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Chapter 21

On the joint optimization of content caching 
and recommendations

Livia Elena Chatzieleftheriou 1, Merkourios 
Karaliopoulos 1, and Iordanis Koutsopoulos 1

Content caching has been experiencing revived interest within the context of current 
and next generation wireless networks. It brings content closer to users, decreasing 
the aggregate delivery costs and service delays for network providers. Recommender 
systems have become integral components of content provision sites. They offer per-
sonalized recommendations, increasing the individual user satisfaction and engage-
ment with the content provider’s platform. Traditionally, caching and recommen-
dation decisions are taken separately. However, there is a recent persistent trend 
where both network and content providers tend to deploy their own content delivery 
solutions. In light of this, we explore how the phenomenally conflicting objectives 
of content caching and recommendation can be jointly addressed.

In this chapter we approach recommender systems as network traffic engineering 
tools that actively shape content demand to serve both user- and network- centric per-
formance objectives. We introduce a model that captures the coupling between caching 
decisions and issued recommendations. Based on experimental evidence, we describe 
the impact of recommendations on user content requests and present a systematic way of 
engineering the user recommendations. Our viewpoint to recommender systems raises 
some concerns, not least ethical ones. Hence, we introduce a measure called prefer-
ence distortion tolerance to quantify how much the engineered recommendations distort 
the original user content preferences. We describe the “recommendation window” as a 
way to controllably bound the distortion that recommendations will undergo and discuss 
specific properties that the recommender system should have in order to ensure that 
the “Quality of Recommendations (QoR)” is kept high by the issued recommendations. 
We formulate a joint optimization problem for the content to cache and recommend to 
each user, aiming to maximize the cache hit ratio. The preference distortion tolerance is 
embedded as a constraint to this problem formulation and marks an equally important 
dimension for assessing possible solutions. We prove that the problem lacks those prop-
erties that would guarantee its approximability, and devise a low- complexity practical 
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algorithm that solves it efficiently. The algorithm is essentially a form of lightweight 
control over user recommendations, so that the recommended content is both appealing 
to the end- user and more friendly to the caching system and the network resources. We 
thoroughly evaluate it, by establishing its main properties and analytical performance 
bounds. We conduct an extensive sensitivity analysis over various system parameters, 
both analytically and through simulations with real and synthetic dataset. Next we extend 
our model and approach for a system in which users can access content from multiple 
caches, and analyse the intermediate joint caching and user association problem. We 
then discuss open directions and provide a detailed taxonomy of the related work. Due 
to space limitations, we do not provide proofs for our results. However, the interested 
reader may refer to [1–3] for more propositions and their detailed proofs.

21.1  Introduction

Content caching has been experiencing revived interest in recent years within the 
context of current and next generation wireless cellular networks. The soaring 
demand for mobile video services pushes caching functionality towards the wire-
less network edge. Storing popular content at caches close to the user results in 
enhanced Quality of Experience (QoE) for the end- users and smaller footprints of 
the bandwidth- demanding mobile video traffic within the wireless network.

On the other hand, the technological advances have totally reshaped the nature 
of multimedia services. The plethora of content made available to users creates them 
discomfort: the users either find quickly something of interest, or they abandon the 
service [4]. Nevertheless, the great variety of immediately available content should 
turn to users’ advantage and recommender systems play a key role to this end.

Recommender systems have become integral components of content provision 
sites. Their mission is to make personalized recommendations for movies, video 
clips, music songs or other content items that best match the interests and pref-
erences of individual users. This improves the users’ satisfaction and boosts their 
experience, increasing the number of content downloads and keeping them engaged 
with the platform. For instance, the Related Video recommendations generate about 
 30%  of the overall views on YouTube [5], whereas the recommender system used 
by Netflix is considered responsible for about  80%  of the hours streamed at Netflix. 
Moreover, the combined effect of personalization and recommendations saves 
Netflix more than $1B per year [4].

