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Abstract

We propose an online replay-based Continual Learning policy, in which the learner
stores data points to a local buffer and replays it during training. The core of
our contribution is a new replay buffer contents update policy that combines a
Kullback-Leibler (K-L) loss and an appropriate modification of the celebrated
Reservoir Sampling algorithm. The decisions at each time are, whether the newly
arriving training data points will be inserted in the buffer, and which existing
data points from the buffer will be substituted. We update the buffer content
so that the proportion of stored data points from different classes in the buffer
approximates a target distribution that depends on the empirical distribution of
classes seen in the training data stream. We parameterize the target distribution
with a single parameter that allows us to model different target class distributions
in the buffer, such as the class distribution that is present in the training data stream,
the uniform class distribution, and a distribution with class percentages that are
inversely proportional to those in the training data stream. We evaluate our method
on MNIST, Fashion-MNIST, CIFAR-10 and CIFAR-100, and we show that our
method is superior to the state-of-the-art Reservoir Sampling algorithm. Our main
finding is that the best (in terms of accuracy and forgetting) value of the parameter
that determines the distribution of classes in the buffer versus that of the stream
depends on statistics of the training data and on the dataset itself. Our work paves
the way for further work to learn this parameter in the realistic scenario that it is
unknown, thus contributing to the objective of an optimal replay-based continual
learning approach that adapts to the specifics of each scenario.

1 Introduction

In online supervised continual learning, the learner receives a batch of labelled training data at each
time slot, and its goal is to train at each time slot a Machine Learning (ML) model that would perform
well in the inference (test) tasks in that time slot. Due to memory constraints, the learner cannot
maintain all previously seen training data and use it to train a model; instead, it can only maintain a
small portion of it. An important issue in this setting is the non-stationary distribution of training
data which manifests itself as a time-varying empirical distribution of the classes seen in the training
examples over time. Therefore, classes may appear with an unpredictable proportion in the training
data, and their distribution may be inherently imbalanced in the long run.

Since the statistics of the test data stream are often non-stationary as well, the major challenge
in Continual Learning is to satisfy any arising inference requests, by maintaining at each time an
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informed model that has not forgotten acquired knowledge from past seen training data [12], and
at the same time it incorporates new knowledge from the new training data batch. Incorporating
new knowledge that hurts performance on past inference tasks is known as catastrophic forgetting
[12]. Approaches in the literature that prevent catastrophic forgetting can be roughly categorized
as follows: (i) regularization methods that penalize changes in neural network (NN) weights that
are important to previous seen tasks [8, 1, 14, 21, 10]; (ii) Dynamic expandable NN architectures
that grow the number of NN weights to fit new knowledge [13, 14, 20]; (iii) knowledge distillation
[3, 19, 9]; and (iv) replay-based methods [11, 16, 17], which operate with a replay buffer, in which a
small portion of selected past training data are retained and used together with the current training
data to update the model. Our approach falls within the class of replay-based methods.

Previous replay-based approaches in the literature have focused on different goals. For example, the
Reservoir Sampling (RS) algorithm keeps in the buffer a subset of data points that are representative
of all training data that are seen up to that time. In that sense, the proportion of classes in the buffer
tries to approximate the (time-varying) distribution of classes in the training data stream. On the other
hand, the work [4] aims to balance as much as possible the stored data points with respect to their
class labels.

The performance of these methods in terms of test accuracy is very much dependent on the class
distribution of the training and the test data streams. Because the methods above take into account
only the class distribution in the training data, they perform well only when the class distributions
in the training data and in the test request stream are similar. However, these two distributions are
not necessarily similar. This phenomenon is exacerbated in online settings where non-stationarity
appears in both the training data and the test request data distribution.

For example, if the class distribution is imbalanced in the training data and balanced in the test requests
stream, the CBRS algorithm in [4] tries to store in the buffer data points so that the (imbalanced)
class distribution in the stream is maintained. If classes are requested for inference with almost equal
probability, the classes that are underrepresented in the buffer will exhibit poor test accuracy. In
another example, if the class distribution is balanced in the training data but imbalanced in the test
requests stream, both the RS and the CBRS algorithm will store approximately the same number of
data points from each class in the buffer. However, this is not fair for classes that are requested with
higher probability for inference, in the sense that the most frequently requested classes should be
given some type of priority. Also, in this case, the buffer space is unnecessarily consumed for classes
that are rarely or never requested in the test stream; the same space could be used for data points of
classes that are actually requested.

