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Abstract—Wireless edge caching alleviates the capacity burden
imposed on the backhaul of dense cellular networks while
reducing the user-perceived latency. In this paper, we consider the
joint optimization of caching and user association (JCA) policies
with respect to the total cache hit ratio, taking into account the
limited radio and storage resources, the service requirements,
and the quality of the wireless channels. In order to effectively
capture the dynamic nature and randomness of the system under
study, which is reflected respectively in the mobility and content
preferences of the users as well as in the time-variance of the
wireless channels due to fading, we use a stochastic optimization
framework based on Lyapunov optimization. After formulating
the corresponding dynamic JCA problem, we solve this NP-
hard task by applying a low-complexity heuristic algorithm that
alternates at each timeslot between the caching and user associa-
tion problems. Numerical simulations highlight the performance
gains of the proposed dynamic JCA scheme over its static and
decoupled caching/user association counterparts and shed light
on the effect of various parameters on the performance.

Index Terms—Wireless caching, user association, mobility,
stochastic optimization, Lyapunov optimization.

I. INTRODUCTION

The ongoing growth of the mobile data traffic’s volume,
which is mainly attributed to the proliferation of terminals and
the delivery of high-quality video content [1], has motivated
the dense deployment of small-cell base stations (SBS) as
a means to enhance the capacity of cellular networks [2].
Wireless edge caching alleviates the heavy burden that is
imposed on the mobile backhaul by network densification via
the storage of popular content in cache servers placed at the
cell sites, such that future user requests are served locally [3].

The resulting backhaul traffic savings and latency reduction
gains are commonly quantified via the achieved cache hit ratio,
i.e., the fraction of user requests that are satisfied by the cache
server. This caching efficiency measure, in turn, is determined
by the applied caching policy, which takes caching decisions
either at regular intervals (offline) or on a per-request basis
(online) based on the frequency or/and recency of user requests
for each file [3]. The joint optimization of caching and user
association (JCA) policies can further improve the hit ratio.

This NP-hard problem has been solved in the literature
by formulating a one-to-many matching game under the as-
sumption of identical content preferences among the users that
correspond to a global Zipf requests pattern [4]. In [5], the au-
thors consider user clustering based on the individual content

demand profiles of the users and solve the caching problem via
reinforcement learning. In [6], a heuristic iterative algorithm
that alternates between solving a 0-1 Knapsack problem (KP)
for caching and a generalized assignment problem (GAP) for
user association is presented. Another decoupling approach
based on the Generalized Benders decomposition is derived
in [7], taking into account as well the leasing costs for
the content providers. In [8], the authors develop a near-
optimal distributed algorithm that minimizes download delay,
considering the quality of the radio access and backhaul links.
However, this method, which involves cost function lineariza-
tion via the use of McCormick envelopes and Lagrange partial
relaxation, presents high computational complexity.

Different from the aforementioned studies on static JCA,
this paper employs a stochastic optimization framework based
on Lyapunov optimization [9] for the derivation of a dy-
namic JCA policy. This approach enables maximization of the
long-term time-average total cache hit ratio subject to time-
average constraints on network resources. It essentially maps
the JCA problem into a virtual queue stability and penalty
minimization problem, where the virtual queues pertain to
the long-term constraints, and the penalty corresponds to the
objective function. Despite its apparent simplicity, this method
effectively captures the dynamic nature and randomness of
wireless communication networks, which is attributed to the
mobility and content preferences of the users as well as to
the time-variability of the wireless channels due to fading.
Nonetheless, while Lyapunov optimization has been applied
in caching or user association problems [10], [11], it has not
been used under the JCA context, to the best of our knowledge.

Following the Lyapunov optimization methodology, we
solve the dynamic JCA problem heuristically, considering at
each time slot a static JCA problem that incorporates the
instantaneous user locations and virtual queue values. Hence,
the overall problem is solved without any assumption on the
statistics of user mobility processes, other than that of the
existence of a stationary distribution. The solution is compared
via numerical simulations against that of the static JCA
problem as well as of a decoupled caching/user association
strategy. The simulation results showcase the superiority of
the proposed approach and highlight the effect of parameters
such as the cache storage capacity, the cell capacity, and the
user population on the performance.



Fig. 1. Example system.

II. SYSTEM MODEL

The considered system consists of a set L , {1, . . . , L}
of cells, a set U , {1, . . . , U} of user terminals equipped
with a single antenna each, and a catalog N , {1, . . . , N} of
files, which we assume for convenience and without loss of
generality that they have equal size. A SBS equipped with a
set Ml , {1, . . . ,Ml} of antennas and a cache server with
storage capacity of Cl files are placed at cell l ∈ L. The
cache stores at each timeslot t ∈ T , {1, . . . , T} a set Fl(t)
of |Fl(t)| ≤ Cl files from the content catalog, where T is the
length of the considered time horizon.

