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Abstract—Real-time environment monitoring is a key appli-
cation in Industrial Internet of Things, where sensors proac-
tively collect and transmit environmental data to the controller.
However, due to limited wireless resources, keeping sensors’
sampled data fresh at the controller is critical. This work aims
to investigate the trade-off between the sensor’s data-sampling
frequency and long-term data transmission energy consumption
while maintaining information freshness. Leveraging the entropic
risk measure (ERM), we jointly minimize the global transmission
energy’s mean and variance subject to probabilistic constraints
on information freshness. Furthermore, while jointly saving
the model training energy, we adopt the federated learning
(FL) paradigm and propose an FL-based two-stage iterative
optimization framework to optimize the aforementioned objec-
tive. Specifically, we iteratively learn the sampling frequency
via Bayesian optimization and minimize the long-term ERM
of the global energy consumption via Lyapunov optimization.
Numerical results show that the proposed FL-based scheme saves
substantial executing energy with less performance loss. Quan-
titatively, compared with the centralized learning baseline, the
proposed FL-based framework saves up to 69% model training
energy at the expense of a mere increased objective outcome,
i.e., 6.3% in the global data transmission energy consumption
(9.936×10−5 in ERM) under 0.4% bias from the global optimal
data-sampling frequency.

Index Terms—5G and beyond, industrial Internet of Things
(IIoT), federated learning, age of information (AoI), extreme
value theory.

I. INTRODUCTION

INDUSTRIAL Internet of Things (IIoT), among the
mission-critical applications in 5G networks and beyond, is

a key enabler for the real-time monitoring and control of the
environmental status in factory automation. In IIoT, intelligent
devices such as sensors, meters, and monitors dynamically
record the status data and upload them to the central controller
(in control systems). To further enhance the performance
of factory automation, predictive and prescriptive analysis
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provides a means in which sensors can proactively record and
upload the dynamics of environmental factors to a controller
[2]. However, the freshness or staleness of the controller’s
available data (obtained from the sensors) will affect the
system performance of factory automation. In this regard, since
the environmental status, e.g., temperature, varies dynamically,
the controller’s information may deviate from the real-time
status if the sampled data cannot be updated in time from
the perspective of the controller. If the deviation grows unex-
pectedly over time, the performance of real-time environment
monitoring will be poorly degraded [3]. In order to address
the information staleness concerns, Kaul et al. introduced
the metric, age of information (AoI) [4], which measures
the elapsed time since the data was sampled/generated by
a sensor until being received at the controller. A frequent
data sampling may keep the AoI small, whereas excessive
sampled data will overwhelm the sensor’s transmission system.
Due to the limited communication resources (e.g., transmit
power), the trade-off between the status-sampling frequency
and the transmission energy of the sampled data becomes a
critical issue. The impacts of resource allocation on the AoI
performance have been investigated in various communication
systems [5]–[18].

A. Related Work

To minimize the sensors’ power consumption subject to
the constraints on the maximal AoI’s tail behavior, the work
[5] considered a centralized instruction-issuing scheme for
sampling and uploading the environmental data in a multi-
sensor IIoT system. By focusing on a dense IoT monitoring
system [6], Zhou and Saad proposed a mean-field game
approach to minimize the average AoI and average peak AoI
subject to the average energy constraint. The authors further
considered a noisy-channel contention-based IoT monitoring
system. While discussing the cases with and without transmis-
sion feedback, they proposed three policies and characterized
the closed-form expressions of the average AoI [7]. The work
[8] investigated the average peak AoI with deadlines in IoT
networks. Therein, the closed-form expressions of the AoI
distributions were derived. To optimize the average peak AoI,
the authors in [9] modeled the procedure of computing and
transmission as a tandem queue and formulated a min-max
optimization problem to optimize the packet-updating rate.
A half-duplex transmission and wireless energy harvesting
scenario was investigated in [10]. Therein, the authors aimed
to minimize the AoI while considering the waiting time for
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energy harvesting. Additionally, the work [11] considered a
remote monitoring problem that trades off the average AoI
and the AoI threshold violation probability.

Moreover, some works used Markov decision processes
(MDPs) to study the AoI problems in various communica-
tion systems. The authors in [12] investigated the trade-off
between the AoI and energy cost and proposed an action
policy for the devices. In addition, the work [13] constructed
a learning-based AoI-optimal policy which jointly accounts
for the time and (consumed and harvested) energy to update
the status from the source nodes. A status-updating policy
was studied and designed in a multi-packet IoT system [14].
This work jointly considered the sampling and the schedul-
ing mechanisms for minimizing the average AoI. The work
[15] considered a single-destination multi-device computation-
enabled IoT system. To minimize the average weighted sum
of the AoI and energy consumption, the authors proposed the
joint offloading and scheduling policies. Additionally, Tang
et al. [16] proposed the scheduling algorithms to minimize
the average AoI under time-varying channels. Yin et al. [17]
focused on a correlated AoI optimization problem in the IoT
systems and further proposed a learning-based approach. In
the work [18], the authors proposed the deep reinforcement
learning-based policies to optimize the weighted average of the
AoI and throughput in the wireless energy transfer systems. In
the nutshell, the work with game-theoretic approaches [5], [6]
or MDP-based approaches [12]-[17] considered steady-state
solutions with discrete system conditions and policies/actions.
Furthermore, the considered AoI or data staleness were dis-
cretized.

Centralized optimization and centralized learning (CL) have
been widely used to improve the system performances of the
AoI, data transmission energy, etc. for real-time monitoring
[5], [13], [15]–[18]. However, CL consumes significant train-
ing energy while computing the collected global raw data in
a centralized manner and may take considerable transmission
energy for delivering large size raw data. In contrast, federated
learning (FL) [19]–[22], a decentralized and collaborative
paradigm, emerged as an alternative for model training, which
trains a global model by leveraging local model training across
sensors [20], [21], [23]. Compared with CL, the benefits of
energy saving in FL paradigms were discussed in [20], [21],
[24], [25], and numerically investigated in [26]. The trade-
off between the communication cost and the protection of
the privacy-sensitive data was investigated in [27]. Therefore,
the aforementioned AoI works [5], [13], [15]–[18], which
suppressed the AoI in a centralized manner, implicitly incurred
tremendous signaling overheads and energy consumption. The
authors in [28] focused on a scheduling policy for FL in a
wireless system, which jointly accounts for the AoI of the
local device’s model updates and the instantaneous wireless
channel quality. Additionally, some works were dedicated on
the FL performance improvement. In [29], part of the local-
model training, which is carried out by local devices, is split
into the edge server to improve the learning efficiency and
decrease the global communication frequency. For real-time
data analysis in IoT scenarios, the authors in [30] combined
edge and cloud computing, which leads to reductions up

to 80% in exchanged data between the edge and cloud by
feature learning. Finally, the authors in [31] proposed a local-
model selection approach accounting for the correlation in
the sensor’s training data in an IIoT scenario. Their goal
was to dynamically optimize the power for delivering the
environmental data. In our previous work [1], we considered
a fixed data-sampling rate scenario and proposed an FL-based
approach. The proposed solution could real-time dynamically
optimize the data transmit power with the uncertainty of the
channel condition. The objective was to minimize the long-
term risk-sensitive global sampled data transmission energy
subject to data staleness and extremely large AoI constraints.
Therein, each sensor locally learns the AoI of the uploaded
data and regresses the extreme AoI exceedances model. For
extreme AoI model regression, we further adopted FL to
improve the accuracy.

B. Our Contribution

Inheriting from our previous work [1], in this work, we
consider a multi-sensor IIoT system and study a controller-
sensor collaborative scheme. Subject to the probabilistic and
extreme AoI/data staleness constraints, our objective is to
optimize the trade-off between the data-sampling frequency
(by adjusting the sampling criterion at the sensor side) and the
global long-term risk-sensitive transmission energy of sending
the sampled data.

Therein, the channel condition and the data-sampling time
instance in the studied scenario vary over time at different
sensors, making the transmission energy allocation nontrivial
and thus causing the AoI/data staleness. To achieve the ob-
jective, we propose a dynamic transmit power and sampling
frequency optimization policy by marrying tools from Lya-
punov optimization [32], extreme value theory (EVT) [33],
and Bayesian optimization (BO) [34]. We further regress the
distribution of the extreme staleness cases (i.e., the data with
a very large AoI) to the generalized Pareto distribution (GPD)
models in order to optimize the transmission energy. Moreover,
since the individual accuracy of the GPD-model regression
is limited due to the lack of the extreme-AoI data at the
sensors, we leverage FL not only for mitigating the deviation
among the sensors’ model regression but also for training-
energy saving. In contrast with our previous work [1], the
unique contributions of this paper are listed as follows:

• We propose a top-down system design to trade off the
data-sampling frequency and data transmission energy.