Typically, the recommendation engine and the caches at the wireless network 
are owned and managed by different entities. Recommender systems are controlled 
by content providers through apps that interact with users, whereas the caching 
infrastructure is typically possessed and controlled by the wireless network operator. 
Content providers often insert servers storing content within other networks through 
either their own or third- party Content Delivery Networks (CDNs). In mobile cel-
lular networks, in particular, these servers tend to be placed at their egress nodes 
rather than at their edge.
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However, players with originally distinct roles in the business value chain, 
such as access network operators and content providers, tend for some time now 
to deploy their own content delivery solutions, albeit for different reasons. Content 
providers seek to acquire better control of the network access infrastructure so as to 
improve the QoE delivered to their subscribers. Netflix Open Connecta and Google 
Global Cacheb are two widely known examples of CDN solutions owned by content 
providers. Access network operators, on the other hand, deploy CDNs (telco CDNs) 
to minimize costs related to the delivery of video traffic through external networks. 
At the same time, by having storage servers closer to the end- users, telco CDNs can 
provide their subscribers with faster content access and can gain an advantage over 
their competitors in the pursuit of customers.

In the case of wireless networks, these trends motivate novel content provi-
sioning scenarios, whereby the coordination of (at least) three different mech-
anisms can enhance user- and network- centric performance measures. First, 
content replication at the caches of different (small) cells can be used to maxi-
mize the locally served demand and optimize the access delays experienced 
by users, hence their QoE. At the same time, caching reduces the traffic at the 
backhaul links and maximizes the cache hit ratio. Secondly, routing user content 
requests to different cell caches, it can balance the request load across caches, 
again improving user QoE but also the network resource usage. Finally, recom-
mender systems can be carefully used to nudge users towards more network- 
friendly content request patterns, i.e., they can shape content demand for the 
benefit of the caching mechanism.

Motivation: Recommendations appear, thus, to have interesting repercus-
sions for the design of caching algorithms. Consider, e.g., a cell cache serving the 
users who are associated with the cell. The rough idea is that the recommender 
system does not necessarily issue recommendations for content that ranks as the 
topmost relevant according to the recommendation algorithm; instead, it could 
recommend to individual users cached content that still matches adequately with 
their preferences and, at the same time, attracts strong demand from many other 
users. Hence, anticipating that its recommendations affect the content access pat-
terns of users, the recommender system seeks to gently blunt some of the hetero-
geneity in users’ demands, thus aiming at higher caching efficiency and better 
users’ QoE (Figure 21.1).

The possibility to route content requests through different (small) cells within 
reach of the user adds further degrees of freedom to the problem. Besides which 
content to store, the caching decisions concern where to store it. Hence, a joint 
caching and recommendation algorithm could cache and recommend to a user 
content items that rank second, third, or lower in her preferences, as long as these 
items are in great demand in at least one of the cells that lie within the coverage 
of the user. It would instead avoid caching and recommending an item that, say, 

a openconnect.netflix.com/en/
b peering.google.com/
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ranks first in the user preferences but is of no interest to other users in the cells 
the user can associate with.

21.2  System model

We consider a wireless network with a set of small cells and a macrocell that work in 
conjunction, forming a two- layer heterogeneous network. In current communication 
networks, macro- and micro- cells are outdoor cells with a typical radius up to a few 
kilometer and a few hundred meters, respectively.

Figure 21.1   Illustration of the system model and toy example. Caches are 
co- located with small cells and serve users with content of their 
preference. The example shows three users with their content 
preference distributions (2nd column) over six items A–F (1st 
column). The three items (A, C, D) that attract the highest aggregate 
preference from all users are locally cached, yielding an expected 
cache hit ratio of 0.58. Consider a recommender system issuing 
content recommendations to users and a naive model for their 
impact: When an item is recommended to a user the preference 
(demand) for that item is boosted by 0.03. On the contrary, when 
an item is not recommended to a user, the preference of that user 
for this item decreases by 0.03. When recommendations are issued 
for the top- 3 items in users’ preferences (3rd column), the cache hit 
ratio drops to 0.55. When recommendations are issued for items 
that are both cached and of adequate interest to users, yet not 
necessarily within the top- 3 set (4th column), the cache hit ratio 
increases to 0.67.
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21.2.1  Caches, content, users
Our model involves a set of caches C , a catalog of content items (video clips), I  , and 
a set of users, U   (Figure 21.1) (Table 21.1).

Caches: Caches are co- located with wireless network microcells. Each cache 
 c 2 C  has limited storage capacity,  Sc , which is measured in normalized file size 
units. At any point in time, it stores a finite set of files, referred to as the cache place-
ment  Pc . An additional cache is installed on the macrocell or the cloud, operating as 
a backend server. This “cache” is assumed to have enough capacity to store copies 
of the entire catalog.

