index which prioritizes objects that are most probable to
be requested for recognition, (ii) the percentage of times
when the object label has been encountered in the past,
(iii) the probability that an image is similar enough with
already encountered past images with the same label.

o In an effort to reduce communication costs, we define
a binary decision operator as a filter mechanism that
initiates object recognition only when necessary, namely
when the user location and field of view cover the loca-
tion of the target object.

« Inorder to demonstrate our approach in a practical appli-
cation use case, we develop a measurement system based
on an interactive game in Unity that mimics user move-
ments in a grocery store with 1,000 items. We integrate
a client-server architecture and capture real data using
WireShark, Unity Profiler and Python libraries.

The paper is organized as follows. In Section II, we present
an overview of related work. In Section III, we present the
system model and proovide a description of the application
scenario. In Section IV, we present our proposed solution

220264

that consists of a novel image caching method and a spatial
filtering technique to perform object recognition judiciously.
In Section V we describe the measurement setup and in
Section VI we show the result of simulations and experi-
ments. Finally, section VII concludes our work.

Il. RELATED WORK

Resource allocation and optimization are critical in edge
computing and have received a lot of attention in the liter-
ature. A first challenge is to locate the edge nodes to perform
the computations in the presence of a continuous stream of
arising computation requests, or queries. The authors in [8]
abstract the problem above and use the backpressure principle
to solve the problem of computation operation placement
and traffic routing to intended destinations so as to maxi-
mize throughput in terms of rate of computation query sat-
isfaction. A utility-aware contract-based resource allocation
algorithm for edge computing, called Zenith, is presented
in [9]. Contracts are established between service providers
and infrastructure providers that guarantee a resource allo-
cation regime with low latency. An instance of a resource
allocation problem for energy efficiency in AR applications
is studied in [10], while leveraging the collaboration oppor-
tunities in order to save communication and computation
resources. Further networking challenges pertaining to AR
applications are studied in [7], [11], where it is verified that
indeed, the most challenging processes in terms of resource
consumption are object detection and recognition. Opportu-
nities and research challenges that big data brings to AR are
presented in [12].

Edge computing mechanisms such as caching for AR
applications have been studied in the literature e.g [13],
where a technique is presented that improves the streaming
of a bulky 360° video whose major part comprises scene
information never accessed by the user. Other scenarios of
using caching jointly with traffic routing or content rec-
ommendations are presented in [14]-[16]. However, these
do not address AR specifics with the exception of [18],
where the authors formulate the problem of computation
and bandwidth resource allocation in a static scenario with
the goal to increase accuracy in context classification in
AR applications.

In [17] the authors present a caching approach for video
delivery using the concept of distributed helpers, while the
work [19] presents an image prefetching and edge caching
method. Finally, the work [20] uses the graphics processing
unit (GPU) and frame caching on mobile devices to execute
the large DNNs required for continuous video processing.
Another use of caching for image processing is presented
in [21], where reusable image regions are identified by
exploiting the input video’s internal structure. However, this
method does not include any means to prioritize images.

This work proposes a practical low-cost method based
on object caching for continuous AR applications, and a
spatial filtering algorithm for non-continuous AR applica-
tions that both help reduce computational and communication

VOLUME 8, 2020

G. Koutitas et al.: Practical Methods for Efficient Resource Utilization in AR Services

IEEE Access

Tmage registration
of an object

¢
8 2

Tmage, m,,

o
=

Image, m,,

O

Image, m,

Holograhic content, ,

Object, b,

Feature dataset, o7,
. '

I b@

", ", ",

Stored feature points in database
FIGURE 1. The objects in an AR application: holographic association and
feature-point database. There are several images associated with an
object, and each image involves a feature dataset. These images are

stored in a cache, together with their accompanying holographic and
extracted features.

costs. The work [19] has some conceptual similarities to
our approach since it also employs image caching in a so
called ““recognition cache” on the device. The selection of the
images to cache is performed by exploiting spatiotemporal
locality. Our work complements their approach by enhancing
the metrics based on which the images are cached.

In continuous AR cases, holographic content needs to be
always overlaid on the physically captured image, as the user
moves. On the other hand, in non-continuous AR cases there
is a pre-registration phase that reduces the amount of times
when real- time object detection is needed. The AR setting
under investigation concerns cases where the object position
is static; thus visual attention can be used to guide the caching
algorithm. However, our approach can also work in a dynamic
scenario with object detection requests arising continually.

Ill. SYSTEM MODEL

A. DESCRIPTION OF THE APPLICATION SCENARIO

An AR service provider offers holographic content to a set
U of users within a specific geographic region A. Within
the area, there exist objects with identifiers b; € Q,i €
{1,2,...N}, where Q is the set of N objects. Each object
is associated to a unique holographic content #; € H,i €
{1,2,...,H with H = N, An example scenario for the appli-
cation of such holographic content is in retail shops. In order
to deliver the AR service to customers, the AR provider needs
to perform offline two registration processes at the initializa-
tion phase: a) object registration, and b) hologram associa-
tion, presented in Fig. 1. During object registration, a number
of “training” images, are related to an object b;. The index n
in the figure indicates that more than one images may in fact
be associated to a registered object. Images are processed,
and their corresponding feature points are extracted using
methods such as ORB, KAZE, SURF [22]. Feature points are
mathematical representations of key regions of an image and
may include corners, edges or even parts of the image.

VOLUME 8, 2020

FIGURE 2. Top-view description of our scenario: a user with an AR
headset and app moves within an area with static objects.

A top view of the area of interest A is shown in Fig. 2.
This area is a grocery store and is one of the most challeng-
ing AR environments. Users walk across the grocery store
corridors with their smartphone, and they request information
about different grocery products at different times by pointing
the smartphone camera to the product. Several users may
simultaneously request data visualization, and they coexist in
a scene with a large density of static objects. We assume a
two-dimensional (2-D) setting here, however the concept can
be extended to a 3-D one.

