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Abstract—We study physical-layer (PHY) baseband functional
split policies in 5G Centralized Radio-Access-Network (C-RAN)
architectures that include a central location, the baseband unit
(BBU) with some BBU servers, and a set of Base Stations (BSs),
the remote radio heads (RRHs), each with a RRH server. Each
RRH is connected to the BBU location through a fronthaul link.
We consider a scenario with many frame streams at the BBU
location, where each stream needs to be processed by a BBU
server before being sent to a remote radio-head (RRH). For each
stream, a functional split needs to be selected, which provides
a way of partitioning the computational load of the baseband
processing chain for stream frames between the BBU and RRH
servers. For streams that are served by the same BBU server, a
scheduling policy is also needed. We formulate and solve the joint
resource allocation problem of functional split selection, BBU
server allocation and server scheduling, with the goal to minimize
total average end-to-end delay or to minimize maximum average
delay over RRH streams. The total average end-to-end delay is
the sum of (i) scheduling (queueing) and processing delay at the
BBU servers, (ii) data transport delay at the fronthaul link, and
(iii) processing delay at the RRH server. Numerical results show
the resulting delay improvements, if we incorporate functional
split selection in resource allocation.

Index Terms—Functional split selection, resource allocation,
end-to-end delay, optimization.

I. INTRODUCTION

Recent developments in 5G wireless architectures have
brought forth the promising architectural paradigm of Cen-
tralized Radio-Access-Network (C-RAN), also referred to as
Cloud-RAN. In traditional architectures, the whole chain of
data-link control (DLC) and physical (PHY) layer functional-
ities is carried out at Base Stations (BSs). In C-RAN architec-
tures, BS functionalities become disaggregated, and most of
them take place at a central location, the Baseband Unit (BBU)
one, while each BS/Remote radio head (RRH) performs only
time-domain RF processing and A/D conversion.

There exist several advantages in a centralized architecture.
First, remote BSs have easier maintenance and lower deploy-
ment costs for mobile operators. Second, with virtualization
technologies, computational and other resources are consoli-
dated at the BBU location, and this leads to resource utilization
efficiency. Furthermore, many small cells can be jointly coor-
dinated with advanced techniques such as coordinated multi-
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point (CoMP) transmission and inter-cell interference manage-
ment, and through global system optimization. On the other
hand, the centralized approach places significant throughput
strain and stringent delay constraints on the fronthaul transport
network from the BBU to RRHs.

The concept of flexible functional splits is a tradeoff between
these two extremes, by splitting the computational load of the
chain of functions between the BBU and RRH locations. A
functional split is a partition of the chain of MAC-layer and
PHY-layer baseband processing functions into two sub-chains,
one executed at the BBU, and the other at the RRH. For a chain
of r functions, there exist (r−1) possible functional splits. A
functional split determines the amount of computational load
at the BBU and RRH servers and the amount of transported
data traffic from the BBU to RRHs. Such data are needed by
the RRH to run its sub-chain of computations.

Consider for example modulation that may be executed
at the BBU or at the RRH in the downlink. Assume m-
QAM modulation, a q-bit representation per complex base-
band sample, and one radio resource block (RRB) in LTE-
Advanced, with a user symbols. If modulation is the first
executed function of the RRH sub-chain, a log2m bits need
to be sent from the BBU to the RRH, while if modulation is
the last executed function of the BBU sub-chain, 2aq bits that
represent the I/Q complex baseband samples need to be sent
to the RRH.

Several options exist for functional splits, spanning DLC
and PHY-layer functionalities [1]. PHY-layer functionalities
are channel coding and decoding, modulation and demodula-
tion, resource mapping and demapping, Fast Fourier transform
(FFT) and inverse FFT, channel estimation and equalization,
analog-to-digital (A-to-D) and D-to-A conversion, and antenna
transmission and reception. DLC functionalities include the
Packet Data Convergence Protocol (PDCP), Radio Link Con-
trol (RLC) and Media Access Control (MAC), with tasks
such as data multiplexing, packet scheduling, CoMP, automatic
repeat-request (ARQ) protocols, packet reordering, handover
management, and security functions such as ciphering.

In this paper, we study PHY-layer functional splits of the
chain of baseband processing with the goal to understand their
impact on higher-layer resource allocation decisions. We use
end-to-end frame delay as a performance metric. For downlink,
this is the time elapsed from the moment when a frame arrives



at the BBU location, until the moment when the frame is
transmitted to the user by the RRH antenna.

A. Our contribution

We consider a scenario with multiple traffic streams at the
BBU location, where each stream needs to be allocated to a
BBU server before being sent to a RRH through the fronthaul
link. Since the latter is usually an optical fiber with abundant
bandwidth, it affects delay only through data transport, namely
there is no queueing delay at the fronthaul link. On the
other hand, BBU servers are realized through virtual machines
(VM) at the BBU location, and this implies finite computing
capacity. Each frame of the stream needs to undergo baseband
processing at a BBU server prior to transmission. For each
stream, a functional split needs to be selected which is a
way of splitting the required computational load of the chain
of baseband processing between the BBU and RRH. The
functional split also determines the volume of fronthaul data,
and thus the data transport delay. The assignment of frame
streams to BBU servers determines the computational load of
each server. If more than one streams are served by the same
server, a scheduling policy is also needed.

