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Abstract—Real-time remote control over wireless is an impor-
tant yet challenging application in fifth-generation and beyond
due to its mission-critical nature under limited communication
resources. Current solutions hinge on not only utilizing ultrareli-
able and low-latency communication (URLLC) links but also
predicting future states, which may consume enormous com-
munication resources and struggle with a short prediction time
horizon. To fill this void, in this article we propose a novel two-
way Koopman autoencoder (AE) approach wherein: 1) a sensing
Koopman AE learns to understand the temporal state dynam-
ics and predicts missing packets from a sensor to its remote
controller and 2) a controlling Koopman AE learns to under-
stand the temporal action dynamics and predicts missing packets
from the controller to an actuator co-located with the sensor.
Specifically, each Koopman AE aims to learn the Koopman oper-
ator in the hidden layers while the encoder of the AE aims to
project the nonlinear dynamics onto a lifted subspace, which is
reverted into the original nonlinear dynamics by the decoder of
the AE. The Koopman operator describes the linearized temporal
dynamics, enabling long-term future prediction and coping with
missing packets and closed-form optimal control in the lifted sub-
space. Simulation results corroborate that the proposed approach
achieves a 38× lower mean squared control error at 0-dBm
signal-to-noise ratio (SNR) than the nonpredictive baseline.

Index Terms—6G, autoencoder (AE), beyond fifth-generation
(5G), Koopman theory, remote control, split learning.

I. INTRODUCTION

ONE OF the visions of beyond fifth-generation (5G) and
6G communication systems [2], [3], [4] is to leverage

sensing, communication, and connectivity in a closed-loop
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integrated manner. The basic principle of closed-loop remote
control has been studied in the literature of wireless networked
control systems (WNCSs) [5]. Nonetheless, the feasibility
of these methods becomes questionable in the presence of
mission-critical remote control applications, including remote
surgery [6], industrial Internet of Things (IIoT) control in
a smart factory [7], autonomous vehicular platooning [8],
low-earth-orbit (LEO) satellite maneuvering to avoid space
debris [9], and so forth. These remote control applications
not only impose extremely stringent communication latency
requirements but also are unable to afford missing any single
control command.

To address these concerns, one could exploit wireless com-
munication that guarantee extremely high reliability with low
latency. Indeed, supporting mission-critical applications over
wireless links have been investigated in the context of ultra-
reliable and low-latency communication (URLLC) [10], [11].
However, URLLC is originally intended to support short pack-
ets [12], in which the guaranteed reliability and latency are
challenged by the long packets transmission requirements in
the aforementioned mission-critical applications. Furthermore,
even one-way URLLC requires an enormous amount of band-
width to reserve dedicated channels while consuming a signif-
icant amount of energy to increase transmit power [13]. This
challenge is aggravated when supporting closed-loop control
applications where errors may propagate during the two-way
closed-loop interaction.

On the other hand, by leveraging recent advances in data-
driven machine learning (ML), one could learn to predict
future states (e.g., position, velocity, and temperature) based on
previous data samples. This enables to carry out the proactive
decision-making for reduced control latency or equivalently
for improved reliability by communicating the same messages
multiple times [14]. Time-series prediction falls in this cat-
egory, in which recurrent neural networks (RNNs), such as
long short-term memory (LSTM) [15] and gated recurrent unit
(GRU) [16] are widely used for this purpose. While effec-
tive, their prediction accuracy often decreases sharply with
the forecast time horizon, limiting their applicability only to
short-term prediction such as forecasting the next video frame
within a few milliseconds [17]. Such a time horizon may be
too short to evaluate an optimal control action, particularly
under nonlinear and complex state dynamics.

To fill this void, in this article, we propose a novel
ML-based closed-loop remote control framework inspired by
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Fig. 1. Schematic representation of WNCS via two-way split Koopman AE architecture. (a) Wireless split sensing Koopman AE. (b) Wireless split controlling
Koopman AE.

the Koopman theory [18], [19] and split learning [20], [21]
using an autoencoder (AE) architecture, i.e., Koopman AE.
In particular, we consider an AE split into its encoder and
decoder parts, whereby the smashed data or latent represen-
tations propagate from the encoder to the decoder while the
prediction errors or gradients propagate back in the reverse
direction [20], [21]. The encoder part stored at the transmitter
learns to map the input data into its lower-dimensional latent
representation which is then reconstructed by the decoder
stored at the receiver. This mapping reduces the communi-
cation payload size in the case of discovering the Koopman
invariant subspace that ensures long-term prediction accuracy
and control system stability.1

Subsequently, rather than predicting individual future states,
we learn the temporal state dynamics as a whole. However,
discovering the dynamics in the raw state space is difficult
notably when the dynamics are nonlinear. Instead, inspired
by the Koopman operator theory [18], [19], we aim to iden-
tify the dynamics in a lifted subspace in which the latent
dynamics are linearized such that multiplying the Koopman
operator M times yields the state prediction in M time slots.
This provides an additional benefit of applying a closed-
form optimal control derived from the linearized subspace,
thereby reducing the control overhead in terms of computation.

1Ideally, according to Koopman theory, the lower-dimensional mapping
in the Koopman operator amounts to lossless compression. However, the
Koopman AE-based approach might lose system reliability depending on how
low dimensional space the input data are mapped into [22].

Additionally, the control errors are reduced compared to the
linear approximation method around an equilibrium point
that becomes vacuous when the initial condition goes far
from the equilibrium point. Recent works have demonstrated
that the matrix form of the Koopman operator can be found
in the hidden layers of an AE [23], which coincides with the
aforementioned split AE architecture.

Last, in the closed-loop remote control, we avoid error prop-
agation by additionally learning the temporal action dynamics
as illustrated in Fig. 1. Consequently, in the forward link,
any missing state reception due to poor channel conditions
or excessive latency can be predicted by the remote con-
troller that understands the state dynamics. Likewise, in the
reverse link, any missing control action command receptions
can be replaced by the actions predicted by the actuator that
understands the action dynamics.

A. Backgrounds and Related Works

In the literature of remote control over wireless links, one
central question is how to cope with communication imper-
fections on the control system operations. These works are
often termed communication and control co-design (CoCoCo)
that deal with the tradeoff between wireless resource con-
sumption and control stability [24], [25]. In this direction,
dynamic sensor scheduling approaches were proposed to cope
with time-varying control and channel states, thereby improv-
ing control stability and communication efficiency [26], [27].
In [28] and [29], a channel state information (CSI) aware
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scheduling and the power allocation method were introduced
to minimize the total power consumption while guarantee-
ing a target control performance under limited communication
resources. In order to meet stringent latency and reliability
requirements in the context of URLLC and time-sensitive
control systems, control dynamics and CSI aware resource
allocation and scheduling solutions were developed in [30]
and [31], which can partly relax URLLC requirements without
compromising the control performance. In our prior work [25],
a predictive and control-aware scheduler was proposed, in
which the future states and actions are locally predicted using a
Gaussian process regression approach (GPR) at the controller
and actuator, respectively. Nevertheless, these works only con-
sider linear control systems, questioning their feasibility when
the system dynamics are nonlinear.