It becomes apparent that the appropriate proportion of classes that should be maintained in the buffer
highly depends on the unknown class distribution in the training data stream, on the dynamics of
training data and the inference task streams, and also on the nature of the training dataset itself. In
this work, we set off to design a replay-based continual learning algorithm that can decide to populate
the buffer with a range of target class distributions which are determined by the training data stream.
We propose a replay buffer content update policy that combines a Kullback-Leibler (K-L) loss and
an appropriate modification of the celebrated Reservoir Sampling algorithm. The decisions at each
time slot are, whether the newly arriving training data points will be inserted in the buffer, and which
existing data points from the buffer will be substituted. Specifically, we update the buffer content so
that the proportion of stored data points from different classes in the buffer approximates a target
distribution that depends on the empirical distribution of classes seen in the training data stream.

We parameterize this target distribution with a single parameter that allows us to model different
target class distributions in the buffer, ranging from the class distribution in the training data stream,
the uniform class distribution, and a distribution with class percentages that are inversely proportional
to those in the training data stream.

The first contribution of our work is that our method is equivalent to CBRS [4] when the target
distribution is equal to the uniform class distribution. In that case, the decision making process stores
approximately the same number of data points per class in the buffer. The second contribution, which
we empirically see from our experiments is that we can find at least one target distribution that is
not equal to the uniform distribution, and that target distribution achieves higher test accuracy from
CBRS [4]. These findings point to the direction of further exploring the problem of identifying the
best target distribution, i.e. computing the best parameter value, and accordingly perform buffer
updates.
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2 Proposed approach

2.1 Continual Learning setting and notation

We consider a supervised Continual Learning setting with a learner and an infinite stream of training
data. At each time step t, the learner receives a batch of training data Bt = {(xj,t, yj,t)}Nj=1 from
the stream, where {xj,t}Nj=1 are the input data samples (e.g. images) at time t, and {yj,t}Nj=1 are the
corresponding target outputs (e.g. class labels). The learner has a buffer with a set of contents denoted
as setM and fixed capacity M . We assume that, upon receiving the new data batch Bt, the learner
performs a number of update steps over the new batch and over a random batchRt chosen (replayed)
from the buffer. We assume a Deep Neural Network (DNN) model that consists of a number of
layers with overall parameter vector θ. The number of outputs of the final layer, i.e. the size of the
feature vector, is K which is equal to the number of class labels. The model receives an input x and
constructs in its final output a representation or feature vector ϕ(x; θ) ∈ RK . We map the feature
vector to classification probabilities with f(x; θ) = softmax(ϕ(x; θ))

The loss function for an arbitrary batch D of size N , where D = {(xi, yi)}Ni=1, is

LD =
1

N

N∑
i=1

ℓ(f(xi; θ), yi) (1)

The purpose of training in continual learning is to optimize the model parameters θt at each time slot
t, with a loss function ℓ(·) Let LBt , and LRt be the loss over Bt andRt respectively. We define the
total loss at time t as

Lt = βLBt
+ (1− β)LRt

(2)
, where β is a parameter that trades off between the loss over data in the current batch and that over
buffer data.

Let nt = (nt,1, . . . , nt,K) be the vector whose i-th component nt,i is a counter that shows the number
of seen data points of class i up to time t from the training data stream. Let st,i = nt,i/

∑K
k=1 nt,k

be the proportion of data points of class i in the training data up to time t. We denote the empirical
distribution of classes up to time t by vector st = (st,1, . . . , st,K).

For the buffer, we define vector mt = (mt,1, . . . ,mt,K) whose i-th component mt,i is the number
of stored data points of class i in the buffer at time t, with

∑K
k=1 mt,k = M . Let Ct be the set of

classes that are present in the buffer at time t, i.e. class k ∈ Ct if and only if mt,k ≥ 1.

2.2 Decision making for buffer update

For the first M time steps of the process, the agent stores incoming data points until the buffer is full.
For each time t > M , the process goes as follows. After the learner finishes training on batch Bt, it
must decide which of the incoming data points (x∗, y∗) in Bt must be inserted into the buffer, and
which data points from the buffer need to be ejected. The learner has the following options: (i) insert
(x∗, y∗) into the buffer and remove from the buffer a data point from the same class y∗, (ii) insert
(x∗, y∗) in the buffer and replace a data point from a class other than y∗, (iii) do nothing and ignore
the new data point.