The location vector of each user u ∈ U is denoted as
du(t) = (dl,u(t) : l ∈ L), where dl,u(t) refers to the distance
of user u from SBS l at timeslot t. The ensemble location vec-
tor of all users at time t is denoted as d(t) = (du(t) : u ∈ U).
The trajectory of user u due to mobility is described by a se-
quence of pairs of timestamps and location vectors {t,du(t)}.
At each given time, user u is located within range of a set
Lu(t) , {1, . . . , Lu(t)} ⊆ L of 1 ≤ Lu(t) ≤ L cells, but
she is associated with only one of these cells. For example,
in Fig. 1, User 2 is within range of both SBS1 and SBS2, but
she is associated with only one of them. User u has a content
preference distribution pu(n), n ∈ N ,

∑
n∈N pu(n) = 1.

SBS l serves at time t a set Ul(t) , {1, . . . , Ul(t)} ⊆ U of
1 ≤ Ul(t) ≤ U users, where Ul(t) ≤ Ml, on a single time-
frequency resource over the resulting multiple-input single-
output (MISO) link in the single-user case (Ul(t) = 1) or
MISO broadcast channel in the multi-user scenario (Ul(t) >
1). The SBSs utilize maximum ratio (MR) precoding to boost
the received power in the former case or zero-forcing (ZF)
precoding to eliminate the intra-cell inter-user interference
(IUI) in the latter one. Furthermore, appropriate frequency
planning is applied, to null the inter-cell interference (ICI).

The precoding vector assigned to user u ∈ Ul(t) by
SBS l at time t, wl,u(t) ∈ CMl , can be decomposed
as wl,u(t) =

√
Pl,u(t)w̄l,u(t), where Pl,u(t) denotes

the transmit power allocated to that user and w̄l,u(t) =
vl,u(t)/ ‖vl,u(t)‖ which satisfies ‖w̄l,u(t)‖2 = 1 corresponds
to the normalized precoding vector (i.e., the beamform-
ing direction). We have vMR

l,u (t) , hl,u(t) and vZF
l,u(t) ,(

IMl
−H#

l,u(t)Hl,u(t)
)

hl,u(t), l ∈ L, u ∈ Ul(t), where
hl,u(t) ∈ CMl denotes the SBS l–user u channel, Hl,u(t) ∈

C(Ul(t)−1)×Ml is defined as

Hl,u(t) ,
[
hl,1(t), . . . ,hl,u−1(t),hl,u+1(t), . . . ,hl,Ul(t)(t)

]
,

and H#
l,u(t) ∈ CMl×(Ul(t)−1) stands for the Moore-Penrose

pseudo-inverse of Hl,u(t).
We consider quasi-static, frequency-flat, independent

and identically distributed (i.i.d.) Rayleigh fading chan-
nels hl,u(t) =

√
βl,u(t)h̃l,u(t), where βl,u(t) =

C0 (dl,u(t)/d0)
−α

ζl,u(t) denotes the large-scale fading coef-
ficient, C0 is the path loss at a reference distance d0 in the far-
field region of SBS l, α refers to the path loss exponent, ζl,u(t)
corresponds to the shadow fading, i.e., 10 log10 ζl,u(t) ∼
CN

(
0, σ2

sf

)
, and h̃l,u(t) captures the small-scale fading, i.e.,

its m-th element represents the CN (0, 1) fading coefficient
between the m-th antenna of SBS l and user u, m ∈Ml.

When only user u is associated with SBS l, the SBS
applies MR precoding to serve that user. Under null ICI,
h†l,u(t)wMR

j,k (t) = 0, j ∈ L \ {l}, k ∈ U \ {u}. Thus, the
received signal-to-noise-ratio (SNR) of user u is given by:

SNRu(t) =

∣∣∣h†l,u(t)w̄MR
l,u (t)

∣∣∣2 Pl,u(t)

σ2
u

, u ∈ Ul(t), l ∈ L, (1)

where σ2
u is the variance of the zero-mean complex additive

Gaussian noise at user u. When Ul(t) > 1, in turn. the SBS
l applies ZF precoding to serve the users associated with it at
timeslot t. Since this precoding strategy completely suppresses
the intra-cell IUI and the ICI is null, i.e., h†l,u(t)wZF

l,i(t) = 0,
i ∈ Ul(t) \ {u}, and h†l,u(t)wZF

j,k(t) = 0, j ∈ L \ {l}, k ∈
U \Ul(t), the SNR at user u is again given by (1) by replacing
w̄MR
l,u (t) with w̄ZF

l,u(t).
The spectral efficiency (SE) of user u is given by ru(t) =

log2 (1 + SNRu(t)), u ∈ Ul(t), l ∈ L. The transmission of
SBS l to its users Ul(t) at time t is subject to a transmit sum-
power constraint