The total average end-to-end delay per frame is the sum of
(i) scheduling (queueing) and processing delay at the BBU
server, (ii) data transport delay at the fronthaul link, and
(iii) processing delay at the RRH server. Scheduling delay
depends on the functional split selection, server allocation and
scheduling policies, while the other two delays depend only
on the functional split selection policy. This work contributes
to the literature is as follows:
• We model frame processing at each BBU server with a
M/D/1 queue, with deterministic computational job size
per frame that depends on the selected functional split.
The job size and the amount of transported data on the
fronthaul are increasing functions of the functional split.

• We formulate the joint optimization problem of functional
split selection, BBU server allocation and server schedul-
ing with the aim to minimize the total average end-to-end
delay over RRH streams, and to minimize the maximum
average delay over RRH streams.

• We characterize the solution and complexity for the cases
of one BBU server (K = 1), and for the cases when the
number of BBU servers, K is equal to or smaller than the
number of streams, N (K = N , K < N ). Each of these
cases leads to an optimization problem with a different
set of controls. For K = 1 and K < N , the problems are
continuous-valued and convex, hence they can be solved
optimally in an efficient manner. For K = N , the problem
is equivalent to a minimum-cost bipartite matching one,
and hence solvable in polynomial time.

Current works consider a fixed functional split, same for all
RRHs, which is selected with back-of-envelope calculations
on throughput and delay. Our work fills the gap of deciding
on the optimal functional split selection, with a view towards
delay minimization. Further, this work is the first to introduce
a queueing model to characterize the impact of limited BBU

computing resources on average delay. It also makes plausible
assumptions to capture fronthaul transport and RRH server
processing delay. Our model and joint consideration of func-
tional splits, stream-to-BBU-server assignment and scheduling
are novel, and they showcase in a systematic way the interac-
tion and coexistence of functional split selection with critical
resource allocation decisions at the BBU location. In section
II, we present the model and assumptions. In sections III and
IV we formulate the problem and different extensions of it.
Numerical results are presented in section V, and related work
is discussed in section VI. We conclude in section VII.

II. MODEL

A. Frame streams and fronthaul

We consider a C-RAN architecture with a central BBU
location with K co-located servers. Server k has computing
capacity Ck operations (ops)/sec. There are also N RRHs.
The server of RRH n has computing capacity CRn ops/sec,
n = 1, . . . , N . We do not consider coordinated multi-point
(CoMP) transmission, thus each user is served by one RRH.

At the BBU location, there exist N downlink traffic streams,
where stream n ∈ {1, . . . , N} carries traffic frames of users
of RRH n and needs to be transported to RRH n. The frame
arrival process for stream n is Poisson with mean arrival rate
λn frames/sec. The Poisson assumption is justified by the fact
that each stream n consists of many independent small sub-
streams corresponding to individual users of each RRH, and
the fact that the aggregate of a large number of (not necessarily
Poisson) independent arrival processes, can be approximated
by a Poisson process with arrival rate equal to the sum of
individual arrival rates [2, Chap.5]. Let λ =

∑N
n=1 λn be the

total frame arrival rate for all RRHs at the BBU location.
A frame of stream n is viewed at the BBU servers as a

computation job with fixed, known computing requirements
wn, also refered to as load or job size. The computational
load refers to the arithmetic operations that are needed to
execute the entire chain of PHY-layer baseband processing of
the frame. In practice, wn varies according to random factors
such as the used modulation scheme, coding rate and SNR
[3], [4]. For instance, higher modulation schemes and coding
rates lead to larger computational load wn, due to the complex
processes of coding/decoding. Here, we assume that we know
the joint probability distribution of using different modulation
and coding schemes, and thus wn is the expected value of job
size for a frame of stream n with respect to that distribution.
Without loss of generality, we normalize it in [0, 1], where
maxn wn = 1.

We consider a simple fronthaul topology in which the
BBU location is connected to each RRH n through a link of
communication capacity un bits/sec. The model and fronthaul
topology are depicted in Fig. 1.

B. Functional splits

A functional split is a partition of the baseband processing
computation chain into two sub-chains, one executed at the
BBU location and the other at the RRH. It results in a portion
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Fig. 1. Pictorial view of basic components of the model.

of computational load of each frame executed at the BBU
servers, and the rest at the RRH. A set of possibilities exist
for functional splits. Fig. 2 depicts a computation chain and a
given functional split.

Let x ∈ [0, 1] denote the chain partition, where x = 1 and
x = 0 respectively mean that all chain functions are executed
at the BBU or RRH. Let f(x) denote the amount of computing
at BBU that corresponds to chain partition x, where f(·) :
[0, 1]→ [0, 1] is a continuous, increasing function. We assume
that f(x) is increasing and linear function, whose form can
be obtained through historical data (e.g. a dataset that involves
chain partitions and computational load measurements), and a
machine-learning curve-fitting model e.g., linear regression.

For each frame stream n, n = 1, . . . , N , a different func-
tional split xn may be selected. The amount of computation
(size of computational job) per frame at the BBU location and
at the RRH n is f(xn) = wnxn and wn(1−xn) respectively.