Using an AR mobile app, the user can walk around and
observe holographic content overlaid on top of the physical
object. Each holographic content is associated to its object
with 2-D coordinates x;, y;. The user position is mapped
to 2-D coordinates (xy, yu). With respect to user location,
the object polar coordinates are:

r = — 2 + 01—)’ (1)
¢ = tan™! (y’_—y”> (1b)
Xi — Xy

The AR device has a specific Field of View (FoV) with
angle . For example, existing AR headset technologies
have a FoV in the range 30< o <60. For User Experi-
ence (UX) purposes, the holographic content that is visual-
ized is the one associated to the set of objects D C Q that
fall inside an AR Experience Area, denoted by E, which is
a sector of w degrees angle, i.e. a portion of a hypothetical
circle (or a sphere) of radius d around the user position
that includes an area E = md? - a)/360, as indicated in
Fig. 2.

B. DISAGGREGATION OF AR PROCESSES

As the user navigates along her path, there are various tasks
that need to be executed to deliver the AR service to her.
An example is shown in Fig. 3. The first task is frame
processing. Frames are images in the FoV E, of user u.
Upon capture, these frames are reduced in size, typically
to 480 x 270 pixels, they are converted to gray scale, and

220265

IEEE Access

G. Koutitas et al.: Practical Methods for Efficient Resource Utilization in AR Services

Cloud Service for
Object Recognition|

Client Edge Server
(AR Device running APP) Uplink frames (30 fps) (AR service provider)

Annotation
Rendering

i)

H x,0.,(0.2,0).
(0, () -
')))) Fi/5G ((«'
A Network

h(oxy.7) Downlink

Cache/database

FIGURE 3. Overview of the procedures executed at the client and server
side for an AR application.

they are encoded into a jpeg file. Frame processing takes
about 12% of the total amount of computational resources
needed for the AR service [7]. Frames are then transmit-
ted to the server, usually at a frame rate of A = 30 fps.
The next step is feature extraction for each frame. This
is usually performed with algorithms such as ORB [22].
Feature extraction identifies important and unique features
of each image that are used for image comparison. Feature
extraction represents approximately 21% of the computation
load [7].

Next, object classification is performed through hypoth-
esis formation. This is usually done through pre-trained
general-purpose Neural Networks (NN) classifiers. Regard-
less of the type of NN, the output is always a vector of
likelihoods L = (L; : I € Q), where [is the label of the object.
Note than an image may in general contain more than one
objects of label /.

The next step is object recognition which is at the core of
AR services. Depending on the NN type, object classification
and recognition may be performed simultaneously or not.
An object needs to be recognized so that an appropriate holo-
gram is associated with the object and projected to the user.
Due to the need for sequential and extensive database search,
this task is computationally heavy and time-consuming, and
its execution is usually performed at a central server (cloud)
or preferably at an edge server. In order to recognize an object,
the feature points of a frame need to be compared to those of
registered images. Let s;; be a measure of feature similarity
for of a pair of images (i ,j), where i is the processed image
in question and j denotes an image in the database. If the
entire database is parsed, the outcome of object recognition
is the image in the database with the highest similarity to the
processed frame.

Object recognition accounts for approximately 33% of the
overall computational demands of an AR service. Once an
object is recognized, template matching verifies the result of
object recognition and calculates the poses of targets in the
6DoF space. Template matching corresponds to about 3.3%
of the overall latency of the AR service [7]. The last tasks of
AR service are object tracking and annotation rendering, and
they are performed at the AR device. Object tracking accounts
for 5% of the overall latency, and it tracks the feature points
of an object so that the holographic content can follow it. For

220266

static AR services as the ones we consider in this work, this is
not needed. Finally, annotation rendering updates the 6DoF
pose of an object and calculates a 3D pose of the annotation.
This is accounts for 7% of the overall latency. According
to [7], the latency for network data transfer corresponds to
about 18% of total latency.

C. COMPUTATIONAL DEMANDS
We focus here on the most demanding task, namely object
recognition. Assuming that a transmitted frame at each time is
an image of size g bits and that the average data transmission
rate over the wireless channel is ¢ bps, the average transmis-
sion time for an outbound image is:
Ty = 2.)
c

In the downlink (inbound), the serv er responds on the
same communication channel with the holographic con-
tent & of p bits. Assuming symmetric uplink and down-
link data transmission rates, the average transmission time
for inbound holographic content corresponding to an image
is:

Tdown = IS (3)
An important factor that affects total delay is feature match-
ing. Assuming that the comparison of the feature points of a
frame to those of a registered image is a task of workload w
flops, and there are a total of K images present in the cache,
the total processing time of all images in the database, with a
processing speed cs flops/sec is:

w.K
Tp=— 4)

cs
Assuming a propagation delay 7),,, between client and
server, the total average roundtrip time delay per user per

frame is approximated as:
Tag ~ Tup + Taown + Tprop +Tp (5)

For continuous AR services, it is recommended that Tag <
33 msecs. The workload w is substantial and it can be
reduced by minimizing the number of database searches
related to feature matching. This is precisely the topic of this
work.

As the number of users U within the area of interest A
increases, important resource allocation challenges need to
be addressed. The expected total in- and outbound data traffic
exchanged between a client and server per user request in an
area with U users for each frame is:

D= (qu+pu (6)
uelU
where gy, py are the image and holographic content size for

user u#. In that area, the server computational requirements
are

€= S o

assuming that a user makes one request for object recognition.
Note that w,, is the workload for feature matching per user.