– The data-sampling frequency can be optimized to
balance the requirements of the general and specific
extreme data staleness/AoI and the tense of data
transmission.

– Instead of seeking the steady-state performance of
the AoI, e.g., game-theoretic approaches [6], [7]
or MDP-based approaches [13]–[18], we meet the
long-term data staleness constraints by dynamically
optimizing the transmit power of each sampled data,
gaining more resilience to deal with the variation of
the channel condition.
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Figure 1: Controller-sensor collaborative FL-based scenario

– For extreme staleness/AoI constraint fulfillment, we
not only consider preventing the individual occur-
rence as in [1] but also propose an improved ap-
portion scheme which allows the staleness/AoI to be
continuous.

• We propose an FL-based two-stage iterative optimization
framework for computation energy saving.

– In the first stage, the controller learns the optimal
data-sampling frequency by BO.

– In the second stage, each sensor optimizes the
transmission energy of the sampled data under a
given sampling frequency by leveraging Lyapunov
optimization and EVT.

– Via numerical results, we examine the energy-saving
benefits of the proposed FL-based scheme for model
training and the cost minimization (which incorpo-
rates the data-sampling frequency, risk-sensitive en-
ergy consumption, and satisfaction of data freshness
constraints) over the CL scheme.

The remainder of this paper is organized as follows. The
system model and problem formulation are specified in Sec-
tion II. In Section III, we illustrate the proposed two-stage
framework of the data-sampling frequency and long-term
transmission energy allocation. The numerical results and the
performance of the proposed scheme are shown and discussed
in Section IV. Finally, this work is concluded in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Architecture

As shown in Fig. 1, we consider an IIoT network which
contains a controller and a set K of K wireless sensors for
environment monitoring. Sensors separately monitor the status
of distinct and independent (but of the same type) environmen-
tal changes. After the sensor samples an environmental status
data, the data is transmitted immediately to the controller
if the uploading procedure (of all the previous data) has
been completed. Otherwise, new data is queued in the buffer.
Moreover, we imbue FL into the considered IIoT system for
enhancing the data freshness and optimizing the transmission
energy, which will be elaborated in Section III.

We assume that the data sampling is event-triggered. Each
sensor will sample a new data if the experienced change of
the environmental status is larger than a value Cg ∈ R

+.
The value of Cg also reflects the data-sampling frequency. A
smaller/larger Cg implies that the sensors need to sample the
data more/less frequently. For each sensor k ∈ K, its sampled
data are indexed by i ∈ Z+. Here, we denote the data sampled
by a sensor, which follows Cg , as (i|Cg). To send the i-
th environmental data with Denv bits, sensor k allocates a
transmit power pk(i|Cg) with a transmission delay

tk(i|Cg) =
Denv

B log2
(
1 +

hk(i|Cg)pk(i|Cg)
BN0

) . (1)

Here, hk(i|Cg) is the channel gain with path loss which
changes with time between sensor k and the controller. B
is the dedicated bandwidth to sensor k while N0 is the power
spectral density of the additive white Gaussian noise. The
environmental data sampling and the AoI function of sensor
k are schematically illustrated in Fig. 2. Note that the AoI
of each data measures the elapsed time since the data was
sampled by a sensor until being received at the controller.
In Fig. 2, Hk is the experienced continuous environmental
changes of sensor k. Therein, τk(i|Cg) represents the sensor
k’s i-th data-sampling time instant, and bk(i|Cg) = τk(i|Cg)−
τk(i−1|Cg) > 0,∀ i = 2, 3, · · · , is the sampling time interval
between the (i − 1)-th data and the i-th data. The interval
bk(i|Cg) varies with the uncertain environmental changes and
the sampling criterion Cg . Additionally, the queuing time
qk(i|Cg) is caused by the AoI of the previous, i.e., (i− 1)-th,
data ak(i− 1|Cg) if it has not been delivered to the controller
yet. We can straightforwardly find

qk(i|Cg) = [ak(i− 1|Cg)− bk(i|Cg)]
+, ∀ i ∈ Z+, (2)

which varies for each data, with [·]+ = max(·, 0). Accord-
ingly, the AoI of the i-th data ak(i|Cg) is composed of the
queuing time qk(i|Cg) and its transmission time tk(i|Cg), i.e.,
ak(i|Cg) = qk(i|Cg)+ tk(i|Cg). The AoI is also dynamic and
can be expressed in a recursive manner as

ak(i|Cg) = [ak(i− 1|Cg)− bk(i|Cg)]
+ + tk(i|Cg), ∀ i ∈ Z+.

(3)

B. Problem Formulation

For real-time monitoring, a smaller Cg increases the sam-
pling frequency but accumulates more sampled data to be
delivered. Due to transmission staleness, obsolete data (i.e.,
data with a high AoI) may significantly degrade the overall
performance. Thus, we impose additional constraints on the
AoI as follows. To emphasize the criticality of the AoI, we
firstly introduce a staleness function [28], [35]

fk(i|Cg) =
[ak(i|Cg)]

2

2
, ∀ i ∈ Z+, k ∈ K. (4)

Then, under a given Cg , we consider a long-term time-
averaged staleness constraint

fk(Cg) = lim
I→∞

1

I

I∑
i=1

E[fk(i|Cg)] ≤ fm, ∀ k ∈ K, (5)
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Figure 2: Illustrations of the status changes Hk(t), data-
sampling sensitivity Cg , queuing time qk(i), and AoI ak(i).
In this case, the (i−2)-th and (i−1)-th data can be uploaded
immediately. Thus, both qk(i− 2) and qk(i− 1) are zero.

for every sensor in which fm is the threshold. Here, I
represents the total transmission times in the communication
timeline. Additionally, we consider a probabilistic constraint
on the occurrence of extreme staleness

Prk(Cg) = Pr{fk(i|Cg) > fes} ≤ ϵes, ∀ i ∈ Z+, ∀ k ∈ K,
(6)

where fes > 0 is the threshold of extreme staleness, and
ϵes ≪ 1 is the tolerable occurrence probability. Furthermore, if
the extreme staleness grows drastically, the real-time monitor-
ing performance of the system will degrade. Hence, we further
impose a probabilistic constraint on the event of extreme
staleness exceedances

Pr
(ex)

k (Cg) = Pr{fk(i|Cg) > fes + fea
∣∣fk(i|Cg) > fes}

≤ ϵea, ∀ i ∈ Z+, ∀ k ∈ K. (7)

Here, fea > 0 is the threshold of staleness exceedances, and
ϵea is the tolerable probability. Conditioned on the extreme
staleness events (i.e., the staleness value fk(i|Cg) which is
greater than the threshold fes), constraint (7) enforces that the
occurrence probability of the staleness data which additionally
violate another threshold fea should be less than ϵea.

Taking the sensors’ limited-energy concerns into account,
we aim to jointly minimize the data-sampling frequency (in
terms of Cg) and sensors’ long-term transmission energy
consumption subject to the imposed staleness constraints.
Note that even though the sensors monitor the same type
of environments, the numbers of sampled data (and total
energy consumption) of different sensors are distinct due to
the uncertainty of the individual experienced status changes.
In order to mitigate the deviation of data transmission en-
ergy among sensors, we invoke the entropic risk measure
(ERM) 1

ρ ln(EX [exp(ρX)]) to jointly incorporate the mean
and variance/deviation [36]. Note that the risk-sensitivity pa-
rameter ρ > 0 reflects the weights of variance and higher-
order statistics of the random variable X . Thus, denoting
the sensor k’s consumed energy for sending its i-th data

as Ek(i|Cg) = pk(i|Cg)tk(i|Cg), we formulate the studied
optimization problem as follows:

minimize
pk(i|Cg),Cg

αCg +
∑
k∈K

1

ρ
ln

(
lim
I→∞

1

I

I∑
i=1

exp
(
ρEk(i|Cg)

))
(8a)

subject to 0 ≤ pk(i|Cg) ≤ pmax, ∀ i ∈ Z+, k ∈ K, (8b)
Cg > 0, (8c)
(5) − (7),

in which pmax is the sensor’s power budget. Additionally,
α > 0 trades off the criterion value (for the data-sampling fre-
quency) and the entropic risk measure of energy consumption.

III. DATA STALENESS-AWARE POWER ALLOCATION

Note that in problem (8), the value of Cg affects the
network-wide energy consumption and the staleness of sam-
pled data. However, since the environmental status (i.e., Hk

in Fig. 2) varies randomly and individually at each sensor, the
impacts of Cg on the energy consumption and data staleness
are unknown for solving problem (8).