Nonlinear control system dynamics have been extensively
studied in the field of control theory. A periodic event-
triggered control is proposed in [32], [33], and [34] to stabilize
nonlinear control systems under communication constraints.
According to this scheme, the event-triggered condition is only
updated at some sampling instances to preserve control sta-
bility and reduce the number of transmissions. However, the
previously mentioned scheme in [32], [33], and [34] suffers
from high computational complexity due to the system’s non-
linearity. Furthermore, it suffers from long-term savings of the
wireless communication resources as it fails to identify the
nonlinear system dynamics at the controller. In [35] and [36],
a model predictive control approach is proposed for nonlin-
ear control systems to compensate for two-channel packet
loss. However, [35] and [36] assumes that the accurate non-
linear system dynamics are given at the remote controller to
compute the control action based on a nonlinear optimization
problem. Hence, this approach suffers from impracticality due
to the previously specified nonlinear dynamics and inaccuracy
due to the uncertainty inherited in practical systems. In addi-
tion, it has a high computational burden due to the nonconvex
optimization problem. Finally, this approach requires transmit-
ting a finite number of predicted control actions in one packet
to the actuator, affecting the transmission delay.

To make the nonlinearity amenable to stability analysis,
the Jacobian linearization is a well-known method that pro-
vides a linear approximation around the equilibrium point
using the Taylor series expansion [37], [38]. However, such
an approximation becomes vacuous when the states of interest
are far from the equilibrium point [37], [38]. As an alterna-
tive, Koopman operator methods have been suggested in [18]
and [39], which represent finite-dimensional and nonlinear
system states using infinite-dimensional and linear forms
via linearly evolving functions of states, termed observables.
Such Koopman representations can be obtained using the
dynamic mode decomposition (DMD) algorithm as shown in
open-loop [40] and closed-loop [41] scenarios. The main chal-
lenge in this direction is to find the minimum number of
observables that sufficiently describe given nonlinear system
dynamics [40], [41]. In [23], a deep learning-based method
was proposed for providing finite-dimensional Koopman rep-
resentations using an AE, i.e., Koopman AE. Leveraging
and extending this method that originally ignores wireless

connectivity, in this work, we propose a two-way Koopman
AE framework using a pair of two AE architectures to
cope with wireless communication outages that may propa-
gate control errors in closed-loop systems, hindering control
stability.

B. Contributions and Organization

We propose a split learning of Koopman operator for real-
time remote control systems. The major contributions of this
article can be summarized as follows.

1) For predictive closed-loop remote control, we propose
a two-way split Koopman AE architecture compris-
ing: a) a sensing Koopman AE from a sensor to its
remote controller in the forward link and b) a control-
ling Koopman AE from the controller to an actuator
co-located with the sensor in the reverse link (see
Fig. 1).

2) To train the proposed architecture, for the sensing
Koopman AE, we first derive the temporal state evolu-
tion with the Koopman operator (see (16) in Section III-
B), and provide the training loss function (see (26) in
Section III-C). For the controlling Koopman AE, we
derive the temporal action evolution with the Koopman
operator (see (27) in Section III-E), and provide the
training loss function (see (29) in Section III-E).

3) By simulation, in an inverted cart-pole system, we cor-
roborate that the proposed two-way split Koopman AE
is robust to consecutive packet losses. At 0-dBm signal-
to-noise ratio (SNR) in both forward and reverse links,
we observe that the mean squared control error (MSCE)
of the proposed architecture is 38× lower than that
of the remote control without prediction (see Fig. 8 in
Section IV).

4) Given the linearized temporal state evolution via
the Koopman operator, we derive a closed-form
optimal control action (see (19) in Section III-C) and
observe that the proposed approach has better con-
trol performance than the standard Jacobian lineariza-
tion technique for nonlinear control (see Fig. 9 in
Section IV).

5) Finally, with an extensive set of simulation results, we
show the impact of SNR, latent representation dimen-
sion, number of control trajectories, and training data
set size on the state/action prediction error (see Tables I
and II), Koopman AE convergence (Fig. 4), and training
completion time (Figs. 5–7 in Section IV).

Note that our preliminary work has shown the effectiveness
of the one-way sensing Koopman AE in a remote monitor-
ing scenario [1]. Extending this to the closed-loop remote
control scenario under study is a daunting task mainly due
to the error propagation within the loop. We address this
challenge by developing a two-way Koopman AE framework
that additionally introduces another Koopman AE for control
action prediction. Furthermore, compared to the preliminary
version, in this article, we provide a more extensive set of
simulation results, advocating the feasibility of the Koopman
AE framework under a wide range of future prediction
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intervals, different control system parameters, and different
communication costs in terms of SNR and payload sizes.

The remainder of this article is organized as follows. In
Section II, we specify the WNCSs architecture, including the
models for control and communication systems. In Section III,
we present the proposed two-way split Koopman AE architec-
ture for predictive and linear control. In Sections IV and V,
we present the simulation results and conclude this article.

II. SYSTEM MODEL

Consider a closed-loop WNCS which comprises a plant that
exhibits nonlinear dynamics, a sensor that samples the plant’s
state, a controller that computes optimal control actions based
on the sampled states, and an actuator that applies the con-
trol action command on the plant received from the controller.
Specifically, as illustrated in Fig. 1, we assume that the sensor
and actuator are co-located and share the same transceiver. On
the other hand, the controller is located away from them with a
computational capability to produce control action commands
to ensure system stability. On this account, the controller oper-
ates remotely over wireless channels, by receiving the sensors’
sampled states via the forward link and feeding back the com-
puted optimal control action commands to the actuators via the
reverse link.

A. Control System Architecture

Consider that the control system operates at a fixed con-
trol period τo > 0 seconds to keep the plant stable over
time. Hence, the sensor samples the state of the plant at a
fixed sampling rate 1/τo and transmits the samples to the
controller over wireless links. The mth sampled state of the
plant at time t = mτo is denoted by a p-dimensional vector
xm = [xm,1 xm,2 . . . xm,p] ∈ R

p. On the other hand, an optimal
control action command computed at the controller based
on the mth sample xm is denoted by a q-dimensional vector
um = [um,1 um,2 . . . um,q] ∈ R

q. Moreover, the state evolu-
tion of the plant’s nonlinear dynamics at time t = (m+1)τo is
given as

xm+1 = f(xm, um) + ns (1)

= fs(xm) +
q∑

i=1

fu,i(xm)um,i + ns (2)

where ns ∈ R
p is a p-dimensional random system noise vec-

tor at t = (m + 1)τo. The entries of the noise vector are
assumed to be independently and identically distributed (i.i.d.)
Gaussian random variables with zero mean and variance Ns for
all m ∈ Z+. The function f : Rp × R

q → R
p is a nonlinear

state transition function of the plant’s current state and control
action command that steers the plant’s state forward in time.
Specifically, we introduce a model that disambiguates the state
dynamics from the effect of the control actuation by reformu-
lating the nonlinear dynamics into a control-affine nonlinear
system [42], [43] as (2), where fs(·) : Rp → R

p is the unforced
system dynamics and fu,i(·) : Rp → R

p is a state dependant
control coupling term for um,i for all i ∈ {1, . . . , q}.

The time duration between t = mτo and the time point
at which an actuator receives the estimated control action

command ûm corresponding to the plant’s state xm is referred
to as control loop duration and denoted by

τm = τm,comm + τm,comp (3)

for all m ∈ Z+. This control loop duration incorporates the
communication delay τm,comm through forward and reverse
links and computing delay τm,comp for obtaining the optimal
control action command. On the one hand, in the Jacobian
baseline, this calls for the forward link to deliver the sampled
states to the controller, while the reverse link is also needed for
the controller to deliver the obtained control action command
to the actuator. On the other hand, in the proposed approach
explained in the following section, the system state can be pre-
dicted using the trained sensing Koopman AE, thereby, only
requiring the reverse link as long as the state prediction is
accurate.