VOLUME 8, 2020

G. Koutitas et al.: Practical Methods for Efficient Resource Utilization in AR Services

IEEE Access

Algorithm 1 Caching Algorithm Based on Visual Attention

1. Object Registration in the database
- For each object i € N, create feature points using ORB
algorithm,
- register feature points in database
- assign holographic content to each group of feature points
- store position x;, y; of objects
2. Computation of object significance probability and
of metric (8)
- For each object i € N calculate significance probability
pi as follows:
- Count the number of users k; in whose FoV the object
i is located (the object is in the FoV of a user if the
user-object distance satisfies r < §;&(p —3) < ¢
< (¢ + %) - assume ,=>5m, w=30°, a typical FoV).
pi = ki/ Y_; ki (normalized, so that p; € [0, 1]).
- Compute metric g; as in (8).
END
3. Caching
- Cluster objects into groups closely located to each other
- Sort objects of each group based on
gi: [b]— sort(g;," descend’)
- Place sorted objects in the cache until cache capacity is
reached
4. Object Recognition
- Choose sensitivity parameter 7% (e.g. 9% = ().6) and
feature matching threshold 6 (e.g. 8 = 200 matched
features)
- For each incoming frame i, compute similarity s;; with
each cached
image j (BRUTE FORCE matching algorithm)
- Declare perfect match atimage min{j : s;; > 6} and return
corresponding object as recognized object
ELSE IF no match is found
- Send image to cloud image database.

IV. PROPOSED ALGORITHM

In order to avoid large client-server propagation delays,
we assume that the AR service provider is willing to execute
the service locally at the edge. Following the notation of
Fig. 1, for each user position (xy(t), yu(t)) at time ¢ and a
view angle ¢,(¢) of the user, the method needs to identify
the holographic content h(x,y,¢,f) that will be delivered to
each user u € U. To reduce the total roundtrip delay T4g,
we propose two methods.

The first one uses edge caching in a novel manner in order
to reduce the computation cost of object recognition. This
method can be implemented for continuous AR use cases.
The second algorithm defines a binary decision operator
which can be thought of as a spatial filter that initiates object
recognition only when the user is near a predefined object of
interest. This method helps to reduce communication costs.

A. IMAGE CACHING ALGORITHM
A first key idea is that we would like to keep in the cache
images of items that are popular in terms of user request

VOLUME 8, 2020

Products, B
Significance s
Probablity. p _

Z axis (m)

L i
02 03 04 05 06 (X2 08 09 1

Significance Probability (p)

FIGURE 4. a) 3D view of a grid layout scenario with the significance
probability of various products in aisles. Red color indicates high
significance. b) visual attention map visualization [24].

probability. Popularity is related to the frequency of holo-
graphic content request for a specific object, which is directly
associated to the visual attention of users on specific objects
of the scene (Fig. 4). At the same time, cached images should
also guarantee high probability for correct object recogni-
tion. The algorithm parses through the set of cached images
according to a priority index. This process is shown in Fig. 5.
If a match is not found in the local cache, the object recogni-
tion task is sent to the cloud, and the entire database lookup
is performed for image matching.

1) SIGNIFICANCE OF AN OBJECT

Assuming sequential database search, images with higher
popularity should be stored first in the cache. Image popu-
larity is computed as follows. For a set of candidate objects
S C N, consider a Markov chain depicted as a graph where
nodes are objects, and a link (i, j) between nodes denotes
transitions of user requests from object i to j.

The stationary distribution of the Markov chain is denoted
by vectorp = (p; : i € S) and captures the ““significance” of
objects. That is, it models the visual attention of users [23] in
terms of an estimate of the long-term probability that a user
requests an object. Usually, information about visual attention
can be obtained through eye-tracking technologies. There are
various metrics to be considered such as: (a) the time to first

220267

IEEE Access

G. Koutitas et al.: Practical Methods for Efficient Resource Utilization in AR Services

Incomin Feature points
& P sort(g.,’descend’)
frame of stored images i
m' | i(t) s m m!
: L, rA -
m', perfect] m m,
m'’, match
:
m',
. Cluster, ¢, Cluster, c,
:'"""”l
m' | i Cloud
m’ : search

Initial database Cached scheme

scheme

FIGURE 5. Comparison of the traditional sequential feature matching
with the proposed cache-based approach. Instead of performing a
sequential full search of the whole database and stop at the first image
that exceeds a similarity threshold with the incoming image frame (on
the left), our approach searches smaller image clusters (on the right) and
thus has more chances to find a match faster.

fixation that is equal to the time it took the user to focus
on a specific product, (b) the fixation count that models the
number of times users looked at a specific product, c) first
fixation duration that models how long a user spent gazing
at an object for the first time, and d) the average fixation
duration that models how long a user spent gazing at an object
on average [24]. In this work, we assume that the significance
is just the fixation count that models the number of times a
specific object was observed by users based on their posi-
tion, x,(?), y,(#) and headset direction ¢, (). The significance
above can be normalized by dividing over significances of all
objects in that location so that it is bounded in [0,1] and be
mapped to a probability value.

An example is depicted in Fig. 4, while the computation of
significance is detailed in Algorithm 1. The structure of the
scenario is assumed to be a grid layout [23]. For the purpose
of our study, a significance value was computed based on
Monte Carlo simulations due to unavailability of an eye-
tracking method and relevant data. Repeated random walks
of users on a user path were used to obtain numerical results
of p. Each user was assumed to walk on the path, as shown
on Fig. 4, with an initial ¢p. At each time ¢, the value ¢(t) is
computed according to ¢ () = ¢o £ J,, where §, is a statistic
derived assuming that the Normal distribution is followed, i.e.
o(t) < N(x90, 20), where N denotes a Normal distribution
with £90° mean and standard deviation 20°. The Monte
Carlo numerical values were computed from 1,000 randomly
generated user walks in the store.