∑
u∈Ul(t) Pl,u(t) ≤ Pl and SE constraints

ru(t) ≥ rmin
u , where Pl denotes the transmit power budget of

SBS l and rmin
u represents the minimum required SE for user

u. In practice, SBS l serves user u with its minimum required
SE rmin

u . Thus, log2 (1 + SNRu(t)) = rmin
u ⇒ SNRu(t) =

2r
min
u − 1. Substituting SNRu(t) from (1) in the last equation

and solving for Pl,u(t), we obtain

Pl,u(t) =

(
2r

min
u − 1

)
σ2
u∣∣∣h†l,u(t)w̄PS

l,u(t)
∣∣∣2 , l ∈ L, u ∈ Ul(t), (2)

where PS stands for precoding scheme and PS ∈ {MR,ZF}.
By virtue of user mobility, the association of user u with

SBS l at timeslot t generates an association cost bl,u(t) which
reflects the power Pl,u(t) that this SBS allocates to that user
for achieving ru(t) = rmin

u . Therefore, for a given precoding
strategy, this cost is strongly related with the physical distance
of user u from SBS l, dl,u(t), and the quality of the wireless
channel hl,u(t). Furthermore, the transmit power budget Pl is
reflected in the upper limit of the aggregate association cost,∑
u∈Ul(t) bl,u(t) ≤ Bl, where Bl determines the number of

users that can be served by SBS l.



III. PROBLEM FORMULATION

Let {yn,l(t)} and {zl,u(t)} be two sets of binary decision
variables, with yn,l(t) = 1 if file n is stored in cache l and
yn,l(t) = 0 otherwise; and zl,u(t) = 1 if user u is associated
with SBS l and zl,u(t) = 0 otherwise. Then, our objective is
to solve the following maximization problem (P1) (u ∈ U ,
l ∈ L, n ∈ N , t ∈ T ):

max
{y(t),z(t)}

lim
T→∞

sup
1

T

∑
t∈T

∑
u∈U

∑
l∈L

∑
n∈N

yn,l(t)zl,u(t)pu(n)

(3a)

s.t. lim
T→∞

sup
1

T

∑
t∈T

∑
n∈N

yn,l(t) ≤ Cl, (3b)

lim
T→∞

sup
1

T

∑
t∈T

∑
u∈U

bl,u(t)zl,u(t) ≤ Bl, (3c)∑
l∈Lu(t)

zl,u(t) = 1, (3d)

yn,l(t) ∈ {0, 1} , (3e)
zl,u(t) ∈ {0, 1} . (3f)

The reward function that we seek to maximize in (3a) is
the long-term average aggregate number of cache hits. The
constraints in (3b) and (3c) correspond to the long-term av-
erage cache storage and service cost constraints, respectively.
Constraint (3d) captures the fact that each user is associated
with a single SBS out of a subset of candidates in their neigh-
borhood. Finally, constraints (3e) and (3f) denote the binary
nature of the decision variables yn,l and zl,u, respectively. The
optimization variables are the caching policy {y(t)} and the
user association policy {z(t)}.

IV. CACHING AND USER ASSOCIATION POLICIES

A. Virtual Queues and Lyapunov Optimization
We use Lyapunov optimization to tackle the aforementioned

problem. We start by mapping constraints (3b) and (3c) to
queue stability problems, so that the problem is converted to
one of optimal control of a dynamic queueing system. That
is, for each of the L constraints in (3b), we define a virtual
queue Ql(t), l ∈ L, which evolves as follows:

Ql(t+ 1) =

(
Ql(t) +

∑
n∈N

yn,l(t)− Cl

)+

, (4)

where x+ = max(x, 0). This queue builds up as items are
stored in cache l and increases or decreases in size by the
number of cached items above or below the cache storage
capacity, respectively.

Further, for each of the L constraints in (3c), we define a
virtual queue Zl(t), l ∈ L, which evolves as follows:

Zl(t+ 1) =

(
Zl(t) +

∑
u∈U

bl,u(t)zl,u(t)−Bl

)+

. (5)

Here, the queue builds up with an amount equal to the cost
to serve a user, with each user associated with SBS l, and
decreases when the total service cost is less than Bl.