We define parameter a ∈ R, and we construct a target class distribution which depends on the
training data stream class distribution, pt = sat , where pt is the vector whose i-th component is
pi,t = sai,t. Observe that this parameterized target class distribution can model different types of class
distribution:

• If a = 0, then pt reduces to ( 1
K , . . . , 1

K ), the uniform class distribution. In this case, we do
not take into account the class distribution in the training data stream, and our method is
equivalent to CBRS which strives for an (almost) equal share of buffer capacity for each
class. See Figure 1 for a pictorial demonstration on an hypothetical imbalanced stream.

• If a = 1, then pt = st, the class distribution in the stream. In this case, we store data points
in the buffer according so as to resemble distribution in the training data stream.
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• If a = −1, then pi,t ∝ 1/si,t, the percentage of data points of a specific class in the buffer
is inversely proportional to the class percentage seen in the training data stream distribution.
This means that we give emphasis to maintaining in the buffer data points from classes that
are not often encountered in the training data stream.

For each data point (x∗, y∗) in the training data batch Bt at time t, the learner proceeds as follows.
For each class k ∈ Ct, the learner tentatively removes from the buffer a randomly selected data point
of class k and substitutes it with data point (x∗, y∗). For each class k ∈ Ct, this tentative operation
forms a new vector of counts for the buffer

mk = mt − ek + ey∗ (3)

where ek denotes the binary vector of K components, whose k-th component is 1 and all others are
zero.

Now, we define vector m̂k
t = 1

Mmk
t , whose i-th component shows the proportion of data points of

class k in the buffer after the tentative inclusion of the new data point and removal of a data point of
class k. Next, the learner computes the following Kullback-Leibler distance:

V k
t = KL(pt||m̂t

k) (4)

that represents the distance of class vector m̂t from the empirical target class distribution pt which
in turn depends on the class distribution seen in the stream up to time t.

Then, the learner identifies the class with the minimum tentative KL distance from pt,

k∗ = arg min
k∈Ct∪{y∗}

V k
t . (5)

Algorithm 1 KLRS - Kullback–Leibler Reservoir Sampling
Input: M is the set of buffer contents (data points); (x∗, y∗) is the incoming data point from batch
Bt that we examine; mt is the vector of counters of data points per class in the buffer; st is the
vector of counters per class in the training data stream; pt is the vector of target probabilities.
Buffer_Update(x∗, y∗):

if |M| < M then ▷ i.e. buffer is not full

M←M∪ (x∗, y∗) ▷ Store (x∗, y∗) in the buffer

else
for each class k in Ct do

mk = mt − ek + ey∗ ▷ Remove a data point from class k and substitute it with the data point (x∗, y∗).

m̂k
t = 1

Mmk
t ▷ The distribution of classes in the buffer after the substitution

V k
t = KL(pt||m̂k

t ) ▷ Utility between the target distribution and the tentative memory distribution

end for
k∗ = argmink∈Ct∪{y∗} V

k
t ▷ Find class with minimum utility

if k∗ = y∗ then ▷ If class y∗ has the minimum utility

Generate a random number r ∈ [1, nt,k∗ ] ▷ Perform Class-based Reservoir

if r ≤ mt,y∗ then
Insert (x∗, y∗) in the buffer in place of another data point of the same class

else
Ignore (x∗, y∗)

end if
else ▷ Choose one data point with minimum utility at random

Choose a random data point from class k∗ from the buffer and substitute it with (x∗, y∗).
end if

end if

The final step is split into two cases.

• if k∗ = y∗, namely if the class that achieves the smallest KL distance is the same as the
one of (x∗, y∗), the agent performs a class-based Reservoir Sampling. Namely the agent
generates a random number rt ∈ [1, nt,k∗ . If rt ≤ mk∗,t, the learner inserts (x∗, y∗) in the
buffer in place of another data point of the same class; otherwise the agent ignores the data
point.
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Figure 1: Hypothetical Stream population (a), Reservoir Sampling (b), Our method with α = 1 (c),
and CBRS and our method with α = 0 (d). In this hypotherical example the capacity of the buffer is
500.

• if k∗ ̸= yt, the learner chooses a random data point from class k∗ from the buffer and
substitutes it with (x∗, y∗).