2) OBIJECT IMAGE CACHING

Requests for object recognition arrive sequentially from users
with frame rate A requests/sec. The problem is to determine
the subset of images of the database to include in the local
cache, and the order in which they are cached, so as to
expedite object recognition. We assume that an input image
is sequentially checked for matching with each image in the
cache. Thus, the order in which registered images are cached
is important for the overall performance. Let F, |F| > |N|
represent the entire set of images in the backend database

220268

which was created initially during registration. Recall that an
object is in general associated with several images. The cache
needs to choose a subset C; of images for all objects b;,i € N.

3) FEATURE EXTRACTION AND FEATURE MATCHING

Two important steps of the algorithm are feature extraction
and feature matching. For feature extraction, we implemented
the Oriented FAST and Rotated BRIEF (ORB) algorithms
in OpenCV, which are address feature detection, similarly to
SIFT and SUREF algorithms [22], [25]. The ORB algorithm
uses FAST to find keypoints in the image, and then it applies
Harris corner detection to find the top M points.

Another important mechanism is feature matching. For
the purpose of our study, we implement the Brute-Force
(BF) Matcher feature matching algorithm in OpenCV [25].
BF Matcher takes the descriptor of one feature in the first
image and compares it to all features of the other images
using a distance metric, e.g. Hamming or Euclidean distance.
The algorithm returns the total number of matched features.
Assuming that two images i and j have feature datasets m’: =
(ui,uy...,u,) and mf = (vi,Vv2...,Vy), the number of
matched features is s; = #{k:up =w,k=1,2,...,n}
Clearly, among all registered images, the one that has the
largest number of matched features with those of the input
frame or that has a number of matched features that is larger
than a threshold, is considered as the matched image to the
input frame. Namely, a match between the feature datasets of
the two images occurs when s;; > 6, where 6 is the matching
threshold (for our purpose, we set 6= 200 matched features).
An example of the value of s;; is depicted in Fig. 6. An input
frame was compared to 300 different cached images. The
perfect match had value s; = 1,917 or log(s;) ~ 3.29;
namely 1,917 features were matched between the two images.

An important practical parameter that concerns image
comparison at the level of individual feature points needs to
be calibrated in the ORB and BF Matcher algorithms. This
parameter is the matching threshold, gratio ¢ [0, 1]. A smaller
threshold 7% implies a stricter and more sensitive compar-
ison between images at the level of individual feature points.
Hence, a smaller threshold 67 leads to fewer but more
accurate matches between examined pairs of images. On the
other hand, if we increase 87 towards 1, the comparison
between feature points is less strict, and more feature points
will be matched. Thus, we have “easier” image matches
but with larger uncertainty, and this makes object detection
more challenging. This is because of the nature of the search
algorithm for matched images in the cache.

Consider an incoming image frame. During the sequential
comparison with cached images, the first encountered image
in the cache for which s;; > 6 is declared as a match, and the
algorithm stops. This image may be any image from the set of
possible matched ones. Because the set of possible matched
images is larger for larger 6%, this means the chances to
find a good match are fewer if 7%/ is larger. The situation
for two indicative values of threshold, 7%= (.6 and §"*0=
0.8 is depicted in Fig. 6.

VOLUME 8, 2020

G. Koutitas et al.: Practical Methods for Efficient Resource Utilization in AR Services

IEEE Access

3.5 T T
———Perfect match

5,=1917

25 b

enjliu:o. 8

IOgm(Si._i)

150 200 250 300
image index

FIGURE 6. Similarity metric s;; based on ORB. The logarithmic scale
presents feature similarity between an input frame and all images in the
cache in descending order. All values smaller than 0 were set to 0.

4) PERFORMANCE METRIC

Performance is measured in terms of delay and the probability
of mislabeling the image; the latter corresponds to associating
the image with an incorrect object. The cache should have
appropriate images so as to reduce delays and keep prob-
abilities of mislabeling low. If K images are in the cache,
the maximum delay for parsing the cache ismuch smaller than
the traditional exhaustive search in the entire database. The
idea behind image caching is as follows: the ranking of an
image in the cache should be high if: (i) the object is popularm
namely it is requested by users with high probability; (ii) its
label is encountered often; and (iii) it is very probable that an
image is very similar with already encountered past images
with the same label.

For each image i in the cache, we compute an empiri-
cal distribution of similarity to past images that have been
classified with the same label. If we define as / the image
label, we can compute the empirical probability z;(/) that the
similarity of cached image i to past images that are labelled
as [, is greater than 6. The idea is that cached images should
be similar enough to past images with the same label so
as to facilitate accurate and fast object recognition. Since a
cached image i has an already defined label L; in the set
of labels {1, ..., No}, we can compute for each image i the
metric:

gi =pi-zilly) - YLy (®)

where p; is the significance (popularity) of object i, and ¥ (L;)
is the empirical probability of having encountered label L; in
the past, which can be computed from historical data. Images
are cached in decreasing order of the metric g;.

B. SPATIAL FILTERING METHOD

The caching method above can be applied in continuous
AR applications in which the user holds the AR device
and expects to see the overlaid holographic content on the

VOLUME 8, 2020

FIGURE 7. Emulator of a user in the grocery store. User was able to
navigate the avatar. The left section presents the position of avatar in
store. The diagram on the bottom right is a screenshot of the Unity
Profiler. A simplified demo can be found in [26].

physical object in real time. In such scenarios, object detec-
tion is executed continuously in the backend to provide appro-
priate hologram association. Our objective was to reduce
computational needs of object recognition through image
caching.

In another use case, the user tries to reach a specific tar-
geted object through using a navigation AR tool. Following
the notation of Fig. 2, object recognition should be initiated
only when the target object is inside the AR Experience
area E,, of user u. A binary filter operator is used to check
whether this condition holds so as to decide whether to
enable the object recognition engine or not, according to the
rule:

w w
I, r<dgand(¢p—)< =(p+)
Qu,i(ra(p)z 2 2

0, otherwise

&)

With reference to the architecture of Fig. 3, this filter operator
is implemented at the client side to decide on whether or not
to initiate the processes from feature extraction and beyond.