To address this issue while saving the model training
computation energy (as the highlighted advantages in Section
I), we adopt the FL paradigm and propose a FL-based two-
stage sampling-frequency and energy trade-off scheme (FLTS-
SETOS). In the first stage, with a given Cg from the controller
(estimated as the most potential value to improve the system
performance), the sensors sample the environmental data ac-
cordingly and transmit them to the controller. Therein, the
sensors optimize the sampled data transmit power with the
proposed Lyapunov-based iterative transmission optimization
scheme (Lya-ITOS) and feed back the statistical results of the
ERM energy consumption (the second term in (8a)) to the
controller. In the second stage, the controller iteratively learns
the value of Cg using BO-based via a sampling criterion op-
timization scheme (Bay-SCOS) according to the historical re-
sults (such as the global ERM energy consumption results and
the satisfaction level of the constraints.) To detail the sensors-
controller cooperative scheme, FLTS-SETOS, in Section III-A,
we present Lya-ITOS with a given Cg . Subsequently, we
demonstrate the optimal Cg-value estimation algorithm, Bay-
SCOS, in Section III-B.

A. Lyapunov-Based Iterative Transmission Optimization
Scheme (Lya-ITOS)

With a controller-selected Cg , the entropic risk measure
minimization of the transmission energy is given as

minimize
0≤pk(i|Cg)≤pmax

∑
k∈K

1

ρ
ln

(
lim
I→∞

1

I

I∑
i=1

exp
(
ρEk(i|Cg)

))
subject to (5) − (7). (9)

Note that for notational simplicity, we neglect Cg in problem
(9) and throughout Section III-A. Here, constraint (7) concerns
the exceedances of extreme staleness which is rooted in the tail
distribution of the staleness fk. In this regard, EVT provides

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2022.3216353

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Oulu University. Downloaded on December 05,2022 at 08:09:11 UTC from IEEE Xplore.  Restrictions apply. 



5

a powerful tool to characterize the tail behavior of the general
probability distribution as shown in Theorem 1.

Theorem 1 (Pickands–Balkema–de Haan Theorem [33]).
Given a random variable X , the complementary cumulative
distribution function (CCDF) of the exceedance over a thresh-
old Y |X>d0

= X − d0 can be approximated as a GPD, i.e.,

FY (y) = Pr(X ≥ y + d0|X > d0) ≈
(
1 +

ξy

σ

)−1/ξ

,

when the threshold d0 → F−1
X (1). The GPD is characterized

by a scale parameter σ > 0 and a shape parameter ξ ∈ R.

By applying the results in Theorem 1 to (7), we have

Pr{fk(i)−fea ≥ fes|fk(i) > fes} =

(
1+

ξfea
σ

)−1/ξ

≤ ϵea.

Note that the GPD parameters (σ, ξ) for the conditional
extreme staleness constraint (7) are not available beforehand
but can be learned from the sensors’ individual empirical
extreme staleness data (experienced in the previous time slots)
by GPD distribution model regression (which will be detailed
in Section III-A2 and III-A3.) Hence, to deal with problem
(9), Lya-ITOS is an M -iteration scheme to seek the optimal
solution. In each iteration (indexed by m), we use two sub-
schemes. The first one, Lyapunov-based transmission energy
optimization (L-TEO), leverages Lyapunov optimization to
optimize the sampled data transmission energy subject to
constraints (5) and (6). The second sub-scheme, GPD model-
based transmission energy enhancement (GPD-TEE), trains
the GPD model with the extreme staleness data consolidated
from the first sub-scheme, and further optimizes the data
transmit power under constraint (7). The operations of the two
sub-schemes in each iteration are described as follows.

1) Lyapunov-Based Transmission Energy Optimization (L-
TEO): In the (m)-th iteration, we exclude constraint (7) and
focus on the following problem. For sensor k, the individual
problem becomes

minimize
pk(i|Cg)

lim
I→∞

1

I

I∑
i=1

exp
(
ρEk(i)

)
subject to (5), (6), and (8b), (10)

in which we consider exp
(
ρEk(i)

)
as the objective since

1
ρ ln(·) in (8a) is a monotonically increasing function. Utilizing
Lyapunov optimization, we solve the long-term time-averaged
problem as follows. First of all, scaling both sides of (6) by
fk(i) and incorporating Pr{fk(i) > fes} = E[1{fk(i)>fes}],
we rewrite (6) as

lim
I→∞

1

I

I∑
i=1

fk(i)E[1{fk(i)>fes}] ≤ lim
I→∞

1

I

I∑
i=1

fk(i)ϵes,

(11)
where 1{·} is the index function. Then, we introduce two
virtual queues, which evolve as

Γk(i+ 1) = [Γk(i) + fk(i)− fm]+, (12)
Λk(i+ 1) = [Λk(i) + (1{fk(i)>fes} − ϵes)fk(i)]

+, (13)

for constraints (5) and (6), respectively. Subsequently, by
applying ([x]+)2 ≤ x2, we straightforwardly derive an upper
bound on the conditional Lyapunov drift-plus-penalty for the
i-th data transmission as (14), in which V > 0 is the
parameter to trade off the virtual queue suppression and energy
consumption optimality in (10). Note that the time-averaged
constraints are satisfied if the corresponding virtual queues
are stabilized over time [32]. Hence, to optimize the objective
in (10) and ensure the stability of the virtual queues of the
corresponding constraints, we minimize the upper bound (14)
in each data transmission i ∈ Z+. To this end, each sensor k
solves

minimize
0≤pk(i)≤pmax

χ′
k(i)f

2
k (i)+χ

′′
k(i)fk(i)+V exp

(
ρEk(i)

)
(15)

with χ′
k(i) =

1
2 (1+1{fk(i)>fes} + ϵ2es) and χ′′

k(i) = (Γk(i)+
Λk(i)1{fk(i)>fes}) to allocate the transmit power pk(i|Cg)
for its i-th transmission. Note that χ′

k(i)f
2
k (i) + χ′′

k(i)fk(i)
is convex, whereas exp

(
ρEk(i)

)
is non-convex with respect

to pk(i). In order to tractably find a solution to the non-
convex problem (15), we adopt the notion of the convex-
concave procedure (CCP) [37] in which the non-convex func-
tion exp

(
ρEk(i)

)
is iteratively convexified by the first-order

Taylor series expansion with respect to a feasible reference
point p̂k, i.e.,

exp
(
ρEk(p̂k)

)
×
[
tk(p̂k)

(
1− p̂khktk(p̂k)

Denv(p̂khk +N0B) ln 2

)
(pk − p̂k) + 1

]
.

Specifically, given the reference point p̂rk in the r-th iteration
of the CCP, we focus on the convexified problem

minimize
0≤pr+1

k ≤pmax,
χ′
kf

2
k (p

r+1
k )+χ′′

kfk(p
r+1
k )+V J(p̂rk)p

r+1
k (16)

with J(p̂rk) = exp(ρEk(p̂k))tk(p̂
r
k)
[
1− p̂r

khktk(p̂
r
k)

Denv(p̂r
khk+N0B) ln 2

]
.

Here, we ignore the data index i. By differentiation,
the optimal solution to (16) is given by (pr+1

k )⋆ =
max{min{p̃r+1

k , pmax}, 0} in which p̃r+1
k satisfies

−

{
χ′
k

[
qk +

Denv ln 2

B ln
(
1 +

hkp̃
r+1
k

BN0

)]3

+ χ′′
k

[
qk +

Denv ln 2

B ln
(
1 +

hkp̃
r+1
k

BN0

)]}

×

(
Denvhk ln 2

N0

[
ln
(
1 +

hkp̃
r+1
k

BN0

)]2(
1 +

hkp̃
r+1
k

BN0

))+ V J(p̂rk) = 0.

The solution in the r-th iteration is then set as the reference
point of the next iteration r + 1, i.e., p̂r+1

k = (pr+1
k )∗.

After a sufficient number of CCP iterations, sensor k uses
the converged solution as (p

(m)
k )∗(i) = (p∞k )∗ in the L-TEO

(m)-th iteration. Note that (p(m)
k )∗(i) is the solution subject

to constraints (5) and (6) only. The actual energy for data
transmission is tuned with the empirical results (∆p

(m−1)
k )∗

of GPD-TEE in the previous (i.e., (m−1)-th) iteration in order
to meet constraint (7). The proposed GPD-TEE is illustrated
as follows.
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2) GPD Model-Based Transmission Energy Enhancement
(GPD-TEE): In the (m)-th iteration, after preforming L-
TEO and collecting considerable empirical data to characterize
the GPD parameters, the next step is to adjust the transmit
power for the next (i.e., (m + 1)-th) iteration to satisfy (7).
Hereafter, we use the superscript (·)(m) to refer the metrics
collected in the (m)-th iteration, e.g., a(m)

k , t(m)
k , and f

(m)
k

for the statistical results of ak, tk, and fk, while solving
(10). The set of extreme staleness exceedances is denoted by
Q(m)

k = {f̂ (m)
k (i) = f

(m)
k (i)− fes > 0 : i ∈ Z+} which will

be further used for training the GPD parameters as explained
in Section III-A3.

