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Abstract—Industrial Internet of things (IIoT), one enabler for
Industry 4.0 Smart Factories, is a mission-critical and latency-
sensitive application of 5G networks. Due to the stringent
latency requirements in IIoT, coordinating the simultaneous
transmissions of massive entities and knowing the interfer-
ence they create to each other is not feasible. Additionally,
due to the mobility feature of mobile robots and automated
guided vehicles, the experienced channel fading may differ
from the estimated one. Therefore, some uncertainties exist
in IIoT networks while we decide the communication and
control mechanisms. Within the context of IIoT, this paper
discusses some resource allocation solutions from the perspective
of Online Convex Optimization (OCO). OCO is a computa-
tionally lightweight and memory-efficient mathematical tool
which tackles the optimization problems, given that the network
environment is arbitrary and unknown. We first introduce the
key performance indicators in IIoT networks and highlight the
uncertain factors, which we may encounter while allocating
the communication resources in IIoT. Then we provide an
overview of main principles of OCO and present the comparison
benchmarks and related metrics for performance evaluation.
Moreover, we discuss the kind of resource allocation problems
in IIoT that can be tackled by OCO. Finally, we summarize the
advantages of applying OCO to IIoT networks.

Index Terms—5G and Beyond, Industrial Internet of Things
(IIoT), Online Learning, Online Convex Optimization (OCO).

I. INTRODUCTION

Through connecting physical objects via the network,
i.e., Internet of things (IoT), and by embedding them with
intelligence, cyber-physical systems can operate and inter-
act efficiently and proactively to provide smart services.
Among the services, smart factories cooperatively and ef-
ficiently manufacture products as envisioned in Industry 4.0
[1]. In smart factories, factory equipments such as sensors,
mobile robots, and automated guided vehicles (AGVs) are
(preferably, due to the flexibility and agility) wirelessly
connected through industrial IoT (IIoT). In contrast to the
communication in IoT for improving human awareness of
the surrounding environment, the machine-centric IIoT has
more stringent communication performance requirements [2].
In this regard, some works such as [2], [3] have specified
the features, directions, and challenges in IIoT. However,
the useful methodologies for solving the communication
problems in the generic viewpoint were missed therein,

The work of Livia Elena Chatzieleftheriou was done while she was
affiliated with the Athens University of Economics and Business, Greece.

albeit specific mathematical approaches have been used in
particular IIoT works [4], [5]. Among the problem-tackling
approaches, the online ones, e.g., Reinforcement Learning
(RL) [4] and Lyapunov Optimization [5], are powerful to
deal with the dynamics in wireless environments, providing
adaptive solutions. However, RL requires abundant data to
learn the policy. Given that the sensors are enabled with
autonomy, RL can deplete the sensor’s limited memory.
Moreover, as the mobility feature is prominent in IIoT (due
to mobile robots and AGVs), the originally-observed channel
value may change when the transmitter starts transmission
[6]. This variation will degrade the solution performance of
RL and Lyapunov Optimization.

Motivated by the aforementioned issues, in this paper, we
consider the Online Convex Optimization (OCO) technique
in online learning as a possible candidate to address the
communication problems of IIoT from a learning perspective.
Briefly speaking, OCO is an online learning technique which
does not need to collect a large amount of data either online
or offline. Instead, it operates on the fly and progressively
learns the action policy with only the latest-received feedback
in response to the action. As stated by the full form of OCO,
the communication policy is learned in an online manner. In
the online framework, the communication action is decided
based on the currently available (partial) information about
the network status. As the available information becomes
more complete over time, the communication policy evolves
and converges.

Among the online approaches, OCO is a powerful one for
solving the problems, e.g., resource allocation, computation
offloading, and user association, without knowing the current
network status [7]–[10]. More specifically, relying only on
the most recent historical values of the system parameters,
the OCO framework decides the action for the current time
instant before the actual parameter values are revealed and
incorporated with the action to obtain a cost or utility. Since
historical data are no longer required, this procedure makes
OCO memory-efficient.