A functional split xn results in certain amount of data at the
BBU that needs to be transported to RRH n over the fronthaul
link. Measurements show that this amount of data increases
with the number of functions executed at the BBU [5], [6].
We assume that the amount of data per frame for functional
split x is given by an increasing function r(x), whose form
can be found with curve-fitting methods on data.

Remark: Other forms of f(·) are possible. For instance, if
measurements suggest that early-stage functions in the chain
(e.g. coding, DFT) are more computation-intense than subse-
quent functions, and that these in turn are more computation-
intensive than next ones, f(·) could be modeled as piece-wise
linear concave function, as in Fig. 2.

C. Frame computation scheduling at the BBU servers

We consider the class of non-preemptive priority scheduling
policies P . Namely, new arriving higher-priority jobs do not
interrupt the service of a lower-priority job, but they wait
until the service time of that job is completed. A pure priority
scheduling policy π = (π1, . . . , πN ) ∈ P is a vector whose
n-th component πn ∈ {1, . . . , N} denotes the priority with
which frames of the n-th stream are served, and (π1, . . . , πN )
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Fig. 2. An example chain of baseband processing computation, a possible
functional split, and a possible form of increasing function f(·). The upper
and lower parts of the chain with respect to the functional split denote
computations performed at the BBU and RRH respectively.

is a permutation of {1, . . . , N}. For example for N = 2, it is
P = {(1, 2), (2, 1)}. For policy (2, 1) it is π1 = 2 and π2 = 1,
i.e., stream 2 is served with highest (first) priority.

Let W(π) = (W1(π), . . . ,WN (π)) be the stream queueing
delay vector achieved by pure priority scheduling policy π.
Let W be the set of queueing delay vectors achievable by any
scheduling policy. We have [7, Lec. 2], [8] that

W = Conv.Hull{W(π) : π ∈ P} , (1)

where the convex hull of discrete set X = {x1, . . . , xm} is

Conv.Hull(X )={y : y =

m∑
i=1

aixi :

m∑
i=1

ai =1 and ai ≥ 0 ∀ i}.

(2)
Thus, any achievable delay vector by any scheduling policy
can be obtained through an appropriate convex combination
of pure priority scheduling policies.

Given the Poisson frame arrival processes and the deter-
ministic (yet, functional split-dependent) processing times of
computation jobs, a BBU server may be modeled as a M/D/1
queue. We consider the following three cases for BBU servers.

1) Case 1: One BBU server (K = 1): If BBU computing
resources are aggregated to a single server of computing
capacity C ops/sec, the controller needs to choose a functional
split policy x = (x1, . . . , xN ) and a server scheduling policy
π.

The BBU server is a multi-class M/D/1 queue with prior-
ities, where each class corresponds to a RRH stream. Starting
from the M/G/1 queue with priorities [9, Section 3.5.3], we
get that the average waiting time in the queue (queueing delay)
for a frame of stream n for priority scheduling policies is

Wn(x,π)=

1

2C2

N∑
n=1

λnf
2(xn)(

1− 1

C

∑
i:πi<πn

λif(xi)
)(

1− 1

C

∑
i:πi≤πn

λif(xi)
) .
(3)



Queueing delay depends on the functional split policy x
and the scheduling policy π. The queueing delay for a frame
of stream n depends on the arrival rates and service times of
jobs of higher priority than those of n. If f(·) is linear, then
Wn(x,π) is convex in x. Indeed, it can be verified through
standard algebra that e.g., for N = 2 the Hessian matrix of
Wn(x,π) is positive semi-definite for all x and any π.

The average service time per frame of stream n is Sn(xn) =
f(xn)/C, and the total average delay per frame of stream n
at the BBU server is

dBn (x,π) = Wn(x,π) + Sn(xn) . (4)

If we allow schedules to be convex combinations of pure
priority policies, the set of feasible scheduling policies P∗ is
the set of (1 × N !) probability vectors p = (p1, . . . , pN !),
where pi denotes the portion of time when a pure priority
policy πi, i = 1, . . . , N ! is used, and

∑
i pi = 1. Then, the

average queueing delay is

Wn(x,p) =

N !∑
i=1

piWn(x,πi) . (5)

D. Transport over the fronthaul and RRH processing

After completion of the computation for a frame at the BBU
location, the generated data for this frame is transported over
the fronthaul to RRH n. Since the fronthaul link is usually
an optical fiber, fronthaul link capacity is abundant and link
queueing does not occur. If functional split xn is chosen for
stream n, the data transport delay from the BBU to RRH n is

dFn (xn) =
r(xn)

un
. (6)

When data arrives at RRH n, the remaining wn(1−xn) amount
of the computation per frame takes place at the RRH server.
Since frames arrive at RRH server n at a given, fixed rate
1/dFn (xn) and computational jobs have fixed size, equal to
wn(1 − xn), the RRH server may be modeled as a D/D/1
queue. If functional split xn is chosen so that the arrival rate
is less than the service rate at that queue, i.e.

un
r(xn)

<
CRn

wn(1− xn)
,∀ n (7)

there will be no queueing delay at the RRH server, and frame
processing takes time

dRn (xn) =
wn(1− xn)

CRn
. (8)

The end-to-end delay for a frame destined to RRH n is

Dn(x,π) = dBn (x,π) + dFn (xn) + dRn (xn) . (9)

If f(·) is linear, then Dn(x,π) is a convex function.