B. Wireless Communication Model

Suppose the forward and reverse links follow a time division
multiple access (TDMA) approach and assume that channel
reciprocity holds between forward and reverse channels under
the assumption that the sensor and actuator are co-located.
Moreover, we consider a Rayleigh block fading channel model,
where the coherence time is strictly longer than the control
loop time. The path-loss of both forward and reverse links is
given as

PLdB(D) = PLdB(D0) + 10η log10

(
D

D0

)
(4)

where D is the distance from sensor and actuator to the
controller, PLdB(Do) denotes the path-loss at the reference
distance Do, and η ≥ 2 is the path-loss exponent. Hence, the
received SNR at the remote controller is given as

SNRm = 10− PLdB(Do)

10
Pt|hm|2

Nc

(
Do

D

)η

(5)

where hm is the Rayleigh fading channel gain from the sensor
to the controller (or the controller to the actuator) at the mth
control loop duration, where |hm|2 is exponentially distributed
with parameter λ = 1 for all m ∈ Z+, Pt is the transmission
power used at both communication ends, and Nc is the channel
noise power. In addition, we suppose that the channel gains
are i.i.d. over time. Having (5), the transmission rate of both
forward and reverse link communications in the control system
during the mth control loop can be expressed as

Rm = W log2(1 + SNRm) (6)

where W is the communication bandwidth.
To stabilize the control system, the control loop duration

should be at least shorter than the control period, that is
τm < τo for all m ∈ Z+. Denote by Lm the overall com-
municating information bit length in the mth control loop
duration, such that (Lm/Rm) indicates the communication time.
Then, the outage probability of the mth control loop can be
expressed as

εm = P
[
τm,comm > τo − τm,comp

]
(7)

= 1 − exp

[
−10

PLdB(D0)
10

NcDη

Pt

(
2

Lm
W(τo−τm,comp) − 1

)]
(8)
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where (8) holds from the cumulative distribution function
(c.d.f.) of the exponential random variable. Note that the con-
trol outage probability for each control loop is affected by the
communication payload size Lm and computation time τm,comp
while the other communication parameters in (8) are given.
Therefore, to reduce the outage probability, the control system
should be designed to operate at small communication and
computation costs.

III. TWO-WAY SPLIT KOOPMAN AUTOENCODER

ARCHITECTURE FOR PREDICTIVE LINEAR CONTROL

Toward reducing communication and computation costs
for closed-loop remote control, we propose a two-way
Koopman AE architecture comprised of sensing and con-
trolling Koopman AEs. To this end, this section first revisits
fundamentals of the Koopman operator theory. Then, a split
learning method for obtaining a sensing Koopman AE that
linearizes the nonlinear state dynamics enabling future state
prediction at the controller is proposed. Moreover, armed with
a well-trained sensing Koopman AE, a linear quadratic regu-
lator (LQR) is applied over the linearized Koopman subspace
to obtain the optimal control action command at a small com-
putational cost. In addition, we propose a split learning-based
controlling Koopman AE that predicts future control action
commands at the actuator.

A. Preliminary: Koopman Operator for Closed-Loop Control

Typically, a data sample observed from a closed-loop con-
trolled dynamical system can be seen as a function of a system
state and control action. Define functions g : R

p × R
q →

R, dubbed observables which span an infinite-dimensional
Hilbert space H. The Koopman operator K : H → H is a
linear operator that acts on H [44], [45] such that

Kg(xm, um) = g(f(xm, um), um+1) (9)

for some observable g. Note that by ignoring the additive
system noise in (1), the expression (9) can be rewritten as

Kg(xm, um) = g(xm+1, um+1) (10)

and in other words, the Koopman operator in (10) enables to
express the linear evolution of the nonlinear system dynamics
in the function space G. However, to obtain the Koopman oper-
ator, representation and computation issues may raise, since
the operator acts on the infinite-dimensional space H.

One approach to resolve such problems is to find an invari-
ant subspace spanned by a finite set of functions. That is,
finding a span of d different functions {g1, g2, . . . , gd}, such
that a function g in this subspace

g(xm, um) = a1g1(xm, um) + · · · + adgd(xm, um) (11)

for some real-valued coefficients a1, . . . , ad ∈ R, is still in the
same subspace after acted on by the Koopman operation

Kg(xm, um) = b1g1(xm, um) + · · · + bdgd(xm, um) (12)

for some real-valued coefficients b1, . . . , bd ∈ R. Note that
the Koopman operator is linear and thus allows eigendecom-
position, and any finite set of eigenfunctions of the Koopman

operator will span a Koopman invariant subspace [46].
Therefore, by introducing a finite-dimensional Koopman
matrix representation K ∈ R

d×d for a given Koopman invari-
ant subspace, we can obtain a global linearization expression
of a nonlinear system dynamics in (1) as

g(xm+1, um+1) = Kg(xm, um) (13)

where g is the d-dimensional vector of which the elements
are the Koopman eigenfunctions. Note that for a given current
system state xm and its computed control action command
um, if the concatenated eigenfunctions g, its element-wise
inverse g−1, and the Koopman matrix K are known, the future
system state xm+1 and control action command um+1 can be
readily obtained. However, since discovering the Koopman
eigenfunctions from finite samples of a dynamical system are
still challenging, it calls for an AE-based deep learning-based
approach as will be explained in the following sections.

In the meantime, since the control system exhibits control-
affine nonlinear dynamics in (2) in this article, the global
linearization expression (13) can be recast as [46]

[
gs(xm+1)

gu(xm+1, um+1)

]
= K

[
gs(xm)

gu(xm, um)

]
(14)

where gs is the d-dimensional vector of Koopman eigen-
functions that depend only on the system states, gu is the
f -dimensional vector of Koopman eigenfunctions that depend
on both system states and control action commands. For the
purpose of utilizing linear control theory, it is required to
ensure that the linear evolution of the Koopman eigenfunctions
is explicitly related to the control action commands; hence,
we simplify gu in (14) into gu(xm, um) ≈ um, and thus, (14)
becomes [46], [47], [48]

[
gs(xm+1)

um+1

]
=

[
K11 K12
K21 K22

][
gs(xm)

um

]
(15)

where gs and g are used interchangeably thereafter,
K11 ∈ R

d×d is the state-transition matrix in the Koopman
matrix K ∈ R

d+q × R
d+q, K12 ∈ R

d×q is the control action
matrix of the state dynamics, K21 ∈ R

q×d is the state-
dependent control action matrix, and K22 ∈ R

q×q is the control
action matrix of the control dynamics. Moreover, we define
Ks = [K11 K12] as the state Koopman matrix representing the
state dynamics, while Ka = [K21 K22] as the action Koopman
matrix representing the control action dynamics. Note that the
simplification of (14) in (15) comes at the cost of less accu-
rate approximation of the system dynamics. For instance, if the
term sin(xm,1)um appears in the system dynamics, it will be
approximated in the Koopman model as c1um, where c1 ∈ R

is a constant.

B. Sensing Koopman Autoencoder for State Prediction

The first component of the two-way Koopman AE archi-
tecture is the sensing Koopman AE, which plays two roles:
1) linearizing the nonlinear system dynamics and 2) predicting
the future system states based on the linearized system dynam-
ics. Note that linearization of nonlinear system dynamics helps
reduce the complexity in terms of minimizing the computa-
tional time required to analyze the system and calculate its
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optimal control action command, while state prediction helps
reduce the communication cost [49]. The proposed sensing
Koopman AE is a tripartite neural network that consists of an
encoder that is related to the concatenated Koopman eigen-
functions g, two fully connected hidden layers that constitute a
finite-dimensional matrix representation of the Koopman oper-
ator K, and the decoder which is an inverse function vector of
the encoder g−1. Since we consider a remote control scenario,
the Koopman AE is split into two parts, where the encoder
is located at the sensor and actuator side, while the Koopman
hidden layers and the decoder are situated at the controller
side. Thus, the sensing Koopman AE is trained through split
learning [20], [50] which will be detailed in Section III-D.