Furthermore, OCO provides solutions with performance
guarantees. That is, the achieved performance differs by, at
most, a provable bound from the performance of the optimal
solutions which know the system parameter evolution in
hindsight. The performance difference can be measured by

7

20
22

 IE
EE

 In
te

rn
at

io
na

l M
ed

ite
rr

an
ea

n 
Co

nf
er

en
ce

 o
n 

Co
m

m
un

ic
at

io
ns

 a
nd

 N
et

w
or

ki
ng

 (M
ed

itC
om

) |
 9

78
-1

-6
65

4-
98

25
-8

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

M
ED

IT
CO

M
55

74
1.

20
22

.9
92

87
03

Authorized licensed use limited to: Oulu University. Downloaded on December 05,2022 at 08:11:20 UTC from IEEE Xplore.  Restrictions apply. 



regret, a metric quantifying the cost of gradually learning
in OCO. In addition, the aggregate constraint violation of
the OCO solution is measured by fit. We will further explain
these two metrics later in the paper. The content of this paper
is outlined as follows:

• We explain the key performance indicators (KPIs) of
IIoT and highlight some uncertain factors which may
be encountered in IIoT.

• We present a primer of OCO and introduce a widely-
used algorithm in OCO, which is called Online Mirror
Descent (OMD). We then explain how the historical
information is leveraged for iterative action updates.

• We define the static and dynamic benchmarks against
which OCO solutions are commonly compared. Fur-
ther, we give the definitions of two metrics, regret
and fit, which are measured for evaluating the solution
performance. Regret captures the aggregate (over the
time horizon) difference of the costs accumulated by
an online algorithm and an offline benchmark that takes
decisions in hindsight. Fit captures the aggregate (over
the time horizon) constraint violation of the online
decisions.

• We connect the OCO framework and IIoT problems, and
summarize the advantages of OCO.

II. KEY PERFORMANCE INDICATORS AND
UNCERTAINTIES IN IIOT

A. Key Performance Indicators

The KPIs in IIoT networks include [2], [11]:

1) Reliability;
2) Latency;
3) Determinism;

4) Availability;
5) Scalability;
6) Battery lifetime;

We now elaborate on them and present them in detail.
1) Reliability and Latency: Since factory environments

vary dynamically, ineffectively tracking or controlling plants
may incur catastrophic issues. Hence, information and in-
structions in IIoT need to be timely delivered. Due to the
intrinsic randomness in wireless networks resulting in non-
negligible information delivery delays and errors, guarantee-
ing the reliability and latency of information delivery is of
paramount importance. To this end, ultra-reliable low-latency
communication (also known as URLLC) has been considered
as one enabler for IIoT [12].

2) Determinism and Availability: In industrial automation,
wireless sensors sample the status data of the monitored
environments and then send them to the controller of control
systems. After manipulating the received information, the
controller subsequently issues control commands to actuators.
In this procedure, sensors and actuators are required to carry
out specific actions at precise instants, i.e., determinism [3]
exists. Since manufacturing and processing operations are un-
interrupted in factories, wireless service should be available
on demand and instantly. Quantitatively, the availability of
communication service is measured by the percentage of time
during which the system requirements are guaranteed [11].

The determinism and availability performances of IIoT will
affect factory operations.

3) Scalability and Battery Lifetime: Cisco envisioned that
there will be 14.6 billion machines in the Internet by 2022
[13]. As per the white paper [11] of the 5G Alliance for
Connected Industries and Automation (5G-ACIA), wireless
service needs to support 10000 devices per km2 in status
monitoring. Therefore, how to scale up the network, i.e., the
scalability issue, is crucial for IIoT. Finally, most wireless
sensors are powered by batteries. It will be beneficial if
the sensors can harvest renewable energy while depleting
electricity. Otherwise, batteries need to be changed often,
which is impractical or infeasible in the hazardous industrial
environments. In this situation, prolonging the battery lifetime
is another critical concern in IIoT.

Furthermore, 5G-ACIA has specified the targeted KPI
requirements of various IIoT applications in 5G networks
[11], where the stringency of the requirement is application-
dependent.