III. PROBLEM FORMULATION AND SOLUTION

A first objective, which we refer to as objective I, is to
minimize total average end-to-end delay (9), which depends on
the scheduling policy at the BBU server, and on the functional
split policy. A given functional split xn for stream n affects the
execution time of sub-chains of functions at the BBU server
and the server of RRH n. Together with the scheduling policy
at the BBU server, it also affects the queueing delays of other
streams that are served with lower priority than stream n at
the BBU server. The functional split also influences fronthaul
data transport delay to RRH n through the volume of generated
data per frame.

In order to impose a sense of fairness in treating different
frame streams, a second objective which we call objective II is
to minimize the maximum end-to-end delay over all streams.
For the objective functions, we use notation D̄z

ω(·) where ω ∈
{1, 2, 3} denotes one of the three cases: Case 1: K = 1; case
2: K = N ; case 3: K < N ; the latter two cases will be studied
in section IV); and z ∈ {I, II} denotes objective I or II.

A. Objective I: Minimize total average end-to-end delay for
K = 1 BBU server

We need to solve:

min
x,π

D̄I
1(x,π) =

1

λ

N∑
n=1

λnDn(x) =

=
1

λ

N∑
n=1

λn

(
Wn(x,π) + Sn(xn) + dFn (xn) + dRn (xn)

)
.

(10)

with Wn(x,π) given by (3), subject to 0 ≤ xn ≤ 1 and (7)
for each stream n, and subject to the necessary and sufficient
condition for queue stability,

∑N
n=1 λnf(xn) < C.

a. Fixed functional split selection policy. If the functional
split selection policy x0 is given, the scheduling policy
that minimizes D̄I

1(x0,π) is Shortest-Processing-Time-First
(SPTF), which minimizes the total average queueing delay,∑N
n=1 λnWn(·). SPTF serves streams n in increasing order

of f(xn).
b. Fixed scheduling policy. For fixed scheduling policy π0,

we need to minimize D̄I
1(x,π0) with respect to x subject to

constraints 0 ≤ xn ≤ 1, constraints (7), and the queue stability
constraint. This is a convex optimization problem in x that can
be solved through first-order optimality conditions [10, Ch.3]
or numerical methods such as gradient descent.

c.Joint problem. If we allow scheduling policies to include
convex combinations of pure priority schedules i.e., schedules
p ∈ P∗, the joint problem of finding the functional split x and
scheduling policy p so as to minimize D̄I

1(x,p) is a nonlinear
program (NLP) that can solved with numerical methods.

If we consider only pure priority scheduling policies in
discrete set P , the joint problem of finding the functional split
and scheduling policy (x,π) so as to minimize D̄I

1(x,π) is a
mixed-integer convex programming (MICP) problem that can
be solved with numerical methods and solvers [11].



If N is small and the N ! scheduling policies can be
enumerated, we may proceed as follows. For each pure pri-
ority scheduling policy πi, i = 1, . . . , N !, we find xi =
arg minx∈A D̄

I
1(x,πi), where A is the set of feasible solutions

determined by the constraints above, and we pick solution
x∗ = arg mini D̄

I
1(xi,πi) as the optimal solution.

If N is not small, a heuristic algorithm may be as follows.
We start with an arbitrary scheduling policy π(0) such as a
given priority policy or First-Come-First-Serve. At iteration 1,
we find x(1) = arg minx∈A D̄

I
1(x,π(0)). For solution x(1),

let π(1) be the corresponding SPTF policy. Then, we fix π(1)
and find x(2) = arg minx∈A D̄

I
1(x,π(1)), and so on until

convergence to a local minimum is achieved.

B. Objective II: Minimize maximum average end-to-end delay
for K = 1 BBU server

In objective II, the goal is to balance average end-to-end
delays across RRH streams as much as possible. We solve:

min
x,π

D̄II
1 (x,π) = min

x,π
max

n=1,...,N
Dn(x,π) (11)

= min
π,x

max
n

(
Wn(π,x) + Sn(xn) + dFn (xn) + dRn (xn)

)
subject to the same constraints as objective I above.

a. Fixed scheduling policy. If scheduling policy π0 is fixed,
the problem minx D̄

II
1 (x,π0) is solved by first defining an

auxiliary variable, t = maxnDn(x,π0). Then, the problem
becomes a nonlinear program (NLP):

min
x,t>0

t (12)

subject to:
Dn(x,π0) ≤ t ,∀ n , (13)

and the same constraints on x as in objective I above.
b. Fixed functional split policy. If the functional split x0 is

fixed, then, in order to solve minπ maxnDi(x
0,π), we define

variable t = maxnDn(x0,π) > 0. We need to find t and the
schedule that solve

min
π,t>0

t (14)

subject to:
Wn(π) + γn ≤ t for all n , (15)

where γn = Sn(x0n) + dFi (x0n) + dRn (x0n). We can express
Wn(π) as in (5), and then derive t and the mixtures pi of
pure priority policies πi, for i = 1, . . . , N ! from a linear
programming (LP) problem.