Once the sensing Koopman AE is trained, the sensor sends
an encoded representation g(xm) of the sampled system state
xm and the controller obtains an estimated latent state repre-
sentation ĝ(xm) and concatenates it with the computed control
action command um as ym = [ĝ(xm) um]T. Then, by mul-
tiplying ym with the sensing Koopman operator matrix Ks,
the remote controller obtains a linear state representation
evolution as

ĝ(xm+1) = K11ĝ(xm) + K12um (16)

where K11 and K12 are the Koopman submatrices mentioned
in (15). Moreover, by passing ym through the trained sensing
Koopman matrix and the decoder, the remote controller obtains
the predicted future system state as x̄m+1 = g−1(Ksym).
Moreover, by multiplying the sensing Koopman matrix m′
times, the controller can predict the future system states at
t = (m + m′)τo as

x̄m+m′ = g−1
(

Km′
s ym

)
(17)

for all target prediction depth m′ ∈ Z+ which will be detailed
in Section III-C.

To this end, the proposed real-time remote control of a
closed-loop control system, aided by the Koopman AE, con-
sists of two-phases. In the first phase, the remote controller
receives the measured system states in real time from the sen-
sor, computes its control action command, and sends it back
to the actuator. Meanwhile, the sensor and controller train the
sensing Koopman AE and the first phase is maintained until
it is well-trained. In the second phase, the remote controller
sends back a control signal informing the sensor to stop send-
ing the system states once it is well-trained, and since the
sensing Koopman AE is trained, the remote controller can
predict the future system states.

C. Linear Control Over Koopman Subspace

Having a closed-loop Koopman AE, an optimal control
action can be computed over the linearized Koopman sub-
space by readily applying the linear control theory. That is,
formulating an infinite-horizon discrete-time LQR over the
linearized Koopman subspace rather than over the nonlinear
system dynamics. Following [51], the control objective is a
quadratic cost function given as:

J (
ĝ(xm), um

) = 1

2

∞∑

m=0

ĝ(xm)TQgĝ(xm) + uT
mRum (18)

where Qg ∈ S
d×d+ is a positive semi-definite weight matrix of

the latent state representation deviation cost, and R ∈ S
q×q
++ is a

positive-definite weight matrix of the control action cost. Then,
the optimization problem of an infinite-horizon discrete-time
LQR to calculate the optimal control action is formulated as

Minimize
um

J (
ĝ(xm), um

)
(19a)

subject to: ĝ(xm+1) = K11ĝ(xm) + K12um. (19b)

The problem in (19) is a convex optimization problem with
a quadratic cost function and linear constraint, hence, the
optimal control action can be readily obtained as

um = −KLQR ĝ(xm) (20)

where KLQR = (R + KT
12PK12)

−1KT
12PKT

11 is the feedback
gain matrix, and P = KT

11PK11 − KT
11PK12(KT

12PK12 +
R)−1KT

12PK11 + Qg is a unique positive-definite matrix
which satisfies the discrete-time algebraic Riccati equation
(DARE) [52]. The Koopman-based controller outperforms
the locally linearized-based controller in terms of control
performance. This is because the locally linearized-based
controller performs optimally near the equilibrium point,
but the performance becomes poor for the points that are
located far from the equilibrium point. In contrast, since the
Koopman operator globally linearizes the system dynamics,
the controller over the linearized Koopman subspace performs
optimally for all points.

D. Split Learning-Based Koopman Autoencoder

An optimization problem for obtaining the closed-loop
Koopman AE in the considered WNCS can be formulated as

minimize
K,g,g−1

1

Md

Md∑

m′=1

∥∥∥∥∥∥
x̂m+m′ −

Md−1∑

l=0

g−1
(

KMd−l
s ym+l

)
wl

∥∥∥∥∥∥

2

2
(21a)

subject to: x̄m = g−1(ym) (21b)

where x̂m+m′ is the estimated system state at time m+m′, Md is
the target prediction depth considered in the training that rep-
resents the Koopman operator prediction time horizon checked
in the training, and wl is a weight parameter of the lth predicted
system state at the controller side. On the one hand, when
l = 0 and wl = 1, we call it a special case of the optimization
problem in (21) suggested in [23] and [53]. On the other hand,
when l > 0 and wl = 1/Md, we call it a general case of
the optimization problem in (21) proposed in this article. The
general case of the optimization problem in (21) utilizes all
the received latent state representations to predict the future
system states compared to the special case. Since it is ana-
lytically hard to solve the formulated optimization problem
in (21) for long-term target prediction depth, we solve it by
exploiting deep learning over three separated unconstrained
optimization subproblems formulated as follows.

1) A reconstruction loss is formulated to accurately recon-
struct the system states. This loss measures the mean
squared error (MSE) between the estimated system
states x̂m and the decoded estimated state representation
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adjoined with the control action command g−1(ym)

given as

L1 = 1

Ms

Ms∑

m=1

||x̂m − g−1(ym)||22 (22)

where Ms denotes the length of the received time-series
signals in the first phase of the remote control of a
closed-loop control system.

2) A linear Dynamics loss is formulated to obtain the lin-
ear finite-dimensional sensing Koopman matrix Ks that
ensures the linearity in the Koopman invariant subspace.
This loss measures the MSE between the estimated
state representation of the future system state adjoined
with its future control action commands as ym+m′ and
the weighted sum of the multiplication of the sensing
Koopman matrix with different target prediction depth
during training and the estimated state representation of
the received system states adjoined with the calculated
control action commands

∑Md−1
l=0 (KMd−l

s ym+l)wl, i.e.,

L2 = 1

Md

Md∑

m′=1

||ym+m′ −
Md−1∑

l=0

(
KMd−l

s ym+l

)
wl||22. (23)

Note that the linear latent state representation evolution
in (23) for l = 0 is represented as KMd

s ym = KMd
11 g(xm)+∑Md

m′=1 Km′−1
11 K12um+m′−1.

3) A prediction loss is formulated to accurately predict
the future system states. The prediction loss measures
the MSE between the estimated future system states
x̂m+m′ and decoded weighted sum of the multiplication
of the sensing Koopman matrix with different target
prediction depth considered in training and the esti-
mated state representation of the received system states
adjoined with the calculated control action commands
g−1(

∑Md−1
l=0 (KMd−l

s ym+l)wl), i.e.,

L3 = 1

Md

Md∑

m′=1

||x̂m+m′ − x̄m+m′ ||22 (24)

where the future predicted system state x̄m+m′ in (24) is
given as x̄m+m′ = ∑Md−1

l=0 g−1(KMd−l
s ym+l)wl.

4) A representation cost loss is formulated to guarantee that
the state representation deviation cost is equivalent to the
system state deviation cost in the Jacobian linearization
method. This loss measures the MSE between the state
representation deviation cost Q̃g and the system state
deviation cost Qx, given as

L4 = 1

Ms

Ms∑

m=1

||x̂mQxx̂m − ĝ(xm)Q̃gĝ(xm)||22. (25)

Here, we set Qg = [Q̃g]+ as the final estimator, where
[.]+ truncates the nonpositive eigenvalues to zero to
ensure the state representation deviation cost is a positive
semi-definite weight matrix.