B. Uncertainties

In some IIoT networks with mobile robots or AGVs, the
transmitter or receiver is moving. Due to the mobility feature,
the channel fading within a coherence time, in practice, does
not remain static but varies [6]. In other words, even if
the fading channel is perfectly estimated, the experienced
fading will not be identical to the estimated one, thus leading
to unpredictable communication performance. In addition, a
tremendous number of IIoT entities need to share the scarce
communication resources, e.g., time and bandwidth, resulting
in severe co-channel interference. However, coordinating all
transmissions and knowing the interference incur significant
overheads, in particular, when the payload size in IIoT is
typically small [11].

In control systems, the controller’s available information
may not correctly reflect the actual status of the concerned
time-varying environment at any time instant. This incon-
sistency degrades the control system performance [14], re-
sulting in the need for effective information updates from
the sensors in industrial automation. Measures such as the
Age of Information (AoI) [15], the Value of Information
(VoI) [16], and the Age of Incorrect Information (AoII) [17]
have been considered for proposing the information-updating
mechanisms in wirelessly-networked control systems [18].

Consider a scheme in which the sensor’s data-sampling
mechanism is event-triggered. In this situation, an unknown
queuing latency, resulting in uncertain information measures
(i.e., AoI, VoI, and AoII), will be incurred to the newly-
sampled data while the communication resources are al-
located for uploading the previously-sampled data to the
controller. Therefore, an effective and scalable IIoT transmis-
sion or resource allocation mechanism is required, in which
the transmitter is not aware of the aforementioned or other
uncertainties.

III. ONLINE CONVEX OPTIMIZATION

In this section, we firstly introduce the general procedure of
OCO and give the examples connecting the OCO framework
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and IIoT networks. We then explain a basic OCO algorithm,
called Online Mirror Decent (OMD). Finally, we outline the
main OCO benchmarks, regret, and fit.

A. Brief Introduction to Online Convex Optimization

In the OCO framework [19], [20], we consider a discrete-
time horizon with T slots. Let d be a positive integer captur-
ing the number of decisions or, equivalently, the dimension
of the problem. For example, in the IIoT context d can
capture the number of robots in a factory. Before each
slot t ∈ {1, · · · , T}, we decide the d-tuple action vector
x(t) =

(
x1(t), · · · , xd(t)

)
∈ A ⊆ d for slot t without

knowing the random state vector λ(t) (experienced in slot
t) of the environment, where A is the convex feasible set
of actions. Additionally, x(t) and λ(t) are fixed within the
duration of each slot t but change over slots. The random state
λ(t) can follow any arbitrary distribution to which we are
agnostic. In each slot t, we have the cost f

(
λ(t),x(t)

)
which

is a function of the action x(t) and the state λ(t). Given a
fixed λ(t), the cost function is convex with respect to x(t).
We aim to minimize the aggregate (over the time horizon)
cost by choosing the action series {x(t) : t = 1, · · · , T}.

For example, in the IIoT context, a problem is to minimize
the energy consumed by mobile robots in a smart factory.
Robots can be used in the IIoT context to carry boxes
from one part of the factory to the other. In this scenario,
the unknown vector λ(t) can capture channel conditions,
the decision vector x(t) can capture the frequency, i.e., the
number of signals per unit of time, which the robots send
to an access point within the factory to inform it about their
locations, and the cost function f(·) captures the energy that
the robots consume.

Without loss of generality, for utility maximization sce-
narios, we can simply consider the cost function in the OCO
framework as the negative utility, i.e., the utility multiplied
by −1. Some special cases of OCO consider linear costs (also
called Online Linear Optimization, i.e., OLO) or strongly
convex cost functions. In these cases, the proposed solutions
may exploit the additional properties of the cost function f(·),
related to linearity or strong convexity.

The solutions {x(t) : t = 1, · · · , T} may also need to
satisfy some constraints. Constraints can be either strict or
budget-based. The strict constraints need to be ensured in
each slot t, whereas the budget-based constraints are ensured
in the time-averaged manner, i.e., over the entire time-horizon
T . Similar to the cost function f

(
λ(t),x(t)

)
, the value

of the constraint function gc
(
λ(t),x(t)

)
,∀ c ∈ {1, · · · , C},

depends on both the action x(t) and the (unknown) random
state λ(t). Moreover, given a fixed λ(t), the constraint
function is convex with respect to x(t). In practice, con-
straints may capture service constraints. An example of strict
constraint in the IIoT context is to ensure URLLC in each
time slot, while an example of budget-based constraints is to
ensure that the total energy needed for a device to operate
for a given time horizon does not exceed an amount in the
long term that reflects its energy autonomy.