Alternatively, we can use the conservation law at the queue,
N∑
n=1

ρnWn(π) =
ρ

1− ρ
W0 = B , (16)

where ρn = λnf(x0n)/C is the server utilization factor due
to stream n, ρ =

∑
n ρn is the total utilization, and W0 =∑

n λn( f(xn)
C )

2
. Then, problem (14) subject to (15), (16) is a

linear programming (LP) problem with unknowns {Wn(π)},
n = 1, . . . , N and t, and its solution gives the queueing delay
vector W = (Wn(π) : n = 1, . . . , N).

Next, recall that the achievable delay region i.e. the set of
achievable queueing delay vectors under any scheduling policy
is the convex hull of the set of queueing delay vectors, each of
which is achieved by a pure priority scheduling policy. Thus,
vector W is attained through a unique convex combination of
pure priority policies. Therefore, we can solve a linear system
of equations to derive the time portions pi when each pure
scheduling policy πi, i = 1, . . . , N ! will be employed so as
to achieve the vector W of queueing delays.

c. Joint problem. The joint problem is a NLP with unknowns
t, the mixtures {pi} for i = 1, . . . , N !, and vector x.

IV. MODEL EXTENSIONS

A. Case 2: Number of BBU servers K = N

When virtualization allows the creation of a number of BBU
servers K = N , each stream is assigned to one BBU server,
and each server serves one stream. The computing capacity
of BBU server k is Ck ops/sec. Besides the functional split
policy x, we need to find a stream-to-server assignment policy
α = (α1, . . . ,αN ), where αn = (αn1, . . . , αnK) is a 0 − 1
vector with one entry equal to 1 and all other entries 0, with
αnk = 1 if stream n is assigned to BBU server k, and 0
otherwise.

Assume that stream n is assigned to server k(n), i.e.,
αnk(n) = 1. Since each BBU server is a M/D/1 queue, the
total average BBU (queueing and processing) delay for stream
n is

dBn (αn, xn) = dBn (k(n), xn) =

λn

(f(xn)

Ck(n)

)2
2
(

1− λnf(xn)

Ck(n)

) +
f(xn)

Ck(n)
.

(17)
and the total average end-to-end delay is

Dn(αn,x) = dBn (αn, xn) + dFn (xn) + dRn (xn) . (18)

1) Objective I: Minimize total average delay: When K =
N , we need to find a stream-to-server assignment policy α
and a functional split policy x to solve

min
α,x

D̄I
2(α,x) =

1

λ

N∑
n=1

λn

(
dBn (αn, xn)+dFn (xn)+dRn (xn)

)
,

(19)
subject to: (i) assignment constraints

∑K
k=1 αnk = 1 for each

stream n, and
∑N
n=1 αnk = 1 for each server k, (ii) 0 ≤ xn ≤

1 for each stream n, (iii) constraint (7) for each n, and (iv)
stability constraints λnf(xn) < Ck(n) for each n.

We construct a bipartite graph with a node set U1 of N
nodes with one node for each RRH stream, and a node set U2
of K = N nodes, with one node for each BBU server. For
each link (n, k) between n ∈ U1 and k ∈ U2, we define a cost

βnk = min
xn∈Ank

λn

(
dBn (k, xn) + dFn (xn) + dRn (xn)

)
, (20)

where Ank is the feasible region for xn when stream n is
assigned to server k, i.e. it is the set of xn’s that satisfy



constraints (ii)-(iv) above. The optimal solution is found
through minimum-cost bipartite matching in the graph above
in polynomial time through the Hungarian algorithm [12].

2) Objective II: Minimize maximum average delay: We
need to solve problem:

min
α,x

DII
2 (α,x) = min

α,x
max
n

(
dBn (αn, xn)+dBn (xn)+dRn (xn)

)
,

(21)
subject to the constraints above for case 2, objective I. We
again use auxiliary variable t.

a. Fixed server assignment. Assume a fixed server assign-
ment α0, such that α0

nk(n) = 1 for each n, i.e. stream n is
assigned to server k(n). The problem becomes:

min
t,x

t (22)

subject to:

dBn (k(n), xn) + dBn (xn) + dRn (xn) ≤ t ∀ n , (23)

and subject to constraints (ii)-(iv) above on x. This is a NLP.
b. Fixed functional split policy. If functional split x0 is

given, we define the bipartite graph as above, with cost for
link (n, k),

β0
nk = λn

(
dBn (k, x0n) + dFn (x0n) + dRn (x0n)

)
. (24)

The problem becomes:
min
t,α

t (25)

subject to:
K∑
k=1

β0
nkαnk ≤ t ∀ n (26)

and assignment constraints above (i). This is a mixed-integer-
linear program (MILP) and can be solved either with relax-
ation methods as a LP, or with Lagrangian duality [13, Ch.10]
or other numerical methods.

c. Joint problem. Define auxiliary variable t, and the bipar-
tite graph with costs as in (20). Constraints (i)-(iv) of case 2
of objective I also need to be satisfied. This is a mixed-integer
nonlinear program (MINLP).