If the constraint (7) is not satisfied, we decrease the global
staleness by an amount A(m)

adj ≥ 0. After the deduction, the
CCDF of the staleness exceendances (by applying Theorem
1) is given by

Pr
{Q(m)

k }
{f̂ (m)

k −A
(m)
adj > fea}

≈
(
1 +

ξ(m)(A
(m)
adj + fea)

σ(m)

)−1/ξ(m)

≤ ϵea, (17)

which can be rewritten as an lower bound on A(m)
adj , i.e.,

A
(m)
adj ≥ Amin ≡

(
σ(m)

[
(ϵea)

−ξ(m)

− 1
]
/ξ(m) − fea

)+
.

(18)
After subtracting A

(m)
adj from the staleness exceedance f̂ (m)

k ,
we consider the mean as

E{Q(m)
k }

[
f̂
(m)
k −A

(m)
adj

]
= E{Q(m)

k }

[
f
(m)
k − fes −A

(m)
adj

]
= E{Q(m)

k }

[
1

2

(
a
(m)
k

)2 − fes −A
(m)
adj

]
. (19)

Moreover, diminishing the staleness can be done by directly
decreasing the data’s AoI. In this regard, we reduce the AoI
by an interval ∆t(m)

k of the transmission time and have

E{Q(m)
k }

[
1

2

(
a
(m)
k

)2 − fes −A
(m)
adj

]
= E{Q(m)

k }

[
1

2
(a

(m)
k −∆t

(m)
k )2 − fes

]
, (20)

which results in

A
(m)
adj =

1

2

(
E{Q(m)

k }

[
a
(m)
k

])2
− 1

2

(
E{Q(m)

k }

[
a
(m)
k

]
−∆t

(m)
k

)2
. (21)

Then incorporating (18) and (21), we have an lower bound on
∆tk in the feasible real region as

∆t
(m)
k ≥ ∆t

(m)
k,min ≡ E{Q(m)

k }

[
a
(m)
k

]
+

√
E{Q(m)

k }

[
a
(m)
k

]2
− 2Amin. (22)

Additionally, we consider the empirical average transmission
delay as the longest reducible time, which results in an upper
bound

∆t
(m)
k < t̄

(m)
k = E{Q(m)

k }

[
t
(m)
k

]
. (23)

Given p̃(m)
k = g(exp ( κ

t̄
(m)
k

) − 1) with g = BN0/h̄k and κ =

D ln 2/B, and denoting the extra transmit power to reduce
the time ∆t

(m)
k as ∆p

(m)
k ≥ 0, we have p̃

(m)
k + ∆p

(m)
k =

g
(
exp ( κ

t̄
(m)
k −∆t

(m)
k

)− 1
)

by following (1). Since we focus on
energy consumption in problem (10), we also minimize the
energy cost (p̃(m)

k +∆p
(m)
k )(t̄

(m)
k −∆t

(m)
k ) while deciding the

time reduction, i.e.,

minimize
∆tk,min≤∆tk<t̄k

g
(
exp

(
κ

t̄k −∆tk

)
− 1
)
(t̄k −∆tk), (24)

which is a convex optimization problem. The superscript
(m) is emitted in (24) and (25) for notational simplicity.
By differentiation, the solution to problem (24) is expressed
∆t∗k = max{min{∆t′k, t̄k−δ},∆tk,min} with δ → 0 in which
∆t′k satisfies

exp
(

κ
t̄k−∆t′k

)(
1− κ

t̄k−∆t′k

)
− 1 = 0.

Accordingly, the increased power derived from the empirical
extreme data Q(m)

k is calculated as

∆p∗k = [p̃k +∆p∗k]− p̃k

= µ

(
exp

(
κ

t̄k −∆t∗k

)
− exp

(
κ

t̄k

))
. (25)

Here, we propose two methods to distribute the increased
power (∆p

(m)
k )∗ to the sensors’ transmit power, i.e., the

intuitive extreme staleness power adjustment scheme (EXT)
and the enhanced apportion power adjustment scheme (APP).

In EXT, the sensor checks the staleness status at the present
iteration f

(m)
k (i) of each data before transmission and then

increases the transmit power for the data whose staleness

E
[1
2

(
Γk(i+ 1)

)2
+

1

2

(
Λk(i+ 1)

)2 − 1

2

(
Γk(i)

)2 − 1

2

(
Λk(i)

)2
+ V exp

(
ρEk(i)

)∣∣∣Γk(i),Λk(i)
]

≤ E
[
Γk(i)(fk(i)− fm) +

1

2
(fk(i)− fm)2 + Λk(i)fk(i)(1{fk(i)>fes} − ϵes)

+
1

2
f2k (i)(1{fk(i)>fes} − ϵes)

2 + V exp
(
ρEk(i)

)∣∣∣Γk(i),Λk(i)
]

≤ E
[1
2
(1 + 1{fk(i)>fes} + ϵ2es)f

2
k (i) + (Γk(i) + Λk(i)1{fk(i)>fes})fk(i) +

1

2
f2m + V exp

(
ρEk(i)

)∣∣∣Γk(i),Λk(i)
]

(14)
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surpasses the threshold fes. In other words, the final transmit
power is adjusted as

p
(m)
EXT,k(i) =


min

{
(p

(m)
k )∗(i) + (∆p

(m)
k )∗, pmax

}
, if f (m)

k (i) > fes,

(p
(m)
k )∗(i) , otherwise.

(26)
Instead of checking the staleness of each transmission, the
sensor evenly and proportionally apportions (∆p(m)

k )∗ to every
data transmit power in APP, which can shorten the staleness
comprehensively. In APP, the transmit power is

p
(m)
APP,k(i) = min

{
(p

(m)
k )∗(i) +

|Q(m)
k |

|F (m)
k |

(∆p
(m)
k )∗, pmax

}
,

(27)
where F (m)

k = {f (m)
k (i)| ∀i},∀ k ∈ K, is the set of all the

staleness-data transmissions in the (m)-th iteration.

Corollary 1. APP outperforms EXT for extreme staleness
cases in the worst-case scenario where the queuing time (2) is
always non-negative, i.e., qk(i) = ak(i−1)− bk(i) ≥ 0, ∀ i ∈
Z

+, k ∈ K, w.p. 1.

Proof. Please refer to Appendix A.

Finally, after uploading the i-th sampled data with the
transmit power in EXT/APP, sensor k updates the virtual
queues (12) and (13) as well as the coefficients in (15) for
the transmit power in the next (i+ 1)-th data transmission.

3) FL-Based GPD Model Regression: Hereafter, we refer
to the characteristic parameters θ(m) = (σ(m), ξ(m)) as the
GPD model in the (m)-th iteration. Similarly to our previous
work [1], we leverage principles from FL for model training.

At the (m)-th iteration, we aim to find a global GPD model
which is the closest to the empirical distribution with respect
to the Kullback–Leibler (KL) divergence, i.e.,

minimize
θ(m)

G(θ(m)|Q(m)) (28)

with

G(θ(m)|Q(m)) = −
∑

f̂∈Q(m)

ln
(
P (f̂ |θ(m))

)
.

Here, Q(m) = {Q(m)
k : k ∈ K} is the global extreme staleness

set while

P (f̂ |θ(m)) =
1

σ(m)

(
1 +

ξ(m)f̂

σ(m)

)−1/ξ(m)−1

is the likelihood function. In the proposed FL-based GPD
model regression, all sensors and the controller collaborate
to learn the GPD model without sharing their own data set
Q(m)

k ,∀ k ∈ K. That is, sensor k locally minimizes the
KL divergence (28) and iteratively runs the gradient decent
algorithm with its Q(m)

k to train a local GPD model. Due to
the unavailability of the closed-form solution to problem (28),
we resort to the iterative gradient decent approach [19] for
sensor k, i.e.,

θn+1
k = θnk − δnθ,k∇G(θnk |Qk), n = 0, 1, 2, · · · , (29)

Procedure 1 Lyapunov-Based Iterative Transmission Optimization Scheme
(Lya-ITOS)
Input: Cg ,M,Wobs,K, fm, fes, ϵes, fea, ϵea, pmax, B,N0, V, ρ.