Algorithm 1 General Online Convex Optimization Procedure
Input: Step size η and cost function f(·).
Output: {x(t) : t = 1, · · · , T}.

1: Initialize x(1).
2: for t = 1, · · · , T do
3: Observe the random state realization λ(t) and obtain

the cost value f
(
λ(t),x(t)

)
.

4: Calculate the gradient ∇xf
(
λ(t),x(t)) with respect to

the action decision x(t).
5: Update the next action, i.e., decide x(t + 1), based

on the step size η, obtained cost f
(
λ(t),x(t)

)
, and/or

gradient ∇xf
(
λ(t),x(t)

)
.

6: end for

The general procedure of OCO is shown in Algorithm 1.
In OCO, we start with an initial solution, x(1). Then, at the
end of each time-slot t, we:

1) Observe the value of the unknown parameter λ(t),
2) Evaluate our current solution x(t), i.e., find the value of

f
(
λ(t),x(t)

)
, and

3) Update our solution to x(t+ 1).
We next discuss each of the above stages.

Observation of the environment vector λ(t): Many
network parameters, such as the channel state information of
wireless systems, are highly dynamic. Although techniques
for the statistical characterization of these parameters can
be used, in practice, the stringent latency requirements in
IIoT make this characterization impossible, because of the
increased delay and resource requirements of these tech-
niques. To overcome this lack of prior information over the
values of the system’s parameters, some OCO approaches
consider that, when decision x(t) is taken, the environ-
ment vector λ(t) is arbitrary and unknown, or it can even
be adversarial. This implies that the values of the objec-
tive function, f

(
λ(t),x(t)

)
, and the constraint function,

gc
(
λ(t),x(t)

)
,∀ c ∈ {1, · · · , C}, for slot t are chosen by

an adversary too. Although in reality oftentimes there is
no adversary, this is an elegant framework for optimizing
the systems in the worst case, obtaining solutions with
performance guarantees. The actual value of vector λ(t) can
be observed only when the time slot t is completed. For
example, in the energy minimization for autonomous robots
problem, the vector parameter λ(t) for slot t captures an
average channel state during slot t. Thus, only after slot t
finishes, it is possible to compute it and, thus, reveal λ(t).

Evaluation of the solution x(t): When the actual value
of the environment vector λ(t) is revealed, the value
f
(
λ(t),x(t)

)
and the gradient ∇xf

(
λ(t),x(t)

)
of the cost

function are revealed too. The gradient of the cost with
respect to (w.r.t.) the decision x(t) informs the decision-
maker about how the existing solution should be updated,
in order to get a more cost-effective solution. Given the
costs, the computation of the gradient function is a computa-
tionally light step, as it suffices to substitute the observed
values for λ(t) and the decisions x(t) in the formula of
∇xf

(
λ(t),x(t)

)
.
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Algorithm 2 Online Mirror Descent
Input: Mirror function h : d → A, step size η, and

objective function f(·).
Output: {x(t) : t = 1, · · · , T}.

1: Initialize the auxiliary vector y(1) = 0
2: for t = 1, · · · , T do
3: Decide the action x(t) = h

(
y(t)

)
.

4: Update the auxiliary vector as y(t + 1) = y(t) −
∇xf

(
λ(t),x(t)

)
.

5: end for

Update of decision to x(t + 1): The solution updates
are based on the information obtained during the solution
evaluation. When the cost gradient w.r.t. the decision x(t)
is available, the solution x(t + 1) is obtained by making a
step of size η towards a direction opposite to that of the
gradient. For example, in the autonomous robot scenario,
the cost may capture energy consumption. In this case, the
gradient captures the change in energy consumption, when an
infinitesimal change in frequency occurs. The robot commu-
nication frequency policy is updated by taking a step against
the gradient, i.e., deciding a higher or lower (depending on
the gradient) frequency for each robot’s communication with
the access point, based on the channel state that was observed
during the previous slot, and the current frequency policy.