V. MEASUREMENT AND IMPLEMENTATION SETUPS

A. MEASUREMENT SETUP

A measurement system over a client-server architecture was
implemented using the platforms of Unity, Python, and
OpenCV. The client and the server were connected through
Transmission Control Protocol (TCP) and Internet Proto-
col (IP) using socket programming. Sockets were created
based on the IP address and port numbers of the endpoints.

1) CLIENT INFORMATION

The client was a laptop device that was running an emulator
of human movement within the area of interest. The emulator
is a game in which a human avatar can walk inside a grid
layout area of static objects. This is presented in Fig. 7, while
the script flow of the implementation is presented in Fig. 8.
Within the client, the following processes occur: OpenCV
was used to capture images on the field of view and location
of the user. The hashcode of images was then created and
converted to base64 string. This frame was sent to the server

220269

IEEE Access

G. Koutitas et al.: Practical Methods for Efficient Resource Utilization in AR Services

AR Client Edge Server
Input Create feature
Field of View points (run ORB
Location algorithm)
|
=R
O S5
5. penCV ald
2 Capture image S =132
o = o 7]
&y 9 =1
< = -
3~ c
2 Kk
S & N
57 e ! 39
Create image t Sequenua} E S
hashtag BRU?E feature Py
T matching 0
) C
ERY P
o /
59 Convert image 1
% § to base64 P
Z 3
=
SRR —
EIE -
L g Send frame to j Return object to
213 server client
S5
L wm
= =

FIGURE 8. Script flow for the implementation of the measurement
procedure.

using the socket. To capture the network in-flow to the client
and out-flow data from the client, the client was integrated
to a third-party application called Wireshark. The sent and
received packets were captured according to the IP address
of the client and the server. The I/O Graph was used to record
traffic per second. CPU measurements were captured with the
Unity Profiler which is a tool used to get performance data for
an AR application.

2) SERVER INFORMATION

The server was an edge device with the specifications pre-
sented in Table 1. The server received the frame from the
client and by using the ORB algorithm, it calculated the
feature points. The features points of each frame were then
compared in a sequential manner to the features of cached
images in the cache, and feature matching was performed
with the BRUTE FORCE algorithm.

The best-fit image on the database was returned to the
client through the Socket. All processes were performed
in the form of a Python script and OpenCV libraries and
algorithms. In RaspberryPi we used a Python script, named
“psutil” library to capture CPU usage; this is a cross-platform
library for retrieving information on running processes and
system utilization.

B. IMPLEMENTATION CHALLENGES

The proposed approaches have some challenges associated
with their implementation. For best performance, the caching
algorithm requires information about the user and object
locations. This is important in order to create the clusters,
as indicated in Fig. 5. The clusters are groups of images that
exist in nearby distance, and they are used to further reduce
the time consumed in the sequential search process. There

220270

TABLE 1. Edge server specifications.

Field Description

Name Raspberry Pi 3

SoC Broadcom BCM 2837

CPU 4x ARM Cortex-A53, 1.2GHz

GPU Broadcom VideoCore IV

RAM 1GB LPDDR2 (900MHz)

Network 10/100 Ethernet, 2.4GHz 802.11n wireless

Bluetooth Bluetooth 4.1 Classic, Bluetooth Low Energy
Storage microSD
GPIO 40-pin header, populated

HDMLI, 3.5mm analogue audio-video jack, 4x
Ports USB 2.0, Ethernet, Camera Serial Interface

(CSI), Display Serial Interface (DSI)

are various ways to obtain knowledge about user location:
one is through an indoor localization system; another one
is to have the 3D scene available in the AR application and
to have spatial mapping and Simultaneous Localization and
Mapping (SLAM) as possible mechanisms to find the user
location.

The locations of objects are usually known since store
owners always keep a log of product position and quantities.
If this information is not available, product locations can
be found with specialized cameras and SLAM algorithms
deployed on the scene. An alternative approach is to rely on
participatory sensing from users. Assuming that a training
period is available, during which the AR apps of users feed
the system with frames of object images that can be classified
in the backend database, the position of objects can then be
computed. In that case, the AR application provider is only
required to register objects in the database.

VL. RESULTS

A user may navigate in the aisles and she looks at prod-
ucts through a headset rotation. We modeled 1,000 different
objects, each represented by a different image. Each object
has a specific location in space and a significance probability.

A. IMAGE CACHING ALGORITHM

The results for the caching algorithm are presented in Fig. 9,
Fig. 10 and Fig. 11. Measurements concern the edge server
sincethis is the entity that executes object recognition. For our
experimental investigation, we measured and compared the
performance of the three cases below.

Case 1 assumes no caching. This means that, as the user
moves in space, the uplink frame is compared to all registered

objects in the database. When a match is found, the process
ends. This case is expected to have the highest computational
costs and is used as a reference for comparison.

Case 2 models the scenario in which the user location is
given as an input to the cache database search procedure, and
the sequential search is limited to those items among the set
of cached ones with distances smaller than the threshold §,.
Case 2 is a heuristic version of a caching that is used to help
quantify potential savings. Finally, Case 3 is the proposed

VOLUME 8, 2020

G. Koutitas et al.: Practical Methods for Efficient Resource Utilization in AR Services

IEEE Access

09 o
0.8]
0.7 F @, 4
Case |

0.6 .
05 .
0.4 .

03[

02

Normalized Computational Resources

0.1

0 5 10 15 20 25 30
Position index

FIGURE 9. Comparison of computation resources for the three use cases.

caching method, where objects in the cache database are
sorted and cached according to the metric defined in (8).