// Wobs is the time window for each iteration
Output: Ok(·), ∀k ∈ K.
Initialize: τk(0|Cg) = 0, ak(0|Cg) = 0, bk(1|Cg) = 0, qk(1|Cg) =
0,Γk(0|Cg) = 0,Λk(0|Cg) = 0, ∀k ∈ K, θ(0) = {10−2, 10−4},
(p

(0)
k )∗ = 0.
// the conditional term (·|Cg) is omitted in the following pseudo codes

1: for m = 0, 1, · · · ,M − 1 do
2: for ∀k ∈ K do
3: Sample the data with Cg and record hk(i|Cg) and τk(i).
4: for i = 1, 2, · · · , : ∀τk(i) ∈W

(m)
obs do // Start of L-TEO

5: Form χ′
k(i), χ

′′
k(i) in (15) and solve p

(m)
k )∗(i) by CCP (16),

6: Transmit the i-th sampled data with p
(m)
EXT,k(i) by (26) or

7: p
(m)
APP,k(i) by (27),

8: Update tk(i), qk(i), ak(i), fk(i) by (1), (2), (3), (4),
9: Γk(i+ 1),Λk(i+ 1) by (12) and (13),

10: end for // End of L-TEO
11: Consolidate Q(m)

k and train θ̂
(m)
k by (29), and (30),

12: // Start of GPD-TEE
13: Upload θ̂

(m)
k to the controller and get θ(m) by (31),

14: Calculate (∆p
(m)
k )∗ with θ(m) by solving (24) with (25),

15: // End of GPD-TEE
16: end for
17: end for
18: for ∀k ∈ K do
19: Calculate and return Ok(·) = Costk(Cg) by (32)-(36).
20: // Preparing for Bay-SCOS
21: end for

in which n is the iteration index. Here, δnθ,k is the flexible step
size varying with iterations [38], and

∇G(θ|Q) =


∂G(θ|Q)

∂σ
∂G(θ|Q)

∂ξ



=


∑
f̂∈Q

σ − f̂

σ(σ + ξf̂)

∑
f̂∈Q

[
f̂(1 + ξ)

ξ(σ + ξf̂)
− 1

ξ2
ln

(
1 +

ξf̂

σ

)]
 .

(30)

For notational simplicity, we ignore superscript (m) in (29)
and (30). When convergence is achieved, i.e., |θnk−θ

n−1
k | → 0,

the learned GPD model of sensor k in the (m)-th iteration is
set as θ̂(m)

k = θnk . Next, sensor k uploads θ̂(m)
k and the value of

|Q(m)
k | to the controller. Based on the uploaded information,

the controller calculates the global GPD model as

θ(m) =
1

|Q(m)|
∑
k∈K

|Q(m)
k |θ̂(m)

k , (31)

which is then fed back to all sensors for GPD-TEE as
mentioned in Section III-A2. Moreover, the initial set θ0k in
(29) for every sensor k’s next (m+1)-th FL-based GPD Model
Regression is given from θ(m) in (31) as well. The steps of
Lya-ITOS are outlined in Procedure 1.
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B. Bayesian Optimization-Based Sampling Criterion Opti-
mization Scheme (Bay-SCOS)

After the total M iterations of Lya-ITOS are finished with
the given Cg , we verify the corresponding utility for problem
(8) to forage out another unexplored potential value of Cg .

Note that the values of the virtual queues in Lyapunov
optimization reflect the satisfaction level of the corresponding
constraints. Thus, we incorporate the optimal result of (8a)
and the virtual queues’ average values obtained in Lya-ITOS
through all the M iterations as a cost function to measure the
system performance under a given Cg . To this end, the cost
function of sensor k ∈ K is coined as

Costk(Cg) = αCg + E
(ERM)

k (Cg)

+
1

V

[
Γk(Cg) + Λk(Cg) + Υk(Cg)

]
, (32)

where

E
(ERM)

k (Cg) = lim
I→∞

1

ρ
ln

(
1

I

I∑
i=1

exp
(
ρE∗

k(i
∣∣Cg))

))
,

(33)

Γk(Cg) = lim
I→∞

1

I

I∑
i=1

Γk

(
i
∣∣Cg

)
, (34)

Λk(Cg) = lim
I→∞

1

I

I∑
i=1

Λk

(
i
∣∣Cg

)
, (35)

Υk(Cg) = lim
I→∞

1

I

I∑
i=1

Υk

(
i
∣∣Cg

)
, (36)

and the virtual queue Υk

(
i
∣∣Cg

)
under a given Cg with the

queue evolution

Υk(i+ 1) = [Υk(i) + (1{fk(i)>fes} − ϵea)fk(i)]
+,

∀ i ∈ Z
+, ∀ k ∈ K, is for the extreme staleness exccedance

constraint (7). To estimate the cost of the unexplored value of
Cg , we adopt BO which combines Gaussian process regression
(GPR) for model training and efficient global optimization
(EGO) [39]. Let us elaborate on Bay-SCOS as follows.

1) Gaussian Process Regression (GPR) for Model Training:
Assuming the system has explored S cost values with the
corresponding values of Cg , we denote the well-explored
sampling frequency set as

Cg(S) = [Cg(1), Cg(2), · · · , Cg(S)]
T ∈ RS×1.

With the sensor k’s corresponding local cost Ok(s) =
Costk(Cg(s)), s = 1, 2, · · · , S, we denote the local cost
vector set as Ok(S) = [Ok(1), Ok(2), · · · , Ok(S)]

T ∈ RS×1.
The ultimate goal is to find a zero-mean noise-free S-variable
global normal distribution function which has the closest KL
divergence to

O(S) ∼ N (0,Π(ϑ(S))) (37)

with the global cost vector

O(S) =
1

|K|
∑
k∈K

Ok(S)

= [O(1), O(2), · · · , O(S)]T ∈ RS×1. (38)

In (37), Π(ϑ(S)) ∈ RS×S is the global covariance matrix with
the global hyperparameter set ϑ(S) of the element function.
Here, we utilize squared exponential covariance as the element
function to emulate the trend of the cost value with respect to
Cg . The (i, j)-th element in Π(ϑ(S)) is

π(i, j) = η2 exp

(
−(Cg(i)− Cg(j))

2

2ν2

)
, ∀ i, j = 1, 2, · · · , S,

(39)
with the hyperparameter set ϑ(S) = (η(S), ν(S)). We ab-
breviate Π(ϑ(S)) to ΠS in the rest of content for notational
simplicity. To obtain the optimal hyperparameter set, the
objective is

ϑ̂ = arg min
ϑ∈R2

B(ϑ|O(S)), (40)

where

B(ϑ|O(S)) = − lnN (O(S)|0,ΠS)

= 1
2 [(O(S))T (ΠS)−1O(S) + ln(det(ΠS)) + S ln(2π)].

In the proposed FL-based GPR, sensor k trains the local model
with ϑk by

ϑ̂k = arg min
∀ϑk∈R2

B(ϑk|Ok(S)) (41)

and the iterative gradient decent [19]

ϑn+1
k = ϑnk − δnϑ,k∇B(ϑnk |Ok(S)), n = 0, 1, 2, · · · . (42)

Here, ϑ0k = ϑ̂(S−1) is the global hyperparameter set leveraged
by the controller in the previous operation (i.e., when only
having (S−1) costs of the corresponding explored Cg-value).
Additionally, δnϑ,k is the flexible step size of sensor k [38],
and

∇B(ϑ|O(S))

= 1
2

[
tr
(
(ΠS)−1 ∂ΠS

∂ϑ

)
−OT (S)(ΠS)−1 ∂ΠS

∂ϑ (ΠS)−1O(S)
]

is the derivative of the negative log S-variable normal distribu-
tion model, in which ∂ΠS

∂ϑ is the element-wise partial derivative
of the covariance matrix

∂π(i, j)

∂ϑ
=


∂π(i, j)

∂η
∂π(i, j)

∂ν


=

2η exp (−(Cg(i)− Cg(j))
2

2ν2

)
η2(Cg(i)− Cg(j))

2

ν3
exp

(−(Cg(i)− Cg(j))
2

2ν2

)
 ,
(43)

∀ i, j = 1, 2, · · · , S. Sensor k harvests the local optimal
hyperparameter set as ϑ̂k(S) = ϑnk when |ϑnk−ϑ

n−1
k | → 0, and

reports ϑ̂k(S) to the controller. Then, the controller obtains the
global optimal hyperparameter set by leveraging

ϑ̂(S) =
1

|K|
∑
k∈K

ϑ̂k(S). (44)
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2) Efficient Global Optimization (EGO)-Based Sampling:
With ϑ̂, we form the global posterior noise-free S-variable
normal distribution of the u-th global cost (the corresponding
Cg(u) can be one of the well-explored one or any other
unexplored one) as

O(u) = Cost(Cg(u)) ∼ N
(
µ(Cg(u)|ϑ̂), ϖ(Cg(u)|ϑ̂)

)
,
(45)

∀u ∈ Z+. For notational simplicity, the term ϑ̂ is ignored, and
Cg(u) is abbreviated as u in the remainder of Section III-B2.
In (45), the mean of Cost(Cg(u)) is

µ(u) = E[Cost(Cg(u))] = [ΞS(u)]T (ΠS)−1OS ∈ R,

and the variance of Cost(Cg(u)) is

ϖ(u) = V ar[Cost(Cg(u))]

= η̂2 − [ΞS(u)]T (ΠS)−1ΞS(u) ∈ R+,

where ΞS(u) = [π(u, 1), · · · , π(u, S)]T ∈ RS×1 is the
covariance vector between the u-th global cost and well-
explored global cost set O(S) as (38).