We should note that the amounts of increase and decrease
in the queues, and hence the values bl,u(t), are integers. We
should also mention that although the “soft” capacities Cl and
Bl can be exceeded, numerical simulations indicate that the
corresponding queues do not “explode”.

Let Q(t) = (Q1(t), . . . , QL(t)), Z(t) =
(Z1(t), . . . , ZL(t)), and Θ(t) = (Q(t),Z(t)). The variables
y(t) and z(t) control the admission processes in the virtual
queues. We define the Lyapunov function L (Θ(t)) as

L (Θ(t)) =
1

2

∑
l∈L

Q2
l (t) +

1

2

∑
l∈L

Z2
l (t). (6)

Then, we define the one-slot conditional Lyapunov drift as

∆ (Θ(t)) = E [L (Θ(t+ 1))− L (Θ(t)) |Θ(t) ] , (7)

which denotes the expected change in the Lyapunov function
in one slot, conditioned on the current state, and where the
expectation is with respect to the statistics of queue evolution.
By using standard techniques for bounding the Lyapunov
drift [9], we have that

∆ (Θ(t)) ≤ B + E

[∑
l∈L

Ql(t)

(∑
n∈N

yn,l(t)− Cl

)
|Θ(t)

]

+ E

[∑
l∈L

Zl(t)

(∑
u∈U

bl,u(t)zl,u(t)−Bl

)
|Θ(t)

]
,

(8)

where B > 0. Since we aim at maximizing the objective
function in (3a), we employ the drift-plus penalty function

∆ (Θ(t)) + V E [Y (t) |Θ(t) ] , (9)

where V ≥ 0 is a fixed trade-off parameter that quantifies the
significance of the objective function and

Y (t) = −
∑
u∈U

∑
l∈L

∑
n∈N

yn,l(t)zl,u(t)pu(n). (10)

For the drift-plus-penalty function we have

∆ (Θ(t)) + V E [Y (t) |Θ(t) ] ≤

B − V E

[∑
u∈U

∑
l∈L

∑
n∈N

yn,l(t)zl,u(t)pu(n) |Θ(t)

]

+ E

[∑
l∈L

Ql(t)

(∑
n∈N

yn,l(t)− Cl

)
|Θ(t)

]

+ E

[∑
l∈L

Zl(t)

(∑
u∈U

bl,u(t)zl,u(t)−Bl

)
|Θ(t)

]
. (11)

The drift-plus-penalty method aims to employ at each
timeslot the appropriate control, in order to minimize the
right-hand-side of the inequality above (i.e., the penalty in
performance imposed by the constraints (3d)– (3f). Thus, the
resulting optimization problem (P2) is formulated as follows:

max
{y(t),z(t)}

∑
u∈U

∑
l∈L

∑
n∈N

V pu(n)yn,l(t)zl,u(t)−Ql(t)yn,l(t)



− Zl(t)bl,u(t)zl,u(t) (12a)

s.t.
∑

l∈Lu(t)

zl,u(t) = 1, u ∈ U , (12b)

yn,l(t) ∈ {0, 1} , n ∈ N , l ∈ L, (12c)
zl,u(t) ∈ {0, 1} , l ∈ L, u ∈ U . (12d)

At each timeslot t ∈ T , the controller observes the vectors of
virtual queues Q(t) and Z(t) and the instantaneous ensemble
location vector of users d(t), which in turn affect the dynamic
service costs {bl,u(t)}, and decides on the policy vectors y(t)
and z(t) that maximize (12a) at that slot.

B. Heuristic Iterative JCA Algorithm

The JCA problem (P2) is NP-hard [8]. In order to solve
it, we apply the low-complexity heuristic approach described
in [6]. Specifically, we initially assume that all users within
range of an SBS are associated with that SBS (with minimum
distance and random selection as tie-breakers in the case of
overlapping cells and equidistant SBSs, respectively). Thus,
we ignore the user association constraints (12b) and (12d), set
zl,u = 1, and determine the content placement at each cache
l ∈ Lu by solving independent instances of the following 0-1
KP (P3a):

max
{y}

∑
u∈U

∑
l∈L

∑
n∈N

V pu(n)yn,lzl,u −Qlyn,l

− Zlbl,uzl,u (13a)
s.t. yn,l ∈ {0, 1} , n ∈ N , l ∈ Lu. (13b)

Note that we have dropped the timeslot index for convenience.
After this initial step, the iterative phase of the algorithm starts.
That is, we first determine the user associations {zl,u} given
the content placements {yn,l} obtained by solving (P3a). To
this end, we ignore the caching constraint (12c) and solve a
single instance of the following GAP (P3b):

max
{z}

∑
u∈U

∑
l∈L

∑
n∈N

V pu(n)yn,lzl,u −Qlyn,l

− Zlbl,uzl,u (14a)

s.t.
∑
l∈Lu

zl,u = 1, u ∈ U , (14b)

zl,u ∈ {0, 1} , l ∈ L, u ∈ U . (14c)

With these new values for user associations {zl,u}, we
revisit the caching problem (P3a). We continue to iteratively
solve the caching and user association problems in an alter-
nating manner until no improvement on the performance can
be made, as it is quantified by the reward function in (12a).