The results are presented as normalized values compared to
the worst-case scenario of Case 1. In Fig. 9, it is observed that
for Case 1, the required computational resources, modeled
by the CPU and execution time, are much larger than those
compared to Cases 2 and 3. The reduction of the amount of
computational resources for Case 3 is substantial, and this is
expected since ranking objects according to the significance
probability and the other metrics provides the local cache
with accurate results, without the need for in- depth search
in the database. Case 3 showed an improvement of 96%
compared to Case 1 and 17% compared to Case 2 according
to the mean values. There are occasions when Case 1 required
almost the same amount of computation resources with those
in the caching approach. This is because it is still possible that
feature matching occurs early in the search. Of course, such
a likelihood is low.

Different user viewing behavior profiles: Fig 10 presents
the simulation results only for Case 3 and for three different
user profiles. The High user profile models a user that was
moving in space and observing objects with angles that follow
the pattern of the modeled visual attention. The Low user
profile models a user that looks at a direction opposite to
the one of the modeled visual attention, and it was used as
a reference point since it is the worst-case scenario. Finally,
the Random profile assumed random user observations ¢(¢).

The purpose of this measurement campaign is to observe
the effect of user observation profile on the cache search
depth and the needed computational resources. The cache
search depth is the normalized minimum index of the local
cache that created an accurate result. This is computed in nor-
malized fashion as depth = j / |C| and takes values between
0 and 1, where | C| is the size of the image set in the cache and
Jj is the index of the first element in the cache database where
feature matching occurs, meaning that s;;>6. It is observed
that for the High user profile, the caching index is very small,
namely close to 0. This means that the sequential search of

VOLUME 8, 2020

1 o o i o o b i s s i B S S

P
o \
8 i
S o8l ! Low |
2 i
S ol |
g osr | . 4
_ = i 7
s E] /\ Random .
E S 04 ! i ; - |
] " AN ~ VA N
Z = i 7 + [SNy # N F
2 02r 4/ N J \WHigh 77 N/ 0y RN A
£ /k‘» / + ¥
VO 0
) 5 10 15 20 25 30
Position index
1 N —— ‘*4\&;4*;4 S
A Low
_ 08f + .
= B /) Random
KR ost [. |
E g) ” ‘v /) + 7(\ k
E .E o4 | k N\ a B
5= ¥ %] ! AN o
zZ F] 3% !\ I [F X AN AN /l
O o2r /3 / Y 1 Y ngh # v \ / | / N \ 7
\ / \
! \ \ o o i v \‘/ \ /,‘ + v
o i el e Rt |
0 5 10 15 20 25 30

Position index

FIGURE 10. Computation resources and caching depth for Case 3 and for
3 different user profiles.

the cache immediately returned a correct match after few
parsed objects. This is expected because the user sends in
the uplink a frame image that is similar to the one cached
in the database, due to the applied popularity index. On the
other hand, the Low user profile requires the largest amount
of resources, since the uplink frame is not easy to match. For
that reason, the cache search depth and computation resources
are very large and close to 1, implying that feature matches
occurred mostly towards the last elements of the database.
The Random profile yields results that fall in between the
two extreme cases above, as expected. The average cache
search depth of the High user was equal to 3% of the database,
whereas for the Random it was 23.1%, and for the Low user
profile, it was 98.2%. The higher the cache search depth,
the largest the probability that a frame needs to be sent to
cloud for object recognition.

Finally, Fig. 11 presents a comparison of the total execution
time versus number of users that require access to the AR
service. It is shown that there exists an almost linear increase
of the execution time as expected, but in Case 3 the total delay
was reduced.

B. SPATIAL FILTERING METHOD

This section describes the client-side measurement results
for the proposed spatial filtering algorithm. We focus on
the client side, since for non-continuous AR applications,
the client is responsible for finding the appropriate time to
initiate object recognition, based on a priori information such
as the targeted object and user current location.

Three cases are again considered: Case A assumes no
spatial filtering so that the client always sends frames to
the server, similarly to the continuous AR case. Following
the notation (9), Case 2 assumes that the client will only
start the object recognition process (Q = 1) only when
the distance is smaller than threshold 8,. Finally, Case 3 is
a full implementation of (9) and Q =1 when distance is
larger than §; and ¢-w/2<@p<@ + w/2. Results are presented
in Fig. 12. The user is assumed to walk in an aisle, and

220271

IEEE Access

G. Koutitas et al.: Practical Methods for Efficient Resource Utilization in AR Services

09 b

0.7 F 4

[
E 06 B
=
=
2 osf .
=
3 Case |
5 04f .
=
L
N
= 03| o
<
£
s
> 02f .
0.1F Case 3]
0b—— t ‘W
0 5 20 25 30

10 15
Number of simultaneous users

FIGURE 11. Execution time vs. active requests for the AR service.

2
—_15 R A
o "— — = = S
= /"Case B
=} /
[/ | !
O s /- |
/ Case C | [MCase C
i 3 s s 2 w0 e | s wo| 0 w0 w0 e
Region >4, | Region r<=4 Region
= f u <
;m 9-0/2<p<pHw/2
3 — S B e e e e s R DR e
5 | \
2
[
& 1w
% w0
; i 2 3 4 s o 2 40 e | 8 10 1 w0 160 10
) Position index Angle

FIGURE 12. CPU utilization and total network traffic (in and out) for the
client. Simulations concern the spatial filtering algorithm.

at position index 4 the user enters the region r<§;. The
network traffic and CPU utilization increased for Case B,
as expected. Up to this point, the average CPU and the
number of transmitted/received packets of Case 1 was 13.9%
and 170 packets/sec respectively, whereas for Case 2 they
were equal to 4.9% and 55.9packets/sec respectively. Clearly,
for Case 1 it was 0% and O packets/sec, since the object
recognition process was not triggered. At position index 6,
the user is assumed to be in front of the targeted object
and rotates from 0° to 180° degrees. The location of the
targeted object was at 90°. It can be seen that for Case 3 the
network traffic and the CPU utilization of the client increased
only when the field of view and the orientation of the user
covers the object location. The average CPU utilization and
number of transmitted/received packets for Case 1 was 14.2%
and 174.1packets/sec respectively, whereas for Case 2 these
are equal to 14.9% and 174.2 packets/sec. For Case 1, the
average CPU and packets were 2.4% and 19.1 packets/sec.
Cases 1 and 2 give similar results since in both cases object
recognition is executed all the time because the user is within
the region <.