Algorithm 1 summarizes the steps described above for the decision making process of our proposed
method, which we call Kullback–Leibler Reservoir Sampling (KLRS). The proposed KLRS algorithm
is part of the general continual learning (CL), and constitutes the portion of the CL algorithm that
relates to buffer update. The general Continual Learning process involves the following stages for
each data batch: (i) train the model with the current batch and a random batch drawn from the buffer;
(ii) run the KLRS algorithm. The general CL process is summarized under Algorithm 2.

Algorithm 2 The Continual Learning Process
Input: θ is the model parameter; Bt is the batch of training data points from the stream;Rt is the

random batch drawn from the buffer; η is the learning rate; β is the relative importance weight
between the training data batch loss and the buffer data batch loss; |Ct| is the number of classes
seen so far in the stream.
While stream has next batch:
Bt = ( next batch from stream )

β =

{
1, |M | = 0
1

|Ct| , otherwise
for i = 1..τ do ▷ Training process

Rt ∼M ▷ Sample without replacement the replay batch from the buffer

Lt = βLBt
+ (1− β)LRt

▷ Compute joint loss

∇θLt = β∇θLBt + (1− β)∇θLRt ▷ Compute joint gradient

θ ← θ − η∇θLt ▷ Perform gradient update on the model parameter

end for
for each data point (x∗, y∗) in Bt do ▷ Populate buffer

Buffer_Update(x∗, y∗) ▷ Try to insert data point (x∗, y∗) into the buffer

end for

3 Experiments

3.1 Experimental Setup

We repeat each experiment 5 times with 5 different imbalanced streams. We assume a class-
incremental setup, and that there is an arbitrary class ordering among the classes. The training
data in the stream appears with respect to the class ordering [4]. We clarify that the class ordering of
the classes is arbitrary but consistent for each experiment. For more details about the training stream
counts and the test set counts per label, please see Appendix A.

We evaluate the efficiency of each method under two test sets: (i) the "original test set" where the
test set contains all the data from the initial test set, (ii) the "imbalanced test set" where the class
components are proportional to the empirical distribution of the classes in the training data. We
collect the Test Accuracy, and the Forgetting metric that occurred at the last time step t, from the 5
independent experiments. Then, from these collected values, we report the 95% confidence interval
of the Average Test Accuracy, and of the Average Forgetting metric.
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Furthermore, we consider two replay schemes at the buffer:

• Uniform replay, in which all the data points in the buffer have equal probability of being
replayed. However, a class with few data points in the buffer will have a low probability of
being replayed.

• Weighted replay, where the idea is to give higher importance to the classes with the fewest
examples. That is, weighted replay favors under-represented classes in the buffer, so that
these data from the buffer are replayed more often, because we want to prevent catastrophic
forgetting for these classes. At time step t, we define the weighted probability pr(mt,i) for
selecting a data point of class i from the buffer. We reverse the importance per class i by
raising each count mt,i to a negative number e.g. −1, thus:

pr(mt,i) =
m−1

t,i∑
j∈Ct

m−1
t,j

(6)

The baselines we consider for comparison are: Reservoir Sampling [18] and CBRS [4].

• RS: The Reservoir Sampling (RS) method stores a subset of data points from a stream of
unknown infinite length. The key concept of the Reservoir Sampling is that each data point
in the stream has equal probability to be stored in the buffer.

• Class-Balanced RS (CBRS): An extension of the RS approach, in which the learner tries
to preserve class balance within the buffer. When balanced is achieved for a class, this
algorithm applies the concept of the RS for that specific class.

3.1.1 Datasets, Hyperparameter search, and Setup for class imbalance

We evaluate our KLRS method and the baselines [4, 18] on the MNIST, Fashion-MNIST, CIFAR-10,
and CIFAR-100 datasets. For all methods we set the sizes of both the training batch Bt and of the
replay batch Rt equal to 10. We set the learning rate for MNIST and Fashion-MNSIT to 0.05 [4].
For CIFAR-10 and CIFAR-100, we start from a pre-trained Resnet18 neural network architecture [6]
on the ImageNet dataset [5], and we set the learning rate to 0.01 [4]. We perform an hyperparameter
search for α in the set of values ±{1.0, 0.75, 0.5, 0.25, 0.2, 0.15, 0.1, 0.05}
We apply the same imbalanced setup per label in the training stream as in [4], in which they start
from a set of 5 imbalanced factors r = {10−2, 10−1.5, 10−1, 10−0.5, 100}. For K classes, we define
the imbalanced factors ϵ = (ϵ1, . . . , ϵK), where ϵj ∈ r, j = 1 . . .K, and ϵj is the imbalanced factor
for class j. If K ≤ 5, then ϵ is set to a random subset of r with K components without replacement.
In our experiments K > 5, we repeatedly choose 5 classes from the K classes that have not been
assigned an imbalanced factor yet, and then we randomly distribute the factors from r to those 5
classes without replacement.