C. Computational Complexity

Let us assume, for convenience and without loss of gen-
erality, that Cl = C, ∀l ∈ L. Then, by using the pseudo-
polynomial Dynamic Programming (DP) algorithm to solve
the L independent 0-1 KP instances (e.g., see [12]), the
time complexity is O (LNC). By using the 2-approximation
algorithm in [13] to solve the GAP by decomposing it into

a series of 0-1 KP problems, in turn, the time complexity is
O (LNC + LN). Therefore, the total time complexity of the
heuristic algorithm is O (IitLNC), where Iit is the number
of iterations. As indicated by the numerical simulations, in
practice we commonly have Iit < 10. In comparison, the
complexity of the sorting algorithm alone used in the decom-
position method [7] is O

(
ŜF̂ log

(
ŜF̂
))

, where Ŝ denotes

the largest number of regions covered by any SBS and F̂
represents the cache capacity (in files) of any SBS.

V. NUMERICAL SIMULATIONS

In this section, we compare the performance of the proposed
dynamic JCA scheme to that of its static counterpart [6],
in terms of the achieved average cache hit rate, via nu-
merical simulations. We also consider a heuristic decoupled
caching/user association design, where the users are sequen-
tially parsed and each user is associated with the cell among
the candidates that incurs the minimum association cost,
provided that the cell capacity constraint is met, until all users
have been associated with a cell. Subsequently, the caching
problem is solved as in the static JCA strategy.

In the simulations, we assume a content catalog of N =
1000 files, L = 20 cells, and V = 1. With respect to the
content demand distributions of individual users, we partition
the end users according to their physical location, meaning
that users within range of the same SBS belong to the same
subset. When two or more users are located in the overlapping
region of two cells, we use a minimum distance rule or random
selection, in the case of equidistant SBSs, as a tie-breaking.

In Fig. 2(a), the storage capacity of each cache is C = 100
files, the capacity of each cell is Bmax = 150, and we
vary the number of users as U = 200 : 50 : 400. In
Fig. 2(b), we set Bmax = 150 and U = 200 and we vary
the cache storage capacity as C = 50 : 25 : 150. Finally,
in Fig. 2(c), we set C = 100 and U = 200 and we vary
the cell capacity as Bmax = 50 : 25 : 150. We note
that the proposed dynamic JCA strategy based on Lyapunov
optimization outperforms both the static JCA approach, which
focuses on the optimization of the instantaneous performance
instead of the average one, and the decoupled caching/user
association strategy, which does not adapt the user association
decisions to the cached contents. We also notice that the
performance of all schemes improves with the cache size and
the cell capacity, as expected. We should mention, though, that
the decoupled approach presents smaller improvement than the
other strategies with the increase of the cell capacity. This is
because under spatial locality regarding the content demand
distributions, the content preferences of the users that are
associated with a cell are more important than their number.

This becomes apparent in Fig. 3, where we repeat the above
experiments assuming this time random user demands instead
of spatially-clustered ones (i.e., we consider a scenario without
spatial locality). Here, the number of users in a cell is more
significant than in the previous test cases and the performance
gap between the heuristic and decoupled schemes is much
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Fig. 2. Average cache hit ratio vs. (a) number of users, (b) cache storage capacity, and (c) cell capacity, under spatially-clustered user demands.
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Fig. 3. Average cache hit ratio vs. (a) number of users, (b) cache storage capacity, and (c) cell capacity, under random user demands.

smaller, although the same stands for the cache hit ratio of all
methods as well, since spatial locality is not exploited.

VI. CONCLUSIONS

In this work, we proposed a dynamic, Lyapunov
optimization-based JCA policy design and evaluated via nu-
merical simulations its performance against benchmarks and
prior state-of-the-art schemes. Simulation results revealed that
the proposed low-complexity heuristic design is more efficient
in terms of the achieved average cache hit ratio than its static
counterpart or a decoupled caching/user association strategy.
They also shed light on the effect of various parameters on
the performance. In the future, we plan to extend this design
framework by taking into account computation offloading
(processing) or/and energy constraints as well.
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