VIl. CONCLUSION

With the forthcoming massive wave of commercialization
of Augmented Reality (AR) devices at retail level and the
development of AR services, edge computing will be key

220272

towards providing the holy grail of low-latency user expe-
rience. Towards this goal, applications should be designed
S0 as to optimize computational and communication costs.
In this work we started from a practical use case scenario,
that of a grocery store, where users move with their smart-
phones and continuously generate object recognition requests
as they seek holographic information about grocery prod-
ucts. We presented an image caching algorithm that helps
an edge server of an AR service provider reduce computa-
tional load by taking into account the user visual attention
to objects. This was modeled through an object significance
metric that captures expected user visual attention, and it
guides the population of the local cache and the sorting of
its elements (objects) to achieve an accurate match. Besides
object popularity, cache parsing delay and label accuracy
where also taken into account in ranking objects to cache.
It was experimentally shown that the proposed image caching
approach can reduce the server computational load by a factor
larger than 90%. Furthermore, the network traffic from the
AR client to the server was reduced through a filter-like
method that initiates object recognition only when needed,
namely when the object location falls within the client FoV.
Finally, a proof-of-concept validation was presented. As a
future step to this research, we plan to make a real deployment
using “‘real-life”” evaluation on a handheld mobile device in
a real small-scale grocery store.

REFERENCES

[1] Y. Yuan, ““Paving the road for virtual and augmented reality [standards],”
IEEE Consum. Electron. Mag., vol. 7, no. 1, pp. 117-128, Jan. 2018.

[2] D. Chatzopoulos, C. Bermejo, Z. Huang, and P. Hui, “Mobile augmented
reality survey: From where we are to where we go,” IEEE Access, vol. 5,
pp. 6917-6950, 2017.

[3] G. Koutitas, S. Smith, G. Lawrence, and K. Noble, “Smart responders

for smart cities: A VR/AR training approach for next generation first

responders,” in Smart Cities in Application. Cham, Switzerland: Springer,

2020.

G. Koutitas, J. Jabez, C. Grohman, C. Radhakrishna, V. Siddaraju, and

S. Jadon, “XReality research lab—Augmented reality meets Internet of

Things,” in Proc. IEEE INFOCOM Conf. Comput. Commun. Workshops

(INFOCOM WKSHPS), Apr. 2018, pp. 1-2.

[5] Q. Report, Augmented and Virtual Reality: The First Wave of 5G Killer

Apps. New York, NY, USA: ABIResearch, 2017.

[6] M. Rank, Z. Shi, and S. Hirche, “Perception of delay in haptic telepres-

ence systems,” Presence, Teleoperators Virtual Environ., vol. 19, no. 5,

pp. 389-399, Oct. 2010.

W. Zhang, B. Han, and P. Hui, “On the networking challenges of mobile

augmented reality,” in Proc. Workshop Virtual Reality Augmented Reality

Netw. - VR/AR Netw., 2017, pp. 24-29.

[8] A. Destounis, G. S. Paschos, and 1. Koutsopoulos, ‘““Streaming big data
meets backpressure in distributed network computation,” in Proc. IEEE
INFOCOM 35th Annu. IEEE Int. Conf. Comput. Commun., Apr. 2016,
pp- 1-9.

[9] J. Xu, B. Palanisamy, H. Ludwig, and Q. Wang, “Zenith: Utility-aware
resource allocation for edge computing,” in Proc. IEEE Int. Conf. Edge
Comput. (EDGE), Jun. 2017, pp. 47-54.

[10] A. Al-Shuwaili and O. Simeone, “Energy-efficient resource allocation
for mobile edge computing-based augmented reality applications,” /[EEE
Wireless Commun. Lett., vol. 6, no. 3, pp. 398-401, Jun. 2017.

[11] H. Feng, J. Llorca, A. M. Tulino, and A. F. Molisch, “On the delivery
of augmented information services over wireless computing networks,” in
Proc. IEEE Int. Conf. Commun. (ICC), May 2017, pp. 1-7.

[12] C. Bermejo, Z. Huang, T. Braud, and P. Hui, “When augmented reality
meets big data,” in Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst.
Workshops (ICDCSW), Jun. 2017, pp. 169-174.

[4

[l

[7

—

VOLUME 8, 2020

G. Koutitas et al.: Practical Methods for Efficient Resource Utilization in AR Services

IEEE Access

[13] J. Chakareski, “VR/AR immersive communication: Caching, edge com-
puting, and transmission trade-offs,” in Proc. VR/AR Netw. Workshop
Virtual Reality Augmented Reality Netw., 2017, pp. 36-41.

[14] S. Ioannidis and E. Yeh, “Jointly Optimal Routing and Caching for Arbi-
trary Network Topologies,” IEEE J. Sel. Areas Commun., vol. 26, no. 6,
pp. 1258-1275, 2018.

[15] S. Shukla, O. Bhardwaj, A. A. Abouzeid, T. Salonidis, and T. He,
“Hold’em caching: Proactive retention-aware caching with multi-path
routing for wireless edge networks,” in Proc. 18th ACM Int. Symp. Mobile
Ad Hoc Netw. Comput., Jul. 2017.

[16] L.E. Chatzieleftheriou, M. Karaliopoulos, and I. Koutsopoulos, “Caching-
aware recommendations: Nudging user preferences towards better caching
performance,” in Proc. IEEE INFOCOM Conf. Comput. Commun.,
May 2017, pp. 1-9.