Overall, the total weighted-sum loss function to train the
closed-loop Koopman AE for predicting the future system

states and calculating the optimal control action is given as

L = c1L1 + c2L2 + c3L3 + c4L4 (26)

for some positive coefficients c1, c2, c3, c4 ∈ Z+. The weights
of the sensing Koopman AE can be trained based on the
stochastic gradient descent (SGD) and backpropagation via
feedback channels from the controller to the sensor. An early
stopping strategy is utilized to avoid model overfitting, which
enhances both the prediction accuracy and communication
efficiency. Note that the sensor must consistently sample the
system states and send them along with the latent state rep-
resentations to the controller over wireless fading channels
during the first phase of remote control to compute the total
weighted-sum loss at the remote controller. Otherwise, if the
system states are missed due to adverse channel conditions
in the forward link, the remote controller predicts the future
system states based on the last observed system states.

E. Controlling Koopman Autoencoder for Control Prediction

To compensate for the missing control action command in
case of adverse channel conditions in the reverse link, we pro-
pose controlling Koopman AE to linearize the action dynamics
and predict the future control action commands at the actuator
side. The proposed controlling Koopman AE is composed of
three parts of the encoder that is located at the sensor side is
the same as the encoder utilized in the sensing Koopman AE
g, the Koopman hidden layers at the actuator side K′, and the
decoder are located at the actuator side g−1

a . After the con-
trolling Koopman AE is well-trained, if the remote controller
sends a control action command um, the actuator obtains a
noisy control action command ûm, applies it on the plant, and
concatenates it with the latent state representations g(xm) as
follows zm = [g(xm) ûm]T. Then, by passing zm through
the finite-dimensional controlling the Koopman matrix K′

a,
the linear control action command evolution at the actuator
is given as

ûm+1 = K′
21g(xm) + K′

22ûm (27)

where K′
21 ∈ R

q×d and K′
22 ∈ R

q×q are the trained Koopman
submatrices at the actuator side representing the nonlinear
control action dynamics.

Since the objective of the controlling Koopman AE is to
predict the future control action commands for a long time, it
is required to have the measurement functions, its inverse func-
tions, and the finite-dimensional Koopman matrix. Therefore,
we train the controlling Koopman AE through an optimization
problem formulated as

minimize
K′,g,g−1

a

1

Md

Md∑

m′=1

||xm+m′ − x̃m+m′ ||22 (28a)

subject to: x̃m = g−1
a (zm) (28b)

where x̃m+m′ = ∑Md−1
l=0 g−1

a (K′Md−l
a zm+l)w′

l is the future pre-
dicted system states at the actuator side, and w′

l is the lth
weight parameter of the predicted system state at the actuator.
The problem in (28) is similar to the problem of the sens-
ing Koopman AE in (21) except that the controlling Koopman
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AE receive noisy control action commands and the original
system states along with their state representations. As a result,
we minimize a total weighted-sum of three separated loss
functions similar to the sensing Koopman AE given as

L′ = c′
1L′

1 + c′
2L′

2 + c′
3L′

3 (29)

where c′
1, c′

2, and c′
3 are positive weighting hyperparameters

of the controlling Koopman AE. The loss functions L′
1, L′

2,
and L′

3 of the controlling Koopman AE in (29) are similar to
the loss functions L1, L2, and L3 of the sensing Koopman
AE, respectively, except that x̂m is substituted by xm and ym

by zm.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we investigate the performance of both sens-
ing Koopman AE and controlling Koopman AE over wireless
fading channels in an inverted cart-pole system. This control
system is nonlinear and multidimensional. For a given time,
the inverted cart-pole system is described by a 4-D state vector
x = [x v θ ω]T , where x and v represent the horizontal posi-
tion and velocity of the cart, respectively. The terms θ and ω

are the vertical angle and angular velocity of the pendulum,
respectively. The control action is described as a horizontal
force applied on the cart u. Accordingly, the full nonlinear
system dynamics are described as follows:

dx

dt
= v

dθ

dt
= ω

dv

dt
= −m2

pL2ν cθ sθ + mpL2
(
mpLω2sθ − δv

) + mpL2u

mpL2
(
mc + mp

(
1 − cθ2

))

dω

dt
= mpmmpνLsθ − mpLcθ

(
mpLω2sθ − δv

) + mpLcθu

mpL2
(
mc + mp

(
1 − cθ2

))

(30)

with mpm = mp + mm, cθ = cos(θ), and sθ = sin(θ). Here,
we consider the following simulation parameters unless stated;
otherwise, pendulum mass mp = 1 kg, cart mass mc = 5
kg, pendulum length L = 0.2 m, gravitational acceleration
ν = −10 m/s2, and cart damping δ = −2 Ns/m.

A. Data Generation and Training

The training data set of the sensing Koopman AE is gen-
erated at the controller based on the calculated control action
commands and the received system states from the inverted-
cart pole system with a sampling rate of τ0 = 10 ms in the
time interval m ∈ [0, |MTrain|] and with a random initial con-
dition in the range of [−0.5, 0.5] for each state dimension.
For each initial condition, we solve the system of differential
equations in (30) using the fourth-order Runge Kutta numeri-
cal method with 0.01 equally spaced step size and trajectory
length of MTrain = 250 s. The training data set consists of
Tt = 70, the validation data set of Tv = 20, and the test data
set of Te = 10 trajectories. The AE weights are initialized with
a normal distribution of the form w ∼ N (0, [2/din]) where din
is the number of neurons of the input layer. The AE weights

are trained to minimize the total weighted sum loss in (26)
for the sensing Koopman AE, via Adam optimizer [54] with
batch size of 64 and learning rate of 10−4. The encoder of the
sensing Koopman AE consists of three fully connected layers
that contain 128, 64, and 32 neurons with rectified linear unit
(ReLu) activation, respectively, and the final layer contains d
neurons with linear activation. The decoder begins with two
fully connected layers with the width (d + q) ∈ {2, 3, 4, 5}
(i.e., latent state representation dimension plus control action
command dimension) and the rest follows the same structure
of the encoder. The weighting hyperparameters of the sens-
ing Koopman AE are set as c1 = c3 = 0.5, c2 = c4 = 1.
The wireless communication channels are assumed to follow
Rayleigh fading channels. Here, the results are obtained based
on the model with the lowest validation error of several train-
ing runs. We consider a maximum transmission power value of
Pt = 20 dBm, different SNR of SNR ∈ {−10, 0, 10, 20} dBm,
distance between transmitter–receiver pair of D = 100 m, and
the path-loss exponent of η = 3. The data set of the control-
ling Koopman AE is generated at the actuator based on the
system states and the received control action commands from
the controller. The rest follows the same structure of the sens-
ing Koopman AE with hyperparameters set as c′

1 = c′
3 = 0.5,

c′
2 = 1.

B. Evaluation Metrics

In this section, we present the evaluation metrics used to
evaluate the proposed sensing Koopman AE and the control-
ling Koopman AE according to different evaluation metrics
in terms of prediction accuracy, wireless communication effi-
ciency, and control stability.

Prediction Accuracy: Since the main goal of the proposed
sensing Koopman AE and the controlling Koopman AE are
to predict future system states and control action commands,
respectively, we use the normalized root mean square error
(NRMSE) to evaluate the quality of prediction performance.
The NRMSE is the root MSE between the predicted and
observed signals in a prediction window of length Mp nor-
malized by the norm of the difference between the minimum
and maximum vectors of the observed signals

NRMSEMp =
√

1
Mp

∑Ms+Mp
m=Ms+1

‖x̄m − x̂m‖2
2

‖ max
(
x̂
) − min

(
x̂
)‖2

× 100 (31)

where Mp is the prediction time horizon at test that the remote
controller makes in the second phase of the remote controlling.
Note that if the second phase becomes long, there will be error
propagation that will degenerate the prediction performance.
As a result, we have two options to enhance the prediction
performance: 1) sending a new latent state representation to
initialize the prediction and 2) shifting to the first phase of
remote controlling to fine-tune the trained Koopman operator.