With EGO [39], the central processor estimates the next
potential value of Cg with the improvement value, defined as
IM(O(u)) = [Omin − O(u)]+, where Omin = min{O(S)}
is the minimum well-explored global cost. To figure out the
expectation of the improvement, we have E[IM(O(u))] =
E
[
Omin−O(u)]+

]
, which can be expressed in a closed form

by applying integration by parts [39], and obtain

E[IM(O(u))] = ζ(u)Φ

(
ζ(u)√
ϖ(u)

)
+
√
ϖ(u)ϕ

(
ζ(u)√
ϖ(u)

)
.

(46)
Here, ζ(u) = Omin − µ(u). ϕ(·) and Φ(·) represent the
probability density function and CDF. Hence, we predict next
potential sampling as per

u′ = arg max
∀u∈Z+

E[IM(O(u))]. (47)

Once the controller finds an unexplored potential Cg , it will
announce to all sensors and start a new exploration. The well-
explored Cg set will extend in the exploration period, e.g.,
from S to S +1, after the sensors report the local cost vector
Ok(S + 1), ∀k ∈ K, to the controller in order to obtain the
global cost vector O(S + 1). The controller will cease the
exploration until the latest most potential Cg duplicates the one
in the well-explored set. Then, the controller finally selects the
Cg within the well-explored set which results in the minimum
cost as the optimal solution to (8). The steps of Bay-SCOS and
FLTS-SETOS are outlined as Procedure 2 and Algorithm 1,
respectively.

The operation of FLTS-SETOS is summarised below. As
shown in Algorithm 1, FLTS-SETOS firstly sets State as
“true” (which means such Cg has potential to improve the
system performance) for the initial Cg . With the initial Cg ,
FLTS-SETOS performs Lya-ITOS to optimize the long-term
ERM data transmission energy consumption, i.e., the optimal
solution of (9), and forms the cost value of each sensor, i.e.,
(32), with virtual queues. Furthermore, collecting the global
cost value(s) with the corresponding Cg(s), FLTS-SETOS runs
Bay-SCOS to check if there is another potential Cg . As

Procedure 2 Bayesian-Based Sampling Optimization Scheme (Bay-SCOS)

Input: S, Cg(S),Ok(S), ∀k ∈ K. // Wobs is the time window for each
iteration
Output: {“true”, Cg(S + 1)} or {“false”, C∗

s }.
1: for ∀k ∈ K do
2: Calculate and return ϑ̂k with Ok(S) by (41) and (42), // GPR part
3: end for
4: Aggregate O(S) with Ok(S), ∀k ∈ K by (38), and ϑ̂ with ϑ̂k, ∀k ∈ K

by (44), // start of GEO
5: for u = 1, 2, · · · ∈ Z+ do // check within the exploration region
6: Calculate the distribution of O(u) by (45), and E[IM(O(u))] by
7: (46),
8: end for
9: Obtain u′ by (47),

10: if Cg(u′) /∈ C(S) then
11: Cg(S + 1)← Cg(u′), return {“true”, Cg(S + 1)},
12: else
13: C∗

s : Cg(S)← arg min
∀s∈S

O(S), return {“false”, C∗
s }.

14: end if // End of GEO

Algorithm 1 FL-Based Two-Stage Sampling-Frequency and Energy Trade-
Off Scheme (FLTS-SETOS)
Input: M,Wobs,K, fm, fes, ϵes, fea, ϵea, pmax, B,N0, V, ρ.
Output: C∗

s , Ek(i|C∗
s ), ∀k ∈ K, ∀i,

Initialize: S = 0, Cg(1), Cg(0) = {}, ϑ̂(0) = {1, 1},O(0) = {},Ok(0) =
{}, ∀k ∈ K, State =“true”,
1: while State =“true” do
2: S = S + 1, Cg(S) = {Cg(S − 1) Cg(S)},
3: [Ok(S), ∀k ∈ K] = Lya-ITOS{Cg(S),M,Wobs, . . .

K, fm, fes, ϵes, fea, ϵea, pmax, B,N0, V, ρ},
4: for k ∈ K do
5: Ok(S) = {Ok(S − 1) Ok(S)},
6: end for
7: [{“true”, Cg(S + 1)}/{“false”, C∗

s }] = . . .
Bay-SCOS{S, Cg(S),Ok(S), ∀k ∈ K},

8: end while
9: Return the C∗

s corresponding Ek(i|C∗
s ), ∀k ∈ K, ∀i from Bay-SCOS.

depicted in Line 7 of Algorithm 1, Bay-SCOS returns “true”
when a new Cg is explored, and Lya-ITOS will be executed
accordingly. On the other hand, if there is no explored Cg ,
Bay-SCOS will return “false” and the optimal Cg by searching
the historical cost results. To this end, FLTS-SETOS retrieves
the corresponding result of Lya-ITOS with the optimal Cg as
the final solution.

IV. NUMERICAL RESULTS

We consider a 100-meter radius circular factory field. The
controller is located in the center of the field, which is
uniformly surrounded by |K| = 15 sensors. Since smart
grid, one promising application of 5G networks [40], requires
timely and stringent status monitoring, we consider the voltage
amplitude of the alternating current [41]. Thus, for each sensor
k ∈ K, the continuous monitoring curve of the environmental
changes Hk(t) follows the same distribution as per

Hk(t) = Amp sin(t · 2π+ θ(sft)k )+n
(rp)
k (t), ∀ t ∈ R+, (48)

where Amp is the amplitude of the change, θ(sft)k ∼ U(0, 2π)
is the phase shift in the beginning, and n

(rp)
k (t) is the 20 dB

standard deviation of environmental random perturbation. The
considered path loss model between the controller and each
sensor k ∈ K is the 3GPP TR 38.901 in-field loss [42] function

PLk = 31.84 + 21.5 · log10(dk) + 19 · log10(fc) + n
(s)
k .
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Amp 10 B 30k Hz N0 -174 dBm
κcpu 10−27 Draw 100 byte Dmdl 240 byte
fes 2 · 10−2 ϵes 10−3 fea 10−2

Fraw 103 cycle/s Tprs 10 ms Sb 3
ϵea 0.5 ρ 5 Denv 3 · 103 byte
U 2 : 10−2 : 2.8 M 600 Wobs 1 sec
pmax 20 dBm V 1 dk (0, 100] m
fc [42] 3.5 GHz nsen

cpu 1 nctr
cpu 8

Table I: Simulation Parameters

Note that n(s)
k is a 4 dB-fading-effect of shadowing. Further-

more, the channel gain in (1) is expressed as

hk(i|Cg) = 10(−PLk/10) · ψ,

in which ψ denotes the Rayleigh fading with unit variance.
In the analysis of the energy-saving benefits, we consider

the same scheme as FLTS-SETOS. However, in the CL-based
approach, all the raw data are consolidated centrally for model
training. To verify the model-training energy consumption, we
adopt the computational energy function [26] as per

Ecom(Lraw) =
κcpu[FrawLraw]

3

(ncpuTprs)2
,

and transmission energy for the raw data exchanging in CL or
local model exchanging in FL between the sensor k ∈ K and
the controller is formed as

Ek
trn(L̃) =

TprsN0B

h̃k

[
exp

( (ln 2)L̃
TprsB

)
− 1

]
,

where κcpu is CPU effective switched capacitance. Addition-
ally, Fraw in cycle/bit is the required computation frequency
[43], and ncpu is the number of the working CPU which can
be nsencpu or nctrcpu for the sensors or the controller. Tprs is
the processing time for either computation or transmission in
model training. We consider the statistical-average in-field path
loss h̃k in between. Note that the transmit power pktrn(L̃) =
N0B

h̃k

[
exp

( (ln 2)L̃
TprsB

)
− 1
]

in Ek
trn(L̃) is different from pk(i|Cg)

in (8) without the power budget constraint. Moreover, L̃ is the
size in byte which can be Lraw for the raw data or Dmdl for
the local model, respectively. Lraw = NrawDraw considers
the number of raw data Nraw with size Draw. In addition,
since the model is aggregated by averaging, such computation
energy is relatively tiny compared with model training [43]
and thus is ignored here. In Section IV-A, we fix the trade-
off parameter α = 10 and discuss the impacts of varying
α in Section IV-B. The rest of the parameter settings are
listed in Table I. To verify FLTS-SETOS, we decompose it
and check the results of the sub-schemes, Lya-ITOS and Bay-
SCOS, individually.