B. Online Mirror Descent

1) Online Mirror Descent Algorithm: The OMD algorithm
[20] is widely used in online learning and OCO. The general
steps of OMD are outlined in Algorithm 2. OMD is consid-
ered as a convenient choice for many optimization problems
since it gives the opportunity to exploit the geometry of the
problem’s feasibility set. It leads to decision updates that lie
in the feasible set without the need for projections. This will
be formally defined later. Let us now give a brief discussion.

OMD decides the current action based on the previous
one, following a simple gradient update rule. We define an
auxiliary vector y(t) with the same dimension as the one of
the action x(t). It tracks the point at which we will end up
if starting from x(t − 1) and performing a step against the
gradient. The auxiliary vector y(t) is initialized as y(1) = 0
and updated as
y(t+ 1) = y(t)−∇xf

(
λ(t),x(t)), ∀ t ∈ {1, · · · , T}. (1)

Note that y(t) may be out of the feasible space. To obtain a
feasible solution x(t) for slot t, the auxiliary vector y(t) is
given as an input to a mirror function h(·). Essentially, the
role of the “mirror” function is to project the current value of
the auxiliary vector y(t) into the feasible space, in order to
obtain a feasible solution x(t). More specifically, the action
is decided as
x(t) = h(y(t)

)
:= argmin

x(t)∈A

{
R
(
x(t)

)
− η · ⟨y(t),x(t)⟩

}
(2)

in which η and R(·) are the step size and a regularization
function, respectively. Moreover, ⟨· , ·⟩ denotes the inner
product between two vectors. Intuitively, the inner product in

(2) represents a projection of the auxiliary onto the feasible
set A of actions. This projection essentially will find the
element of the set A that is the closest to the point it is
projecting. In our case, it is R(x)− ⟨ηy, x⟩.

2) Regularization Function: The OCO algorithm decides
the action for slot t based on the realization of λ(t− 1), i.e.,
without knowing the actual realization of λ(t) over which the
action will be applied. This can have as result the oscillation
of solutions between consecutive slots, due to the possibly
very different values of λ(t − 1) and λ(t) in slots t − 1
and t. The regularization function aids towards stability of
the decision across time and, if chosen appropriately, it leads
to solutions that are asymptotically optimal in a sense that
we will present in detail. Moreover, in order to avoid the
projection step of (2), the regularization function can be
used by exploiting the geometry of the feasible space. For
example, the work [10] aimed to find solutions that lie in
sets that are the combinations of unit simplices. A possible
regularization function R(·) for each simplex in the feasible
space is the Gibbs-Shannon entropy. For d the problem
dimension and for action vector x(t) =

(
x1(t), · · · , xd(t)

)
,

the Gibbs-Shannon entropy is defined as

R(x(t)
)
=

d∑
n=1

xn(t) log xn(t). (3)

Using the Gibbs-Shannon entropy as the regularization func-
tion leads to the well-known exponentiated gradient descent.

C. Metrics and Benchmarks

Online algorithms are usually compared against offline
benchmarks, i.e., algorithms that know the entire system
evolution in hindsight. The main metrics that characterize
the learning performance of online algorithms are regret and
fit. Regret captures the aggregate (over the time horizon)
difference of costs between the online decision and the
decision taken by an offline benchmark. Fit quantifies the
aggregate constraint violations over the entire time horizon.
We now define the regret metric and the no-regret property.
Then the two main OCO benchmarks and the respective
regrets against them are specified. Finally we define the fit.