3.1.2 CL Perfomance Metrics

We measure the performance of the learner with some metrics at a given time step t that the learner
receives a new batch of data from the stream. Note that these metrics are not part of the decision-
making process. We define as ait the average test-accuracy of class i at time step t. Then, the average
test accuracy for all K classes at time step t is

At =
1

K

K∑
c=1

act (7)

Another metric used in Continual Learning is the Forgetting metric, which measures how much the
accuracy performance of the model reduces with time, therefore it measures the extent to which the
model forgets after it is trained with the batch from the stream. The forgetting metric at time step t, is
defined similarly to [15] in task-free settings,

Ft =
1

K

K∑
c=1

max
j

(acj − act) (8)
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where j = 1, . . . , t− 1.

3.2 Results and discussion

Table 1: Test Accuracy for different values of capacity M , on the MNIST and Fashion-MNIST
datasets, when the test inference is the original test set.

M=1000 M=2000

MNIST Fashion-MNIST MNIST Fashion-MNIST

Methods Uniform Weighted Uniform Weighted Uniform Weighted Uniform Weighted

RS 69.62± 1.67 74.36± 0.61 63.26± 3.14 68.20± 2.65 77.23± 2.03 82.35± 1.35 64.50± 2.85 72.92± 1.68
CBRS 88.78± 1.01 88.86± 1.07 78.27± 1.07 79.61± 0.32 90.37± 1.25 90.51± 1.10 76.93± 3.35 80.24± 0.97
KLRS 89.57± 0.99 89.36± 0.98 80.47± 0.62 80.27± 0.29 90.47± 1.45 90.64± 1.08 81.05± 0.88 81.27± 0.80

Table 2: Forgetting for different values of capacity M , on the MNIST and Fashion-MNIST datasets,
when the test inference is the original test set.

M=1000 M=2000

MNIST Fashion-MNIST MNIST Fashion-MNIST

Methods Uniform Weighted Uniform Weighted Uniform Weighted Uniform Weighted

RS 26.46± 2.24 22.84± 0.56 31.72± 2.84 29.48± 2.51 18.94± 2.37 15.11± 1.45 30.87± 2.21 24.66± 1.67
CBRS 8.73± 1.54 8.97± 1.26 19.95± 0.96 18.75± 0.42 7.00± 1.34 7.32± 1.22 20.83± 3.16 18.19± 1.02
KLRS 8.10± 1.07 8.50± 1.20 17.73± 1.14 18.16± 0.46 6.88± 1.66 7.21± 1.28 16.61± 1.23 17.24± 0.74

Table 3: Test Accuracy for different values of capacity M , on the MNIST and Fashion-MNIST
datasets, when the test inference is the imbalanced test set.

M=1000 M=2000

MNIST Fashion-MNIST MNIST Fashion-MNIST

Methods Uniform Weighted Uniform Weighted Uniform Weighted Uniform Weighted

RS 70.14± 1.23 76.23± 1.14 63.25± 2.16 68.29± 1.20 79.03± 2.73 83.18± 2.18 63.51± 4.20 71.70± 2.64
CBRS 89.15± 1.84 88.74± 1.43 77.77± 2.03 79.57± 0.81 90.78± 0.64 90.41± 0.90 76.82± 3.39 80.74± 1.20
KLRS 89.76± 1.14 89.99± 1.21 79.81± 1.52 80.63± 1.17 91.19± 1.51 91.34± 0.99 81.53± 0.94 81.43± 0.88

Table 4: Forgetting for different values of capacity M , on the MNIST and Fashion-MNIST datasets,
when the test inference is the imbalanced test set.