A. Performance Evaluation of FL-Based Lya-ITOS

1) GPD Model Training in GPD-TEE: To concentrate on
the GPD model training performance in GPD-TEE without
any effects from L-TEO, we verify the regression of the first
Lya-ITOS iteration, i.e., m = 1 and (∆p

(0)
k )∗ = 0, as an

original result in Fig. 3. Under Cg = 2.1, Fig. 3a illustrates the
CCDF results with the GPD regression parameters obtained

by (28) and (29) from CL and GPD-TEE. While directly
training the global raw data, the results of CL are more close
to the empirical one, where the results of GPD-TEE more
underestimate the extreme staleness distribution. To quantify
the regression accuracy, we take the root-mean-square error
(RMSE) of the CCDFs between the schemes and the empirical
one. In Fig. 3a, the RMSE of CL is 0.0253, which is 20.9%
less than GPD-TEE’s 0.0320.

Fig. 3b presents the RMSE results. The results of CL are
relatively stable under all values of Cg and are better than
GPD-TEE. When Cg grows, the time difference between two
successive sampled data becomes greater, and the extreme stal-
eness happens rarely, which makes each sensor lack training
data and causes severely training inaccuracy in GPD-TEE.
Such drawback is mitigated in the CL-based scheme since
the controller trains the data after gathering all the data from
the sensors.
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Figure 3: The GPD regression results

The obtained increased power (∆p(1)k )∗ in the first iteration
(m = 1) is given in Fig. 4. As mentioned before, GPD-
TEE underestimates the CCDF more. Hence, the increased
power obtained by GPD-TEE is less than the power in the
CL-based scheme. Note that even GPD-TEE’s RMSE gains
more dramatically than the CL-based scheme as shown Fig. 3b
with the increase of Cg , the gap of (∆p(1)k )∗ does not increase
significantly. That is because although the regression result
of GPD-TEE in large Cg deviates more, the obtained result
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of extreme staleness exceedances (7) for satisfaction is still
similar.

Fig. 5 shows the GPD model-training energy consumption
EGPD

learn(Cg) for completing the schemes, e.g., after perform-
ing M -iteration. While jointly considering computation and
transmission energy (denoted by Ecom and Etrn), we derive
EGPD

learn(Cg) as
GPD-TEE:

EGPD
learn(Cg) =

M∑
m=1

[ ∑
∀k∈K

[
Ecom(|Q(m)

k |Draw)

+ 2 · Ek
trn(Dmdl)

]
1{|Q(m)

k |≥Sb}

]∣∣∣∣
(Cg)

,

CL-based:

EGPD
learn(Cg) =

M∑
m=1

[ ∑
∀k∈K

Ek
trn(|Q

(m)
k |Draw)

+ Ecom(|Q(m)|Draw)1{|Q(m)|≥Sb}

]∣∣∣∣
(Cg)

,

in which |Q(m)| =
∑

∀k∈K |Q(m)
k |, and Sb is the batch

size, i.e., the size |Qk| in (29). In the GPD model-training
energy consumption function, the model transmission energy
Etrn(Dmdl) is doubled for uploading the local model and
returning the aggregated one. In Fig. 5, the training energy
consumption of GPD-TEE is always smaller than that of the
CL-based scheme.

When the value of Cg is small, the sensors sample the
environment more frequently and accumulate considerable
data to transmit, resulting in an increased occurrence rate of
extreme staleness. In the CL-based scheme, the sensors have
to consume lots of energy to deliver the extreme staleness
raw data to the controller. However, in GPD-TEE, since the
sensors only deliver the model with fixed size, the transmission
energy for local-model updating does not increase with the
high occurrence rate of extreme staleness. Additionally, in
the large Cg cases, e.g., under 2.32, the extreme staleness
happens too rarely for the sensors to fill up the local batch
size Sb in every iteration, which significantly reduces the local
computation energy consumption in GPD-TEE but occurs
great deviation as mentioned in Fig. 3b. Nonetheless, such
deviation does not degrade the system performance much as
mentioned previously. In the case of Cg = 2.1, the increased
power (∆p

(1)
k )∗ obtained by GPD-TEE is 8.62% less than

the CL-based scheme as shown in Fig. 4, but consumes only
0.157 Joule, which is only 30.858% energy of the CL-based
scheme’s 0.509 Joule for GPD model training as shown in
Fig. 5.

2) Proposed APP and EXT in GPD-TEE: The proposed
cost function and the ERM energy consumption after complet-
ing M iterations are shown in Fig. 6, and the corresponding
global means of the virtual queues are plotted in Fig. 7.
Therein, we elaborate on the combination of the proposed
GPD-TEE and CL with APP and EXT, individually. Moreover,
we take W/O as the scheme without considering extreme
staleness exceedance constraints (7) as the worst-case baseline.
Recap that the proposed cost function is composed with the
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Figure 5: The GPD regression energy

mean of ERM energy consumption and virtual queues. In
Fig. 6a, under EXT, the curves of CL and GPD-TEE almost
overlap with each other since EXT only adjusts the transmit
power of the extreme staleness which is yet in the high power
level and capped by the power budget pmax, making the
performance of EXT schemes limited and similar. In the cases
of small Cg , the EXT schemes have limited improvement to
W/O due to the power budget restriction. On the contrary,
APP schemes decrease the system cost dramatically since
the adjusted power is apportioned to all data transmissions.
The extreme staleness is mitigated in every data transmission,
which may not be restricted by the power budget as severely
as the EXT schemes. This shows that APP outperforms EXT
in the worst-case scenario, i.e., Corollary 1 in Section III-A2.
Furthermore, the APP scheme with CL outperforms the APP
scheme with GPD-TEE due to the GPD model training accu-
racy as mentioned before. Fig. 6b reflects the severe restriction
of the power budget for the EXT schemes in the cases of
small Cg . The APP schemes consume more energy to meet
the constraints (5), (6), and (7), and lower down the volumes
of the corresponding virtual queues (34), (35), and (36) as
shown in Figs. 7a, 7b, and 7c. Even though the APP schemes
consume the most energy, the costs are reduced significantly
in the cases of small Cg in Fig. 6a.

In Lyapunov optimization, the virtual queue value in the
steady state depends on the numerology and satisfaction level
of the corresponding constraints as mentioned in Section III-B.
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That is, the number will be higher/lower if the constraint is
under/over-satisfied. The APP schemes’ virtual queue values
in Fig. 7 are greater than those of the EXT schemes after
a certain values of Cg , e.g., after 2.22 in Fig. 7b. The
reason is that the APP schemes are more resilient for the
transmit power adjustment for just meeting the corresponding
requirements, rather than over-satisfying the constraints as
EXT schemes. This also explains that the APP schemes’ ERM
energy consumption in Fig. 6b is less than the EXT schemes’,
but the system cost in Fig. 6a gets higher after Cg = 2.22.

2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55

25

30

35

40

45

50

55

60 CL-based/APP

CL-based/EXT

Lya-ITOS/APP

Lya-ITOS/EXT

W/O

2.2 2.22 2.24 2.26 2.28 2.3
27

28

29

30

31

32

33

(a) The system cost (32)

2.1 2.2 2.3 2.4 2.5 2.6 2.7
0.1999

0.2

0.2001

0.2002

0.2003

0.2004

0.2005

0.2006

0.2007

0.2008 CL-based/APP

CL-based/EXT

Lya-ITOS/APP

Lya-ITOS/EXT

W/O

2.2 2.22 2.24 2.26 2.28 2.3
0.2

0.20005

0.2001

0.20015

0.2002

0.20025

0.2003

2.48 2.49 2.5 2.51 2.52 2.53
0.19994

0.19996

(b) The system ERM energy consumption (33)

Figure 6: Performance of the proposed APP and EXT

B. Performance Evaluation of FL-Based Bay-SCOS

We compare the Bay-SCOS estimation with the CL
paradigm which follows up with the APP scheme and takes
the corresponding system cost results as the ground truth in
Fig. 8 under α = 10. The APP-based GPD-TEE’s system cost
ground truth is similar but slightly higher than that of the CL
one, due to the GPD model regression deviation as mentioned
before. While randomly picking the initial Cg as 2.33, Figs. 8a
and 8c show the results after having three well-explored
values of Cg . As the figures present, the CL-based scheme
possesses a higher variance around the global minimum point,
making it easier to hit the bull’s eye. In addition, Figs. 8b
and 8d show the final results after each scheme finishes
exploration. The CL-based scheme hits the global minimum
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Figure 7: System virtual queues

point Cost(2.47) = 26.207 after exploring eight values of
Cg . However, Bay-SCOS misses the global optimal point
Cost(2.47) = 26.217 and stops at Cost(2.48) = 26.241
as the estimated minimum after experiencing nine-point Cg

exploration. The estimated minimum cost is 0.092% more than
the global one. In addition, APP-based GPD-TEE’s global
minimum cost is 0.038% more than that of the CL-based
scheme. In summary, the minimum cost estimation of Bay-
SCOS is Cost(2.48) = 26.241, which is only 0.13% higher
than the CL-based scheme’s Cost(2.47) = 26.207.