Wireless Communication Metric: To validate the
performance of the proposed Koopman AE in terms of
communication efficiency, we measure the maximum number
of consecutive lost packets Mlost until the most recent suc-
cessful transmission. Hence, the number of consecutive lost
packets linearly increases with time if the transmitter–receiver

Authorized licensed use limited to: Oulu University. Downloaded on December 05,2022 at 08:13:29 UTC from IEEE Xplore.  Restrictions apply. 



GIRGIS et al.: PREDICTIVE CLOSED-LOOP REMOTE CONTROL 23293

(a) (b)

(c) (d)

Fig. 2. Time-series of the predicted inverted cart-pole system states utilizing the proposed sensing Koopman AE before observing the ground truth. (a) Cart
position. (b) Cart velocity. (c) Pendulum angular position. (d) Pendulum angular velocity.

pair experiences adverse channel conditions or the prediction
accuracy of the Koopman AE reaches a predefined threshold.

Control stability is a control performance metric in terms
of the control system response to any initial condition. The
control system is said to be asymptotically stable if, for every
ε > 0, m ≥ 0, and a given control action command, there
exists ‖xm − xd‖2

2 < ε as m → ∞, where xd ∈ R
p is the

desired system state [55]. Then, the control stability along the
prediction time horizon at test is the MSCE, i.e., the time-
averaged of squared system states deviation from its desired
state along the prediction time horizon at the test, given as

MSCEMp = 1

Mp

Mp∑

m=1

‖xm − xd‖2
2. (32)

Note that the control stability in the proposed approach
depends on the prediction accuracy that are affected by
the communication efficiency, highlighting the importance
of jointly designing communication, learning, and control
operations.

C. Performance Evaluation of Split Koopman AE

In this section, we evaluate the performance of the proposed
two-way split Koopman AE for different communication,
prediction, and control parameters.

SNR Versus State Prediction Accuracy: Fig. 2 demonstrates
the prediction performance of the proposed sensing Koopman

AE compared to the nonpredictive remote monitoring of the
nonlinear inverted cart-pole system. The remote controller
in the proposed sensing Koopman AE predicts the future
time-series system states with different SNR and one-step
target prediction depth considered in training compared to
the remote controller in the nonpredictive remote monitor-
ing that receives the nonlinear system states at each time
slot over an ideal channel. It can be seen that the predicted
system states of the proposed sensing Koopman AE with high
SNR, i.e., SNR ∈ {10, 20} dBm match closely the observed
system states in the nonpredictive remote monitoring com-
pared to the predicted system states with low SNR, i.e.,
SNR ∈ {−10, 0} dBm.

The reason behind this result is that the stability of training
the sensing Koopman AE relies on the communication relia-
bility of the observed system states at the remote controller,
highlighting the importance of co-designing the communi-
cation and deep learning operations. As a result, the state
prediction accuracy is improved at the cost of increasing
communication resources in terms of transmission power and
allocated channel bandwidth. Moreover, the state prediction
results in Fig. 2 emphasize the ability of the sensing Koopman
AE in discovering the Koopman invariant subspace with four
latent state representations and one-step target prediction depth
considered in training. Then, the sensing Koopman AE glob-
ally linearizes the nonlinear system dynamics of the inverted
cart-pole and predicts the future system states at the remote
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TABLE I
STATE AND ACTION PREDICTION NRMSE FOR DIFFERENT LATENT STATE REPRESENTATION DIMENSIONS AND SNR

Fig. 3. Time-series of predicted force applied on the cart utilizing the
proposed controlling Koopman AE before observing the ground truth.

controller based on the trained Koopman matrix, improving
the forward link communication efficiency.

SNR Versus Action Prediction Accuracy: For the proposed
controlling Koopman AE depicted in Fig. 3, the actuator pre-
dicts the future control action commands with different SNR
values, and one-step target prediction depth considered in
training compared to the actuator in the nonpredictive remote
controlling of the nonlinear inverted cart-pole system that
observes the control action commands calculated over the
Jacobian linearization method at each time slot over an ideal
channel. Here, the transmission power in both the forward
and reverse communications are linked together since the
observed control action command at the actuator is based
on the observed system states affecting the control action
prediction performance and the control stability. It is clear
that the predicted control action commands in the control-
ling Koopman AE with high SNR, i.e., SNR ∈ {10, 20} dBm
approximately coincides with the observed control action com-
mands compared to the predicted control action commands
with low SNR, SNR ∈ {−10, 0} dBm.

The rationale behind this result is that the learning
stability of the controlling Koopman AE depends on the

communication reliability of the observed control action
commands at the actuator, highlighting the importance of
jointly designing the communication, learning, and control
operations. Hence, the action prediction accuracy is improved
which yields stabilized control system at the expense of uti-
lizing high communication resources in terms of transmission
power and allocated channel bandwidth in the first phase of
remote controlling. Moreover, the action prediction results in
Fig. 3 depict the ability of the controlling Koopman AE in
capturing the nonlinear action dynamics. Hence, the control-
ling Koopman AE has the ability to predict the future control
action commands, improving both the forward and reverse
links communication efficiency.

SNR and Representation Dim Versus Prediction Accuracy:
As shown in Fig. 2, the state prediction performance of the
sensing Koopman AE is improved at the cost of increasing
the communication resources in terms of 4-D latent state rep-
resentations and a high SNR value. Table I describes the state
prediction performance of the sensing Koopman AE for dif-
ferent SNR values and different latent state representation
dimensions. From this table, it is clear that the state prediction
accuracy is improved at the cost of increasing the SNR for
the same latent state representation dimension, the same sen-
sor transmission power, the same distance from the sensor to
the controller, one-step target prediction depth considered in
training, and the same training period. The state prediction
accuracy is almost the same in the lowest latent state repre-
sentation dimension, i.e., d = 1, for low SNR values, i.e.,
SNR ∈ {−10, 0, 10} dBm. In contrast, the state prediction
accuracy is improved by increasing the SNR values in the
other latent state representation dimensions d ∈ {2, 3, 4}. The
rationale behind the state prediction results in Table I is that
the lowest latent state representation dimension is not enough
to discover the Koopman invariant subspace in the observ-
ables space of the nonlinear inverted cart-pole system affecting
the state prediction performance. Hence, for obtaining the
high state prediction performance, the linearized Koopman
subspace reflecting the nonlinear system dynamics is obtained
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TABLE II
STATE AND ACTION PREDICTION NRMSE FOR DIFFERENT LATENT STATE REPRESENTATION DIMENSIONS AND TRAINING PERIODS

at the expense of increasing the communication resources in
terms of selecting a high SNR value and a large latent state
representation dimension, leading to a tradeoff between the
communication cost and the prediction accuracy.