M=1000 M=2000

MNIST Fashion-MNIST MNIST Fashion-MNIST

Methods Uniform Weighted Uniform Weighted Uniform Weighted Uniform Weighted

RS 25.33± 2.79 20.77± 2.07 32.48± 1.51 29.83± 2.05 17.96± 3.10 14.35± 2.96 32.38± 3.24 26.57± 2.79
CBRS 9.10± 2.35 9.63± 1.74 21.40± 2.14 19.21± 0.97 7.37± 1.25 8.14± 1.19 21.80± 3.33 18.48± 1.02
KLRS 8.63± 1.17 8.38± 1.09 19.32± 1.13 18.40± 0.96 6.69± 1.67 7.27± 1.30 17.00± 1.17 17.75± 0.72

Table 5: Test Accuracy for the CIFAR-10 and the CIFAR-100 dataset with capacity M = 2000, when
the test inference is the imbalanced test set.

CIFAR-10 CIFAR-100

Methods Uniform Weighted Uniform Weighted

RS 54.49 ± 2.24 55.92 ± 3.02 27.11 ± 0.8 29.43 ± 0.82
CBRS 69.52 ± 4.29 72.19 ± 3.64 35.58 ± 1.46 35.94 ± 1.59
KLRS 72.82 ± 3.71 72.24 ± 3.01 37.11 ± 0.79 36.59 ± 1.64

For MNIST and Fashion-MNIST, we report the test accuracy, and the forgetting, for buffer size
M = 1, 000 and M = 2, 000. At Tables 1, 2 we report the statistics for the original test set, and at
Tables 3,4 we report the statistics for the imbalanced test set . For CIFAR-10 and CIFAR-100 we
report the test accuracy for the imbalanced test set at Table 5 with M = 2000. We can clearly see that
our method outperforms RS [18], and CBRS [4], as it achieves the highest average Test Accuracy
at each dataset. Furthermore, we verify that the corresponding average Forgetting metric is lower
than that of RS [18], and CBRS [4]. Also, we observe that the performance of RS [18], and CBRS
[4] degrades as we increase the size of the buffer at the Fashion-MNIST dataset with the uniform
replay scheme, but our method performs even better when we increase the buffer size. Lastly, for
each setting we provide the value of α that achieved the highest test accuracy at the Appendix A.
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4 Conclusion

We propose a replay-based continual learning algorithm that populates the buffer so as to attain
different target class distributions in it, ranging from the class distribution in the training data stream,
the uniform class distribution, and a distribution with class percentages that are inversely proportional
to those in the training data stream. Our method, termed Kullback-Leibler Reservoir Sampling
(KLRS) combines a Kullback-Leibler (K-L) distance metric and a modification of the celebrated
Reservoir Sampling algorithm and decides at each time slot how to populate the buffer so that the
proportion of data points from different classes in the buffer tracks the target class distribution that
depends on the time-varying distribution of classes seen in the training data stream.

Our main finding through data experiments is that the best (in terms of accuracy and forgetting) value
of the parameter that determines the distribution of classes in the buffer versus that of the stream
depends on statistics of the training data and on the dataset itself. In this work, we assumed different,
but fixed values of this parameters. A future step in the case that this parameter is unknown would be
to attempt to learn this parameter on the fly.

Code

We provide our code at https://github.com/sotirisnik/KLRS. The implementation is in Haiku [7],
which is based on the Jax [2] library. We also use the Pytorch library only to transfer the pre-trained
Resnet18 [6] weights from Imagenet[5] to Haiku.
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A Counts per label and Best values for α

In this section, we provide the counts per label i = 0 . . . 9, for the 5 imbalanced training streams we
use in our experiments, and the counts for their corresponding test sets. See Table 6 for MNIST, and
Table 7 for Fashion-MNIST. For each dataset, we start from its original counts, and we keep 90% of
the population per label i(see Initial Stream row). After that, we construct each of the 5 imbalanced
training streams by distributing the imbalanced factors per label i. Note that MNIST is the only
dataset whose original counts per label i are not balanced. Lastly, we provide the best values for the
parameter α at Table 8 for MNIST and Fashion-MNIST. For CIFAR-10 the best value of α for the
uniform replay is -0.5, while for the weighted replay is 0.05. For CIFAR-100 we set α = −0.25. For
the single parameter α we observe that

• When we use the uniform replay, the best value for the hyperparameter α is negative.

• At the Fashion-MNIST dataset, the best value for α is negative.

• At the MNIST dataset, the best value for α is positive, except from the case in which the
buffer size is 1000.

• The hyperparameter search can be reduced to the range [−0.5, 0.5].

Table 6: Counts per label i = 0 . . . 9 for the initial training stream(90% of the original population in
the training set per class i), and the test set on the MNIST dataset.