Fig. 9 shows the Bay-SCOS results under α = 5 and 50.
In Fig. 9a, Bay-SCOS takes the Cost(2.55) = 13.783 as
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Figure 8: The BO performance under α = 10

the estimated minimum point after eight-point exploration,
which has 0.22% increase from the global minimum cost
Cost(2.58) = 13.754. In Fig. 9b, Bay-SCOS finally hits the
global minimum point Cost(2.11) = 116.185 after 14-point
Cg exploration. Recap that α is the weight used to trade off
the value of Cg and the long-term data transmission energy
consumption. As the case of α = 5 in Fig. 9a, Cg is less
critical compared to the case of α = 10. Hence, the global
minimum system cost in α = 5 appears at Cg = 2.58, which
is greater than the global minimum point Cg = 2.47 in the case
with α = 10. On the contrary, for the case with relatively large
α = 50, the global minimum cost shows up at Cg = 2.11,
which is relatively smaller.

Furthermore, for the energy consumption of BO under Bay-
SCOS and the CL-scheme, we elaborate on the functions
as follows. Regarding the common computation energy term,
EGO searches the most potential Cg with (46) and (47) at the
controller after the global GPR model is updated. We denote
the EGO energy consumption as EGEO

learn = |U|Ecom(Dmdl),
where U is the set of the candidate values of Cg . In Section
III-B1, the size of the GPR model variance matrix grows expo-
nentially with S, i.e., the number of the well-explored value(s)
of Cg . Thus, we derive the functions for each exploration as

Bay-SCOS:

EBO
learn(S) =

∑
∀k∈K

[
Ecom(S2Draw)

+ 2 · Ek
trn(Dmdl)

]
+ EGEO

learn,

CL-based:

EBO
learn(S) =

∑
∀k∈K

Ek
trn(SDraw)

+ Ecom(|K|S2Draw) + EGEO
learn.

Following up with the results in Figs. 8b and 8d, Bay-
SCOS and the CL-based scheme explore nine and eight
points to forage out the estimated optimal Cg , respectively.
The exploration-step wide accumulative exploration energy
consumption is illustrated in Fig. 10. After nine explorations,
Bay-SCOS consumes 0.269 Joule, which is only 44.452% of
the CL-scheme’s energy consumption after eight exploration,
i.e., 0.605 Joule.

C. The Trade-Off Between Training Performance and Energy
Consumption

As mentioned in Section IV-B, given α = 10, FLTS-
SETOS’s optimal system minimum cost is 26.241 under
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Figure 9: Bay-SCOS performance

Cg = 2.48 (although the ground truth is 26.217 under
Cg = 2.47, the bias of Cg is 0.4%) which is 0.13%
higher than the CL-based scheme’s Cost(2.47) = 26.207.
As shown in Fig. 6b, the long-term ERM sampled data
transmission energy E

(ERM)
(Cg) under the individual op-

timal Cg (2.48 in FLTS-SETOS and 2.47 in the CL-based
scheme) are almost the same, while FLTS-SETOS consumes
9.936 × 10−5 additional to the CL-based scheme. Hence,
we further compare the average transmission energy. For the
optimal long-term global-average sampled data transmission
energy E(Cg) = lim

I→∞
1

I|K|
∑

k∈K

(∑I
i=1E

∗
k(i
∣∣Cg)

)
for (8a),

the proposed FLTS-SETOS transmits each sample data with
2.142 × 10−5 Joule in average, which is 6.3% additional to
the CL-based’s 2.015× 10−5 Joule.

Finally, we count the total model training energy consumed
by FLTS-SETOS and the CL-based scheme, respectively,
which includes the two model-training energy consumptions

EToT
learn(Cg(S)) =

∑
Cg∈Cg(S)E

GPD
learn(Cg) +

∑S
s=1E

BO
learn(s),

as presented in Fig. 11. Therein, FLTS-SETOS consumes
1.308 Joule for both GPD and BO training, which is only
30.790% of the energy taken by the CL-based scheme,
4.028 Joule. Therefore, the trade-off between the model train-
ing accuracy for boosting the system performance and the
training energy consumption should be further considered.
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Figure 10: BO estimation energy consumption
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V. CONCLUSIONS

This work studied a top-down IIoT network for environ-
mental status monitoring, which jointly considers the data-
sampling frequency and the long-term data transmission en-
ergy subject to the data staleness constraints. To seek the opti-
mal solution, we proposed FL-based FLTS-SETOS composed
of two schemes, Lya-ITOS and Bay-SCOS. Lya-ITOS finds the
optimal solution under a given sampling criterion by iteratively
performing L-TEO and GPD-TEE. L-TEO utilizes Lyapunov
optimization to deal with the general staleness constraints to
reach the long-term optimal transmission energy while GPD-
TEE fulfills the extreme one. Subsequently, Bay-SCOS learns
the most potential data-sampling criterion for the optimal
data-sampling frequency to achieve the lowest value of the
cost function. Note that we proposed the cost function in
order to jointly examine the data-sampling criterion, the long-
term data transmission energy, and the constraints’ satisfaction
condition. The simulation results articulate that the proposed
FL-based scheme can save considerable computation energy
and tolerate less performance loss. Compared with the CL-
based scheme, numerical results show that the proposed FL-
based FLTS-SETOS consumes only 31% energy for model
training (GPD and GPR model regression) at the expense of
a mere increase 6.3% in the global data transmission energy
consumption (9.936 × 10−5 in entropic risk measure) under
0.4% bias from the global optimal data-sampling frequency
and 0.13% increases of the system cost.

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2022.3216353

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Oulu University. Downloaded on December 05,2022 at 08:09:11 UTC from IEEE Xplore.  Restrictions apply. 



15

APPENDIX A
PROOF OF COROLLARY 1

With ak(i − 1) − bk(i) ≥ 0, ∀i ∈ Z
+,∀k ∈ K, w.p. 1,

we index the data which experiences extreme staleness as n
(theoretically n ≃ 1/ϵes,) and express the AoI as

ak(n) =

n∑
j=1

tk(j)−
n∑

j=1

bk(j).

Since the EXT scheme only powers up the data transmission
for the extreme staleness, the AoI in EXT is expressed as

a
(EXT )
k (i) =

i−1∑
j=1

tk(j
∣∣pk(j)) + tk(i

∣∣pk(i) + ∆p)−
i∑

j=1

bk(j).

The APP scheme evenly distributes the power to each of the
data transmission, which implies

a
(APP )
k (i) =

n∑
j=1

tk(j
∣∣pk(j) + 1

n
∆p)−

n∑
j=1

bk(j).

In the following derivations, we abbreviate tk(x
∣∣pk(x))

to tk(x) for notational simplicity. Assuming ∆ak(n) =

a
(APP )
k (n)−a(EXT )

k (n), we have (49). Here, we obtain the in-
equality (a) from the monotonically decreasing property of tk
with respect to pk, i.e., (1). Since the extreme staleness cases
happen when the queuing time qk is large, the transmission
time should be decreased as much as possible by increasing
the transmit power. Hence, we have pk(n) ≥ pk(j), ∀j ̸= n,
and the slop relation

n

∆p

[
tk(n)− tk

(
n
∣∣pk(n) + 1

n
∆p
)]

≥ n

∆p

[
tk(j)− tk

(
j
∣∣pk(j) + 1

n
∆p
)]
, ∀j ̸= n.

Furthermore, we have the inequality (b) from the gradient
property of the convex function [44]. That is, given h > 0,
the convex function l(x) satisfies

l(x+ h)− l(h) ≥ lim
n→∞

n[l(x+ 1
nh)− l(h)].

(49) illustrates that the AoI of the APP scheme’s extreme stale-
ness is always less than that of the EXT scheme’s in the worst-
case scenario. By substituting a(APP )

k (n) and a(EXT )
k (n) from

(4), respectively, we obtain f (APP )
k (n) ≤ f

(EXT )
k (n).
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