B. Case 3: Number of BBU servers K < N

When virtualization results in a number of BBU servers
K < N , we have the more general form of the problem,
where (portions of) several streams can be served by the
same server. BBU server capacity constraints may dictate
that different portions of a stream are routed to different
BBU servers. Let λn = (λn1, . . . , λnK) be the splitting
(routing) policy for stream n, where λnk denotes the amount
of stream n traffic routed to server k, for k = 1, . . . ,K.
Let Λ = (λ1, . . . ,λN ) be the global stream-to-server routing
policy. A functional split policy x needs also to be selected.
Finally, a scheduling policy should be found for each server k
to serve the portions of streams routed to that server. Pure
priority schedules or convex combinations thereof can be
applied. In the former case, let the priority scheduling policy

for server k be πk = (πk1 , . . . , π
k
N ) where πkn ∈ {1, . . . , N} is

the priority with which frames of the n-th stream are served
at BBU server k. Let Π = (π1, . . . ,πK) be the overall
scheduling policy at different servers. The total average delay
for stream n at the BBU servers is

dBn (Λ,x,Π) =

K∑
k=1

λnk
λn

(
W k
n (Λ,x,πk) +

f(xn)

Ck

)
, (27)

where W k
n (Λ,x,πk) is the average delay for stream n at

server k. This depends on the priority with which stream n is
served at server k, on the portions of other streams routed to
server k that are served with higher priority than stream n in
k, and on the functional splits of these streams.

For convex combinations of pure priority scheduling poli-
cies, i.e., policies in P∗, we have

dBn (Λ,x,P) =

K∑
k=1

λnk
λn

(
W k
n (Λ,x,pk) +

f(xn)

Ck

)
, (28)

with

W k
n (Λ,x,pk) =

N !∑
i=1

pki W
k
n (Λ,x,πki ) , (29)

where pk = (pk1 , . . . , p
k
N !) is the convex combination of pure

priority scheduling policies {πki } at server k, i = 1, . . . , N !,
and P = (p1, . . . ,pK) is the ensemble of scheduling policies
at servers. The total average delay for a frame of stream n is

Dn(Λ,x,Π) = dBn (Λ,x,Π) + dFn (xn) + dRn (xn) . (30)

1) Objective I: Minimize total average delay: We solve:

min
Λ,x,Π

D̄I
3(Λ,x,Π)=

1

λ

N∑
n=1

λn

(
dBn (Λ,x,Π)+dFn (xn)+dRn (xn)

)
(31)

where dBn (·) is given by (27), subject to constraints on: (i)
traffic splits, i.e.

∑K
k=1 λnk = λn, for each stream n, (ii) queue

stability:
∑N
n=1 λnkf(xn) < Ck for each server k, λnf(xn) <∑K

k=1 Ck for each n and
∑N
n=1 λnf(xn) <

∑K
k=1 Ck, (iii)

constraint (7), and (iv) 0 ≤ xn ≤ 1 for each stream n.
a. Fixed functional split and traffic splitting policy. If

functional split x0 and traffic splitting Λ0 are given, the
scheduling policy that minimizes D̄I

3(Λ0,x0,Π) is Shortest-
Processing-Time-First (SPTF), applied to each server.

b. Fixed scheduling policy. When the scheduling policy Π0

is given, the problem minΛ,x D̄
I
3(Λ,x,Π0) is a NLP.

c. Joint problem. If we allow schedules to be convex
combinations of pure priority scheduling policies, the problem
is a NLP. If we consider the class of pure priority scheduling
policies P , the problem is a MICP. We can have an iterative
heuristic along the lines of that presented for K = 1, iterating
among finding the best Λ,x for given schedules at each server,
and then fixing these policies Λ,x and applying SPTF at each
server.

2) Objective II: Minimize maximum average delay: The
rationale is similar to that in case 1-objective II, by extending
to multiple servers the methodology for K = 1.
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Fig. 3. Minimizing total average delay (Objective I): Optimal functional splits
as function of BBU server capacity for different frame arrival rates λ1, λ2.
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Fig. 4. Minimizing total average delay (Objective I): Optimal mix of priority
schedules as function of BBU server capacity for different frame arrival rates
λ1, λ2. A value p means that stream 1 is served with first priority for p% of
the time, and with second priority for (1− p)% of the time.

V. NUMERICAL EVALUATION

In order to demonstrate the benefits of our optimization-
based approach, we consider the following cases.

A. Case 1: K=1 BBU server, N=2 RRH streams

We consider a system with K = 1 BBU server of capacity
C flops/sec and N = 2 RRHs with fronthaul links of capacity
ui = 50Gbps, i = 1, 2. Each RRH has a server of capacity
CR = 8 × 1011 flops/sec. This corresponds to a 2GHz 4-
core Intel Xeon processor with 100 flops/cycle. Frame streams
have arrival rates λi, in frames/sec. The workload is equal for
RRHs, i.e.w1 = w2 = 4.8 × 107 flops/frame. Function f(x)
that maps split x to the percentage of computation load at the
BBU is linear i.e. f(x) = wx, with x ∈ [0, 1]. The function
that maps split x to the amount of fronthaul data (bits/frame)
is also linear and is equal to

ri(x) = 106 × 0.1 + 1.9x

ui
, i = 1, 2 . (32)

For the order of magnitude, we have used Table 1 in reference
[6]. The linear functions above are only indicative, and their
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Fig. 5. Minimum total average delay as function of BBU server capacity for
different frame arrival rates λ1, λ2.
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Fig. 6. Minimizing max average delay (Objective II): Optimal functional
splits as function of BBU server capacity for different frame arrival rates
λ1, λ2.

exact forms can be determined through machine-learning
techniques on measurement datasets.