1) Regret Metric and No-Regret Property: As x(t) is the
action taken by the online algorithm in slot t, let x∗(t) denote
the action taken by an offline benchmark which knows the
evolution of λ(t),∀ t ∈ {1, · · · , T}, in advance. Regret is
defined as

Reg(T ) :=
T∑

t=1

[
f
(
λ(t),x(t)

)
− f

(
λ(t),x∗(t)

)]
, (4)

capturing the difference between of aggregate costs between
the online policy and the offline benchmark over the time
horizon. A desirable property for online algorithms is to have
a regret that is sublinear to the time horizon T , which is
equivalent to

lim
T→∞

Reg(T )

T
= 0. (5)

This implies that ∀ c > 0, ∃ t0 such that Reg(t) < c · t,∀ t ≥
t0. A regret that is sublinear to the time horizon T indicates
that the algorithm behaves asymptotically as the benchmark.
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Equivalently, a regret that is sublinear to the time horizon
implies that as time evolves, the online algorithm manages
to learn policies that are on average (over the time horizon)
as good as those produced by the benchmark in terms of total
cost over the time horizon.

2) Dynamic Benchmark and Dynamic Regret: The dy-
namic benchmark takes the optimal action x∗(t) in each slot
t separately [21]. Thus, the action x∗(t) that is taken by the
dynamic benchmark at slot t is defined as

x∗(t) = argmin
x∈A

f
(
λ(t),x), ∀ t = 1, · · · , T. (6)

That is, the dynamic benchmark takes a sequence of T
actions, i.e., one for each slot t. The regret against the
dynamic benchmark is called dynamic regret. The dynamic
regret is obtained by substituting the solution x∗(t) of (6)
into (4). Knowing the entire system evolution in hindsight,
the dynamic benchmark can adapt to the changes in λ(t) and
take a different decision in each slot t. Hence, the dynamic
benchmark is the most powerful policy that can be obtained
In practice, a comparison against the dynamic benchmark
offers a lower bound on the performance guarantees of the
online algorithms.

3) Static Benchmark and Static Regret: The static bench-
mark [20] takes only one fixed action x∗ over the entire time-
horizon which minimizes the aggregate cost over T . That is,
x∗(t) = x∗,∀ t = 1, · · · , T . Thus, the fixed action x∗ that is
taken by the static benchmark over the entire time horizon is
defined as

x∗ := argmin
x∈A

T∑
t=1

f
(
λ(t),x). (7)

The regret against the static benchmark is called static
regret and is obtained by substituting the solutions x∗(t) =
x∗,∀ t = 1, · · · , T , of (7) into (4). The static benchmark is
the most common benchmark against which the OCO solu-
tions are compared. Despite knowing the system evolution in
hindsight, the static benchmark is allowed to take only one
decision over the entire time-horizon.

The work [10] introduced a novel periodic benchmark,
which is particularly useful for performance comparison in
the case of conjectured periodicity in λ(t). The benchmark
is called Optimal Periodic Static (OPS). OPS partitions the
time horizon T into multiple time windows and takes one
fixed (i.e., static) action over each time window. Thus, OPS
is more strict than the dynamic but more lenient than the
static. Furthermore, since OPS generalizes the state-of-the-
art static and dynamic regrets, both the dynamic and static
benchmarks arise as two special cases of the OPS benchmark.

4) Fit: In OCO, solutions are required to satisfy the
constraints. The learning fit captures the aggregate constraint
violation over the time-horizon T . The formal definition is
given by

Fit(T ) := max

{
T∑

t=1

gc
(
λ(t),x(t)

)
, 0

}
, (8)

where gc(·) is the constraint function. It is especially impor-
tant for problems with budget-based constraints.

IV. POTENTIAL ROADMAP OF OCO IN IIOT

In this section, we start by mapping the variables of the
OCO framework to the resource allocation problems in IIoT.
Then we connect the aforementioned IIoT KPIs with the
main advantages of OCO techniques. Finally, we discuss
the challenge, which may be encountered while tackling
problems that arise within the IIoT contexts, with tools that
have their roots in the OCO techniques.

A. Adoption of OCO for Resource Allocation in IIoT

Depending on the considered resource allocation problems,
the action x(t) may represent the transmit power, bandwidth,
transmission time interval, and more. Additionally, for the
information updating problems regarding AoI, VoI, and AoII,
the action x(t) can denote the time interval between suc-
cessive transmissions which reflects the information update
frequency. As mentioned previously in Section II-B, the
unknown random state λ(t) can be the experienced channel
fading, co-channel interference, queuing latency, or other
factors in IIoT. In these cases, the actual state can be observed
only after the action in slot t is executed or finished.