Table I demonstrates also the control action prediction
performance of the controlling Koopman AE compared to
the nonpredictive remote controlling of the nonlinear inverted
cart-pole system. The controlling Koopman AE located at the
actuator locally predicts the future control action commands
for different SNR values and different latent state represen-
tation dimensions. Note that the control action prediction
performance is improved at the cost of increasing the SNR
value for the same latent state representation dimension,
the same controller transmission power, the same distance
from the controller to the actuator, one-step target prediction
depth considered in training, and the same training period.
Additionally, for the same SNR value, we notice that the con-
trol action prediction performance is almost the same for the
low latent state representation dimensions of d ∈ {1, 2, 3} com-
pared to the 4-D latent state representation. This demonstrates
the tradeoff between the communication payload size and the
control action prediction accuracy, in addition to the fact that
the 4-D latent state representations quickly improve the control
action prediction accuracy as a result of reflecting the non-
linear action dynamics in the controlling Koopman invariant
subspace.

Trajectory Length and Representation Dim Versus
Prediction Accuracy: As a result of the difficulty in iden-
tifying the nonlinear dynamics in an interpretable way,
the controller in the nonpredictive remote controlling case
receives the system states at each time slot and calculates
the control action using the nonlinear control theory. In
contrast, our proposed sensing Koopman AE identifies the
nonlinear system dynamics in an interpretable linear form that
is utilized by the remote controller to calculate the optimal
control action using the linear control theory and to predict
the future system states even without communication. Table II
demonstrates the state prediction accuracy of the sensing
Koopman AE for the same sensor transmission power, the
same distance from the sensor to controller, different training
periods, different latent state representation dimensions, and

one-step target prediction depth considered in training. The
state prediction accuracy is improved as the training period
increases for the same SNR value and the same latent state
representation dimensions, highlighting the tradeoff between
the state prediction accuracy and the communication payload
size. The state prediction accuracy in Table II is improved as
a result of increasing the number of observed system states
per trajectory for the same SNR value and the same latent
state representation dimension. The rationale behind this
result is that increasing the number of observed system states
per trajectory ensures the training data set is rich enough to
represent the nonlinear system dynamics and guarantees the
robustness of discovering the Koopman invariant subspace at
the expense of increasing the communication resources.

Table II demonstrates also the control action prediction
performance of the controlling Koopman AE for the same
controller transmission power, the same distance from the
sensor to controller, different training periods, different latent
state representation dimensions, and one-step target prediction
depth considered in training. It is clear that the control action
prediction performance is improved at the cost of increas-
ing the number of received control action commands per
trajectory in the training data set for the same SNR value
and the same latent state representation dimension, highlight-
ing the tradeoff between the action prediction performance
and the communication payload size. Moreover, the action
prediction performance is almost the same for low latent
state representation dimensions d ∈ {1, 2, 3}, the same target
SNR, and the same trajectory length compared to the action
prediction performance for the 4-D latent state representa-
tion. The reason behind this result is that the low latent state
representation dimensions are insufficient to discover the con-
trolling Koopman invariant subspace of the nonlinear action
dynamics. Additionally, for the same latent state representation
dimension, increasing the trajectory length increases the action
prediction performance since the high sampling rate helps in
describing the nonlinear action dynamics and discovering the
controlling Koopman invariant subspace.

SNR and Representation Dimensions Versus Training Loss:
Fig. 4 demonstrates the overall training loss of the sensing
Koopman AE for different SNR values and different latent
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(b)(a)

Fig. 4. Training loss of the sensing Koopman AE with (a) different SNR and (b) different latent state representation dimensions.

(b)(a)

(d)(c)

Fig. 5. Prediction performance and training completion time of both the proposed split sensing Koopman learning and the proposed split controlling closed-
loop Koopman learning for different target prediction depths and different SNR values. (a) State prediction performance. (b) State training completion time.
(c) Action prediction performance. (d) Action training completion time.

state representation dimensions. For the same latent state
representation dimension, i.e., d = 3, it is clear that the train-
ing loss with the lowest SNR value, i.e., SNR = −10 dBm
converges faster compared to the other SNR values at the cost
of achieving low training accuracy. In contrast, the training
loss with the high SNR, i.e., SNR = 20 dBm converges slowly
to the minimum value compared to the other SNR values, i.e.,
SNR ∈ {−10, 0, 10} dBm. This in turn shows the impact of the
SNR value on the training accuracy in which the received data
samples to the another part of the sensing Koopman AE affects

the training accuracy, convergence speed, and communication
payload size.

For the same SNR value, we can see that the train-
ing loss of the sensing Koopman AE slowly converges as
the representation dimension increases. More specifically, the
communication payload size of the forward and backward
propagation signals is proportional to the number of weights
parameters in the Koopman hidden layer. As a result, increas-
ing the latent state representation dimensions results in a high
latency for transmitting the forward and backward propagation
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(b)(a)

Fig. 6. Prediction performance and training completion time of the proposed sensing Koopman AE with a ten-step target prediction depth, different latent
state representation dimensions d ∈ {4, 6, 8, 10, 12, 14}, and SNR = 20 dBm. (a) State prediction performance. (b) State training completion time.

signals which leads to high prediction accuracy, highlighting
the tradeoff between the prediction accuracy, transmission
latency, and communication payload size.

Target Prediction Depth Versus Prediction Performance and
Training Completion Time: To dive deeper into the benefits of
both the sensing Koopman AE and the controlling Koopman
AE, we increase the range of random initial conditions to
generate the training data set as [−2.0, 2.0] for each state
dimension and also increase the trajectory length as MTrain =
500 s. Here, the results are obtained based on averaging sev-
eral training runs with different seeds. Fig. 5(a) and (c) show
the prediction performance of the sensing Koopman AE and
the controlling Koopman AE, respectively, for different target
prediction depths considered in training, different SNR val-
ues, and 4-D latent state representations. For the same target
prediction depth considered in training, we can see that the
state prediction performance decreases as the prediction time
horizon at the test increases due to the error propagation as the
prediction time increases. As a result, based on a predefined
prediction threshold, we send a new latent state representation
or shift to the first phase of remote control to enhance the state
prediction performance.

For the same SNR value, it is clear that the prediction
performance of the split Koopman AE with a one-step target
prediction depth considered in training is better than that with
a ten-step target prediction depth over different prediction time
horizons at the test time, i.e., increasing the target prediction
depth deteriorates the prediction performance over different
prediction time horizons at the test. The rationale behind this
result is that the small errors in training the Koopman opera-
tor with a high target prediction depth during the first phase of
remote control lead to large errors when evaluating the prediction
performance for a large prediction time horizon at the test.

Fig. 5(b) and (d) show the training completion time required
to train the sensing Koopman AE and the controlling Koopman
AE, respectively, for different SNR values and different tar-
get prediction depths. For the same SNR value, it is clear
that the training completion time associated with a ten-step
target prediction depth is larger than that with a one-step tar-
get prediction depth due to the high computational complexity
associated with a ten-step target prediction depth considered

in training. Hence, increasing the target prediction depth
considered in training leads to a high training completion time
and a high communication payload size due to the necessity to
transmit the system states in the first phase of remote control
until the sensing Koopman AE is well-trained.

By analyzing both the prediction performance and the train-
ing completion time of the split Koopman AE, we can see that
the split Koopman AE with one-step target prediction depth
and a low SNR value has better prediction performance com-
pared to that with ten-step target prediction and a high SNR
value. In addition, the split Koopman AE with one-step tar-
get prediction depth has a low communication cost in terms
of transmission power and communication payload size. For
instance, the split Koopman AE with one-step target prediction
depth and SNR = 0 dBm has better prediction performance
compared to that with ten-step target prediction depth and
SNR = 20 dBm. Overall, increasing the target prediction
depth with the current hyperparameter setting deteriorates the
prediction performance compared to the low target prediction
depth. Hence, we next study the effect of changing the latent
state representation dimensions on the prediction performance
with a ten-step target prediction depth for the same SNR value.