1) Objective I: Minimum average delay: In Figures 3-5
we show the optimal functional split x∗1, x

∗
2, optimal schedule

mixture p∗1, p
∗
2, and optimal value of the objective function

in objective I, as functions of BBU server capacity C, for
different arrival rates i.e., λ1 = λ2 = 5× 103 frames/sec, and
λ1 = 103 frames/sec, λ2 = 5λ1.

For BBU server capacity below a threshold C0 = 2.4×1012,
no operations are executed at the BBU server. For C > C0,
optimal functional splits mostly increase with C i.e. more
computations from both streams are executed at BBU. Fur-
thermore, the differential mostly decreases, i.e. x∗i (C) appears
to be a concave function of C. This is more evident for higher
values of C. Most of the times, the functional split is larger for
the stream with larger arrival rate. For λ1 = λ2, the optimal
functional splits for the two streams are the same. In terms of
schedules, mixes of 0.45 − 0.55 are seen most of the times,
which implies that the two streams are served with almost
the same priority in the long run, especially when they have
equal arrival rates. The minimum average delay is at the range
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Fig. 7. Minimizing maximum average delay (Objective II): Optimal mixture
of priority scheduling policies as function of BBU server capacity for different
frame arrival rates λ1, λ2.
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Fig. 8. Minmax average delay as function of BBU server capacity for different
frame arrival rates λ1, λ2.

54− 65µsec for the depicted range of values of C.
In Table I, we compare average delay for: (i) optimiza-

tion over functional split and scheduling policies; (ii) all
chain computations are performed at the BBU server, hence
x1 = x2 = 1 as in typical C-RANs, and we optimize only
over schedules. The proposed optimized functional split policy
achieves 2− 15 times lower delays that those in C-RAN, and
the benefit is larger for smaller BBU server capacity values.

2) Objective II: Minmax average delay: In Figures 6-8
we show the optimal functional splits, optimal schedules, and
minmax delay for objective II, as functions of C. In Fig. 6,
we observe increasing, and in most cases sigmoid-like forms
for optimal functional splits x∗i (C). For λ1 = λ2, the optimal
functional splits for the two streams are the same. In Fig. 7,
we see less balanced priority mixtures than those in Fig. 4.

B. Case 2: K=20 BBU servers, N=20 RRH streams

In Table II we consider the case of K = N = 20 and
objective I. RRH frame arrival rates are uniformly distributed
in (0, 104) frames/sec, and results are averaged over 100
experiments. We compare the delay of the following policies:

CAPACITY C TOT. AVG. DELAY TOT. AVG. DELAY
OPT. FUNCT. SPLITS CLOUD-RAN

(in flops/sec) (in µsec) (in µsec)
1× 1011 62.95 953.38
5× 1011 62.74 363.94
1× 1012 62.26 227.3
2× 1012 62.02 136.1
3× 1012 57.37 115.18
4× 1012 53.49 105.69
5× 1012 50.83 100.25

TABLE I
MIN TOTAL AVERAGE DELAY VS. BBU SERVER CAPACITY FOR OPTIMAL

FUNCTIONAL SPLITS AND FOR CLOUD-RAN (λ1 = 1× 103 ,
λ2 = 5× 103).

CASE C ∈ [1010, 1011] [1011, 1012] [1012, 1013]
CASE A 601.88 238.37 48.61
CASE B 610.85 261.0 53.12
CASE C 2,810 355.39 49.57
CASE D 9,300 5,400 53.39
CASE E 602 602 602

TABLE II
MIN TOTAL AVERAGE DELAY (IN µSEC) FOR DIFFERENT BBU SERVER

CAPACITY RANGES FOR DIFFERENT POLICIES (λi ∈ [0, 104] FRAMES/SEC).

• A: Optimization of functional splits and BBU server
assignment, as in subsection IV.A.

• B: Optimization of functional splits, with random BBU
server assignment.

• C: C-RAN, i.e., all operations executed at BBU servers
(xi = 1,∀i), and optimal server assignment.

• D: C-RAN, with random BBU server assignment.
• E: all operations executed at RRHs (xi = 0,∀i).
The columns show different ranges of the K BBU server

capacities: uniformly distributed in [1010, 1011], [1011, 1012]
and [1012, 1013] flops/sec. Significant delay reductions are seen
for our optimized policy (policy A) over policy B which does
random server assignment, and over the C-RAN policies C,D,
but these diminish with increasing BBU server capacity.

VI. RELATED WORK

A. Fronthaul data transport protocols

The first chronologically proposed fronthaul transport pro-
tocols were the Common Public Radio Interface (CPRI) and
the Open Base Station Architecture Initiative (OBSAI) [14],
[15]. The former sends Constant-Bit-Rate (CBR) raw I/Q
sample data over a dedicated channel, while the latter uses
a packet-based mode to send I/Q samples, and both use
Radio over Fiber (RoF). Transmission of raw samples leads to
high fronthaul bandwidth. Next Generation Fronthaul Interface
(NGFI) [16] was created with the mission to rethink fronthaul
data transfer. NGFI supports Ethernet for fronthaul data trans-
port and exploits statistical multiplexing and packet routing.
Current standardization efforts with different possibilities for
functional splits at DLC and PHY layers include the 3GPP
[17] and the IEEE 1914 [18], where the latter supports NGFI.