The cost and budget-based constraint functions include
the net throughput, end-to-end latency, transmit energy, and
information age/value. Moreover, the total power and band-
width budget as well as the transmission time threshold are
considered as the strict constraints. The closed-form expres-
sions and gradients of these cost and constraints function are
available for system designs.

In IIoT, we mainly aim to minimize the energy con-
sumption, end-to-end latency, impacts of information updates,
and so on. Furthermore, deriving the gradient function is
computation-light, and having the values of λ(t), x(t), and
∇xf

(
λ(t),x(t)

)
suffices for action updates. Thus, the OCO

framework is beneficial for several applications in Industry
4.0 and IIoT, since it provides a framework for enabling the
memory-limited sensors with autonomy, without the need to
store any datasets onboard.

B. Connection of IIoT KPIs and OCO Characteristics

As discussed in Section II, the key KPIs in IIoT include
reliability, latency, determinism, availability, and scalability
while ensuring that the limited energy autonomy of the
IIoT devices is not exceeded. We now summarize the main
advantages of OCO techniques and give a connection to these
IIoT KPIs.

• Blind and adaptable to unpredictable changes of
the network status: OCO is a good choice when the
network status is unpredictable and/or difficult to char-
acterize statistically, since it takes decisions relying on
the information of the most recent past. This contributes
towards the KPIs which are related to determinism,
availability, and reliability in IIoT, since OCO manages
to produce provably good solutions even under the
worst-case circumstances.

• Fast, computation-light, and memory-efficient: OCO
performs a simple update of the existing solution, which
requires only a substitution of the revealed values to a
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precomputed formula. This renders it simple, fast, and
memory-efficient, contributing towards the requirements
for ultra-low latency, scalability, and low energy con-
sumption in IIoT.

• Reliable: OCO techniques usually manage to achieve
the regrets which are sublinear to the time-horizon
because they exploit the convexity and the geometry of
the formulated optimization problems. This important
property of OCO techniques implies that they manage
to learn provably optimal solutions, despite not knowing
the network status over which their decisions will be
applied. This implies that OCO can ensure the reliability
and availability requirements of IIoT.

C. Challenge

Leveraging OCO techniques enables IIoT entities with
autonomy to distributedly decide on the communication and
other control actions. However, the distributed mechanism
entangles different IIoT entities’ actions. For example, in
order to further reduce the transmission latency or AoI, the
sensor tries to use more resources such as power, bandwidth,
or time. On the other hand, consuming more resources
increases the other sensors’ delays or AoI values due to the
raised co-channel interference or postponed transmissions. To
compensate the performance degradation, other sensors will
also occupy more resources. This competition entangles the
sensors’ actions, resulting in the negative impacts. However,
the action entanglement is not considered in OCO.

To coordinate the competition, incorporating game theory
in OCO provides a promising approach, in which the game-
theoretic equilibria provide an understanding of the outcome
of the learning interactions of different sensors, and sensors
are incentivized not to use all resources (i.e., less negative
externalities on other sensors) while jointly achieving the
satisfactory performance.

V. CONCLUSIONS

In this paper, we have focused on how the OCO techniques
can be incorporated and used to tackle problems within
the IIoT context. As argued above, OCO provides an ideal
framework for addressing IIoT challenges. More prominently,
OCO promises provably optimal learning performance guar-
antees without the need to reserve and use network resources
such as computation, bandwidth, and storage. Indeed, OCO
algorithms are lightweight in terms of computation and
communication burden, and they do not require the storage of
data onboard the edge devices. We firstly introduced the KPIs
and discussed the factors that create uncertainties in IIoT.
We then explained OCO as a mathematical tool, along with
its benchmarks and metrics for performance comparison. We
then connected OCO with IIoT problems, considering that the
OCO framework can provide promising solutions for IIoT.
We believe that this work opens the way for a faster practical
realization of IIoT. In our future work, we will address the
action entanglement issues of distributed resource allocation
in IIoT networks by incorporating OCO and game theory.
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