Representation Dim Versus Prediction Performance and
Training Completion Time: Fig. 6 presents the prediction
performance and training completion time of the sensing
Koopman AE for different latent state representation dimen-
sions, ten-step target prediction depth considered in training,
SNR = 20 dBm, and the same previous hyperparameter
setting. First, it is clear from Fig. 6(a) that the prediction
performance of the sensing Koopman AE with a ten-step tar-
get prediction depth is improved at the cost of increasing the
latent state representation dimensions, highlighting the trade-
off between the target prediction depth considered in training
and the latent state representation dimensions. Furthermore,
we can see that the prediction performance with a ten-step
target prediction depth starts to saturate after 12-D latent state
representations over different prediction time horizons at the
test. The reason behind this result is that increasing the latent
state representation dimensions in the high target prediction
depth setting ensures discovering the Koopman invariant sub-
space that guarantees the high prediction performance for
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(b)(a)

(d)(c)

Fig. 7. Prediction performance and training completion time of the proposed sensing Koopman AE with a one-step target prediction depth, different number
of trajectories in the training data set Tt = {70, 700}, different SNR values SNR = {20, 0, −10} dBm. (a) State prediction performance. (b) State training
completion time. (c) Action prediction performance. (d) Action training completion time.

a long prediction time horizon at the test. Hence, select-
ing a large dimension of latent state representations with
a large target prediction depth is instrumental in casting
nonlinear system dynamics in a linear form at the expense
of increasing the communication payload size, leading to a
tradeoff between the communication cost and the prediction
performance with a high target prediction depth considered in
training.

Fig. 6(b) shows the training completion time required to
train the sensing Koopman AE with a ten-step target prediction
depth considered in training and different latent state repre-
sentation dimensions. We can see that the training completion
time increases as the latent state representation dimensions
increase until 8-D latent state representations, after which
it starts to decrease until twelve latent state representation
dimensions, then it is almost the same. The reason behind this
result is that increasing the latent state representation dimen-
sions in the large target prediction depth considered in training
hastens the convergence speed of the sensing Koopman AE
training to discover the Koopman invariant subspace. As a
result, reducing the communication payload size required to
observe the system states in the first phase of remote control
until the sensing Koopman AE is well trained.

Trajectories Number Versus Prediction Performance and
Training Completion Time: Fig. 7(a) and (c) demonstrates
the prediction performance of the sensing Koopman AE and
the controlling Koopman AE, respectively, with a one-step
target prediction depth considered in training, 4-D latent state

Fig. 8. Control stability for the split Koopman AE and the nonpredictive
remote controlling over different values of consecutive packet losses with
different SNR values.

representations, the same previous hyperparameter setting,
different SNR values, and a different number of trajectories
in the training data set. For the same SNR value, it is clear
that the prediction performance of the split Koopman AE
is improved over different prediction time horizons at the
test by increasing the number of trajectories in the train-
ing data set as a result of well representing the nonlinear
system dynamics by increasing the number of trajectories in
the training data set. For the same number of trajectories, we
can see the impact of the SNR on the prediction performance,
in which the prediction performance with a high SNR value
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(a) (b)

(c) (d)

Fig. 9. Comparison of Koopman-based controller versus Jacobian-based controller. (a) Cart position. (b) Cart velocity. (c) Pendulum angular position.
(d) Pendulum angular velocity.

is higher than that with a low SNR value. For example, the
controlling Koopman AE with Tt = 700 and SNR = 20 dBm
has higher prediction performance compared to that with the
other SNR values, i.e., SNR ∈ {0,−10} dBm. In addition, the
controlling Koopman AE with Tt = 70 and SNR = 20 dBm
has almost the same prediction performance compared to that
with Tt = 700 and SNR = 0 dBm while it has better prediction
performance compared to the others with different number of
trajectories and low SNR values. This presents the relationship
between the SNR value and the number of trajectories in the
training data set, in which a large number of trajectories in
the training data set with a high SNR value has a much larger
prediction performance compared to those that have the same
number of trajectories with low SNR values. Otherwise, choos-
ing a low number of trajectories in the training data set with a
high SNR value has better prediction performance compared to
those with a large number of trajectories in the training data set
with a low SNR value, highlighting the tradeoff between the
communication payload size and the SNR value in improving
the prediction performance.

Fig. 7(b) and (d) shows the training completion time
required to train the sensing Koopman AE and the control-
ling Koopman AE, respectively, for a different number of
trajectories in the training data set, different SNR values, and
the same hyperparameter setting. For the same SNR value,
it is clear that the training completion time increases as the
number of trajectories in the training data set increases as a
result of increasing the payload size of the forward and back-
ward propagation signals to train the split Koopman AE. For

the same number of trajectories in the training data set, it is
clear that the training completion time of the split Koopman
AE with a large number of trajectories in the training data
set decreases as the SNR value increases. The reason behind
this result is that observations received at another part of the
split Koopman AE are sufficient and reliable to discover the
Koopman invariant subspace. In contrast, decreasing the SNR
value for the same large number of trajectories in the training
data set increases the training completion time, leading to a
tradeoff between the training completion time and the com-
munication cost in terms of the SNR value and the number of
trajectories in the training data set.

Control Stability Versus Consecutive Packet Losses: Fig. 8
illustrates the control stability, i.e., the MSCE, over different
values of consecutive packet losses with different SNR values.
It is clear that the MSCE for the split Koopman AE is almost
the same as the number of consecutive packet losses increases
compared to the nonpredictive remote control. The rationale
behind this result is that the sensing Koopman AE at the
remote controller compensates for the missing system states
by locally predicting them after observing a sufficient number
of system states along with their latent state representations
over favorable channel conditions with different SNR values.
Moreover, the actuator locally predicts the missing control
action commands utilizing the trained controlling Koopman AE
after observing a sufficient number of control action commands,
thereby improving the communication efficiency and the control
performance. The control performance of the proposed split
Koopman AE with SNR = 0 dBm is less than that of one with
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SNR = 20 dBm as a result of the communication reliability
impact on the prediction accuracy.

Koopman-Based Versus Jacobian-Based Linear Controller:
In Fig. 9, we show the inverted cart-pole system states for
the Koopman-based controller and Jacobian-based controller.
Here, the inverted cart-pole system is assumed to be operated
from an initial condition far from the equilibrium point, i.e.,
x0 = [2.5 2.5 2.5 2.5]T. Note that the Koopman-based linear
controller drives the inverted cart-pole system to the desired
states compared to the Jacobian-based controller. The rationale
behind failing the Jacobian-based controller in stabilizing the
nonlinear system is that the initial condition is far from the
equilibrium point, xd = [0 0 0 0]T compared to the Koopman-
based linear controller that is robust against the initial condition
as a result of obtaining a linearized Koopman invariant subspace
reflecting the nonlinear dynamics with high accuracy.

V. CONCLUSION

In this article, we proposed a two-way Koopman AE split
learning framework for closed-loop real-time remote control
with a sensing Koopman AE and a controlling Koopman AE
that predict missing packets of state and action information,
respectively. Numerical results demonstrate that the proposed
approach predicts the future control system state and action
with high accuracy for a practical range of target SNR, latent
representation dimensions, and training periods. Leveraging
the proposed method, developing multiple access schemes,
and extending its applicability to multiple closed-loop con-
trol systems could be interesting topics for future research.
To further improve the communication efficiency, transmitting
partial state observations emanating from utilizing multiple
distributed sensors exploiting a scheduling scheme could be
another interesting topic for future work.
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