Training Stream

Counts/Labels 0 1 2 3 4 5 6 7 8 9

Initial Stream 5330 6067 5362 5517 5257 4878 5326 5638 5265 5354
1st Imbalanced Stream 533 1918 53 5517 525 1542 5326 178 52 169
2nd Imbalanced Stream 5330 1918 169 551 5257 48 532 56 166 1693
3rd Imbalanced Stream 1685 60 536 174 1662 154 5326 56 5265 535
4th Imbalanced Stream 1685 6067 169 55 1662 4878 168 563 52 535
5th Imbalanced Stream 533 1918 169 55 166 487 5326 56 5265 1693

Test Set

Original Test Set 980 1135 1032 1010 982 892 958 1028 974 1009
1st Imbalanced Test Set 98 358 10 1010 98 282 958 32 9 31
2nd Imbalanced Test Set 980 358 32 101 982 8 95 10 30 319
3rd Imbalanced Test Set 309 11 103 31 310 28 958 10 974 100
4th Imbalanced Test Set 309 1135 32 10 310 892 30 102 9 100
5th Imbalanced Test Set 98 358 32 10 31 89 958 10 974 319

Table 7: Counts per label i = 0..9 for the training stream, and the test set on the Fashion-MNIST
dataset.

Training Stream

Counts/Labels 0 1 2 3 4 5 6 7 8 9

Initial Stream 5400 5400 5400 5400 5400 5400 5400 5400 5400 5400
1st Imbalanced Stream 540 1707 54 5400 540 1707 5400 170 54 170
2nd Imbalanced Stream 5400 1707 170 540 5400 54 540 54 170 1707
3rd Imbalanced Stream 1707 54 540 170 1707 170 5400 54 5400 540
4th Imbalanced Stream 1707 5400 170 54 1707 5400 170 540 54 540
5th Imbalanced Stream 540 1707 170 54 170 540 5400 54 5400 1707

Test Set

Initial Test Set 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
1st Imbalanced Test set 100 316 10 1000 100 316 1000 31 10 31
2nd Imbalanced Test Set 1000 316 31 100 1000 10 100 10 31 316
3rd Imbalanced Test Set 316 10 100 31 316 31 1000 10 1000 100
4th Imbalanced Test Set 316 1000 31 10 316 1000 31 100 10 100
5th Imbalanced Test Set 100 316 31 10 31 100 1000 10 1000 316
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Table 8: Best α values for KLRS for different values of capacity M , on the MNIST and Fashion-
MNIST datasets.

M=1000 M=2000

MNIST Fashion-MNIST MNIST Fashion-MNIST

Test set Uniform Weighted Uniform Weighted Uniform Weighted Uniform Weighted

Initial −0.05 0.05 −0.25 −0.25 −0.2 0.05 −0.25 −0.5
Imbalanced −0.05 −0.1 −0.2 −0.25 −0.2 0.1 −0.25 −0.15

B Kullback-Leibler loss

Let p and q be vectors of length K, whose components pi, and qi is the probability per label
i = 1 . . .K. A loss function that computes the difference or deviation from the probability vector q
to p is the KL loss, also known as relative entropy, which measures how much information is lost
when we move from the vector q to the vector p. The KL loss function from q to p is

KL(p||q) =
K∑
i=1

pi log
pi
qi

(9)

Note that KL loss (9) is not symmetric, i.e. KL(p||q) ̸= KL(q||p), and therefore it is not a distance
metric.

C Pseudocode for the Reservoir Sampling algorithm

In this section, we provide the pseudocode for the Reservoir Sampling algorithm [18]. The key
concepts of Reservoir Sampling are (i) we store a uniform subset of data points that are representative
of all training data that are seen up to that time, and (ii) each incoming data point from the stream has
equal probability to be stored in the buffer.

Algorithm 3 RS - Reservoir Sampling
Input: M is the set of buffer contents (data points); (x∗, y∗) is the incoming data point from batch
Bt that we examine; kt is the counter for all seen data points seen in the training data stream up to
time t.
Buffer_Update(M,kt,x∗, y∗):

if |M| < M then ▷ i.e. buffer is not full

M←M∪ (x∗, y∗) ▷ Store (x∗, y∗) in the buffer

else
Generate a random number j ∈ [1, kt]
if j ≤ |M| then
M[j]← (x∗, y∗) ▷ Replace data point at position j with incoming data point

else
Ignore the data point (x∗, y∗)

end if
end if
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