B. Functional split selection and C-RAN resource allocation

C-RAN fronthaul requirements and converged fron-
thaul/backhaul architectures are discussed in [19]. Flexibility
in functional splits reduces the required data rate between the
BBU and RRHs [20]. With respect to PHY-layer splits, the
work in [21] considers delay minimization for a static problem
of functional split selection (out of a discrete set of choices)
and packet sequencing, in which a given set of frames need
to be transported to RRHs. In [6], the authors study the joint
problem of functional split selection and routing to RRHs over
different fronthaul topologies. The objective is to maximize the
degree of centralization i.e. the number of functions executed
at the BBU, subject to delay requirements and fronthaul link
capacity constraints. In a similar thread, the work [22] studies
the joint problem of selecting functional splits and BBU-RRH
routing paths out of a set of three splits and a finite set of paths
so as to minimize the network operational (i.e. computing and
routing) cost.

In [23], the authors do a numerical study on the impact of
functional split and traffic packetization on fronthaul delay.
They consider RRH multiplexing and select the functional
split and packetization mode so that a large number of RRHs
are supported, subject to deadline constraints due to packet
retransmission and fronthaul link capacity constraints. An
adaptive functional split for the DLC layer is proposed in [24]
based on optimizing the tradeoff between reaping coordination
benefits of centralization and maintaining low fronthaul traffic.

The work [25] views the problem of functional split and
function placement in the network as a graph clustering
one. The baseband function chain is modeled as a directed
acyclic graph. A node is a baseband function, and a link
between two nodes denotes precedence. Node weights show
computing costs for the function, while link weights model
communication traffic between functions. The work [26] con-
siders clustering of BSs and scheduling of computational
tasks on different cores so as to maximize the number of
BSs for which scheduling complies to deadline constraints.
Functional split selection and placement are also studied in
[27] through integer-linear programs so as to minimize inter-
cell interference, power and fronthaul bandwidth consumption.

A broader perspective of computation chain placement on
a physical network graph is graph embedding. The chain of
functional operations is a directed acyclic graph in which each
node is an operation, and links denote operation precedence.
An embedding of the computation graph on the network graph
is a mapping from operation nodes to network computation
nodes. The embedding that minimizes delay and cost is NP-
complete [28]. A dynamic-decision version of graph embed-
ding through a queue backpressure-based policy is presented
in [29] with the goal to maximize query computation rate.

C. Operations research and queueing theory

An array of works from operations research on job schedul-
ing are related to this work, e.g., [30] and references therein.
Choosing among functional splits is reminiscent of variable,
controllable processing times of jobs [31]- [33]. A relevant

thread from queueing theory is the multi-class M/G/1 queue,
where each class is served according to a priority discipline [9,
Chap.3.5.3]. The cµ-rule specifies the priority assignment that
minimizes total average delay

∑
k ckDk. Classes k are served

in decreasing order of ckµk, where ck is a cost per unit of
delay and µk is the processing rate for class k. Namely, the
highest-priority class is the one with highest ckµk. For ck = c,
the cµ-rule reduces to Shortest-Processing-Time-First (SPTF).

VII. CONCLUSION

End-to-end latency minimization will play a central role
in future wireless architectures, towards enabling advanced
low-latency services. This work is a first step towards a
principled approach to the problem of minimizing end-to-
end delay, through functional split selection and BBU server
resource allocation. The novel contributions are: (i) a model
that abstracts functional split as a partition of the computation
chain between the BBU and RRH locations, (ii) a queueing-
theoretic approach to compute end-to-end delay, in which
the computation job size and the amount of transported data
depend on the functional split, and (iii) the formulation of
the delay optimization problem that obtains different twists,
depending on the number of BBU servers and RRH streams.

Several important extensions could be considered. The main
objective of the work is to showcase the formulation of
optimization problems in this setting and provide insights
on the problem and associated policies. The implementation
and performance benefits of such policies in real conditions
warrant further investigation. The creation of datasets with
employed functional split and values of attributes such as the
amounts of computation and transported data, and possibly
others would be an important next step towards the precise
form of functions f(·) and r(·). Other performance metrics
can be considered and included in the formulation, such as the
amount of consumed energy due to BBU server computation
and fronthaul data transmission. Functional splits could be
extended to the MAC layer, by capturing in the model the
benefits of joint coordination and optimization of multiple
cells at the BBU location. CoMP transmission could also be
incorporated. In that case, the average delay for each stream
would need to be reconsidered.

In this work, we considered priority scheduling at the level
of RRH flows so as to control delays of different RRH
flows. An addition would be to also include priorities among
user flows. Dynamic adaptation of the functional split can
be considered in response to dynamics such as background
processes that alter the effective computing capacity of BBU
and RRH servers. Various models can be defined to address
this problem that also account for possible switching costs
between functional splits. Finally, we have assumed fixed job
sizes, which led to a tandem of a multi-class M/D/1 queue at
the BBU, and a D/D/1 queue at the RRH, for which the total
delay was the sum of delays in the two queues. If real data
suggest a random job size distribution, then the first queue in
the tandem would be a M/G/1 one, and the queues in tandem
would be interesting to analyze in terms of total delay.
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