[17] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch, and G. Caire,
“FemtoCaching: Wireless video content delivery through distributed
caching helpers,” in Proc. IEEE INFOCOM, Mar. 2012, pp. 1107-1115.

[18] L. E. Chatzieleftheriou, G. losifidis, I. Koutsopoulos, and D. Leith,
“Towards resource-efficient wireless edge analytics for mobile augmented
reality applications,” in Proc. 15th Int. Symp. Wireless Commun. Syst.
(ISWCS), Aug. 2018, pp. 1-5.

[19] U. Drolia, K. Guo, and P. Narasimhan, “Precog: Prefetching for image
recognition applications at the edge,” in Proc. 2nd ACM/IEEE Symp. Edge
Comput., Oct. 2017, pp. 1-13.

[20] L. N. Huynh, Y. Lee, and R. K. Balan, “DeepMon: Mobile GPU-based
deep learning framework for continuous vision applications,” in Proc. 15th
Annu. Int. Conf. Mobile Syst., Appl., Services, Jun. 2017, pp. 82-95.

[21] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu, “DeepCache: Principled
cache for mobile deep vision,” in Proc. 24th Annu. Int. Conf. Mobile
Comput. Netw. - MobiCom, 2018, pp. 129-144.

[22] S. A. K. Tareen and Z. Saleem, “A comparative analysis of SIFT, SURF,
KAZE, AKAZE, ORB, and BRISK,” in Proc. Int. Conf. Comput., Math.
Eng. Technol. (iCoMET), Mar. 2018, pp. 1-10.

[23] I. Stulec, K. Petljak, and A. Kukor, “The role of store layout and visual
merchandising in food retailing,” Eur. J. Econ. Bus. Stud., vol. 4, p. 331,
Jan. 2016.

[24] Eyeware. Predictive Retail Analytics: How to Use Data to Understand
Shopper Behavior and Grow Sales. Blog Post. Accessed: 2019. [Online].
Available: https://eyeware.tech/blog/how-to-use-retail-analytics/.

[25] OpenCV Documentation. Accessed: Nov. 1, 2020. [Online]. Available:
WWW.0pencv.org

[26] DEMO Concept Video. Accessed: Nov. 1, 2020. [Online]. Available:
https://youtu.be/e3rIXmHNUio and [Online]. Available: https://xreality.
wp.txstate.edu/demos/

GEORGE KOUTITAS (Member, IEEE) received
the B.Sc. degree in physics from the Aristotle
University of Thessaloniki, Greece, and the M.Sc.
(Hons.) and Ph.D. degrees (EPSRC Scholarship)
from the University of Surrey, U.K. He is currently
an Academician and an Entrepreneur in electrical
and computer engineering. He is also an Assistant
Professor with the Ingram School of Engineering,
Texas State University, and the Director of the
XReality Research Laboratory. He has published
more than 58 scientific articles that have received more than 1200 citations.
He has founded two startup companies in Austin, TX, in the areas of customer
engagement and virtual/augmented reality. Through his startup journey,
he created digital platforms and helped large corporations implement digital
strategies in outdated sectors, such as electric utilities and medical response.
His main research interests include wireless communications, augmented
and virtual reality, and the Internet of Things. During his studies, he received
the “Nokia Prize” for the best overall performance.

VOLUME 8, 2020

SHASHWAT VYAS is currently pursuing the bach-
elor’s degree in computer science with Texas State
University, TX, USA. He has been an Active Soft-
ware Developer with specialization in augmented
reality at the XReality Research Laboratory, Texas
State University. He has been a part of interdisci-
plinary research teams working for projects in the
areas of health, the Internet of Things, networking,
and industry 4.0.

CHAITANYA VYAS is currently pursuing the
Bachelor of Science degree in computer sci-
ence with Texas State University, TX, USA.
He is currently working as an Augmented Reality
Developer with the X-Reality Laboratory, Texas
State University. He has been involved as an
Active Researcher in multidisciplinary projects
that involve industry 4.0, medical response, and the
Internet of Things.

SHIVESH SINGH JADON is currently pursuing
the bachelor’s degree in computer science with
Texas State University, TX, USA. He has been
an Active Researcher with the XReality Research
Laboratory, Texas State University. He has worked
in interdisciplinary projects that cover digital
twin, the Internet of Things, and first responders.
His research interests include extended reality,
human—computer interaction, and visualization.

IORDANIS KOUTSOPOULOS (Senior Member,
IEEE) received the Diploma degree in electri-
cal and computer engineering from the National
Technical University of Athens (NTUA), Greece,
in 1997, and the M.Sc. and Ph.D. degrees in elec-
trical and computer engineering from the Uni-
versity of Maryland, College Park (UMCP), MD,
USA, in 1999 and 2002, respectively. He was
an Assistant Professor with the Athens Univer-
sity of Economics and Business (AUEB), Athens,
Greece, from 2013 to 2016, where he has been an Associate Professor
with the Department of Informatics, since 2016. He was a Lecturer and
an Assistant Professor with the Department of Electrical and Computer
Engineering, University of Thessaly, from 2005 to 2010 and 2010 to 2013,
respectively. His research interests include control and optimization and on
applications of machine learning, with application areas, such as mobile
crowdsensing, wireless networks, social networks, recommender systems,
smart energy grid, and cloud computing systems. He received the Fulbright
Scholarship from 1997 to 2003, the Marie Curie Fellowship from 2005 to
2007, the Single-Investigator European Research Council (ERC) Compe-
tition Runner-Up Award for the project RECITAL: Resource Management
for Self-Coordinated Autonomic Wireless Networks from 2012 to 2015,
and three Best Paper Awards for research on online advertising, network
economics, and network experimentation.

220273