Content: Content items are relevant to one or more of a set of U   thematic 
categories. The detail and resolution of this categorical separation may vary. Such 
information may be stored in content metadata in the form of (hierarchical) tags. For 
example, “soccer” may form a distinct category, but it may also be further split into 
“English/French/Spanish soccer.”

The M   thematic categories serve as a feature set that describes items. 
Namely, each item  i 2 I   is represented by a feature vector fi , whose  jth  element 
 fi(j), j 2 [1, ..,M]  denotes the score of item  i  in feature  j , i.e., how relevant is item  i  
to thematic category  j . These relevance scores assume values in [0,1] and are nor-
malized so that  

PM
j=1 fi(j) = 1, 8i 2 I  .

Table 21.1  Notation table

Symbol Context Symbol Context

 Sc Storage capacity of cache  c  M  Number of thematic categories

 Li Normalized length of item  i  aui Similarity of user  u  and item  i 
 fi Feature vector values of 

content item  i  over the M   
thematic categories

 fu Feature vector value of user  u  over 
the M   thematic categories

 p
pref
u  

Inherent content preference 
distribution of user  u  precu  

Probability distribution due to 
Recommendation

 p
req
u  

Content item request 
probability distribution 
of user  u  (recommended 
items)

 eprequ  
Content item request probability 

distribution of user  u  (non- 
recommended items)

 R Number of recommended 
items  Wu Recommendation window of 

user  u 
 Ku Length of  Wu  rd  Preference distortion tolerance

 Hs Cache hit ratio under 
scheme  S  

 P  Cache placement

 RC in
u  

Provisional set of 
recommended items to  u  RC f

u 
Final set of recommended items 

to  u 
 ZD Zero- distortion scheme  UD Unbounded- distortion scheme
 CawR Caching- aware 

recommendations Scheme
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The content catalog includes content items of different sizes, e.g.,entire movies 
and their trailers. We denote by  Li � 1  the normalized size of content item  i , i.e., 
the ratio of its actual size over the smallest item size of the catalog. Indicatively, 
consider the simple case where files come with only one resolution quality. Then, 
 lmin = 100s  and  lmax = 100min = 6000s  are typical values for the trailers’ and movies’ 
duration so that  Li = lmax

lmin   is in the order of 60c. Replicas of each content item may be 
stored in any subset of the small cell caches, besides the backend cache, depending 
on the actual caching decisions.

Example 1: Let the feature set be  A = f Biography, Crime, Drama, Comedy, 
Romance g , and the set of contents  I = f The Godfather, The Irishman, Amélie g.  
The “Godfather” falls under the Crime and Drama themes, the “Irishman” below 
Biography, Crime and Drama, and “Amélie” falls under the Comedy and Romance 
themes. Then, the feature vectors are fGodfather  = [0, 0.5, 0.5, 0, 0], fIrishman = [0.33, 
0.33, 0.34, 0, 0] and fAmKelie  = [0, 0, 0, 0.5, 0.5]. Alternatively, the feature vectors 
could be binary, so that a feature assumes the value 1 if a tag is relevant for the 
movie, and 0, otherwise. For example, the binary feature vector for “Amélie” would 
be fAmKelie  = [0, 0, 0, 1, 1].

Users: At any point in time, each user  u 2 U   is located within range of a differ-
ent subset of the network (micro)cells. The user might access different content items 
through different caches, each time dynamically changing her association depend-
ing on the requested content. In section 21.3, we assume that users do not change 
their association point in the network dynamically in response to content requests, 
while in section 21.7 we consider user association as an additional (indirect) road for 
nudging users’ preferences on which we have control.

Users are described by similar feature vectors  fu 2 [0, 1]M   as the content items. 
Each vector element  fu(j), j 2 [1, ..,M]  expresses how much user  u  is interested in 
content classified under thematic category  j . We normalize these values as well, 
 i.e.,

PM
j=1 fu(j) = 1, 8u 2 U  . Practically, content provision sites draw on the history 

of users’ content downloads, and more broadly their interactions with the site such 
as possible ratings of content items, to infer these vectors. We elaborate on this in 
section 21.6.1.

Example 2: Consider the feature set of Example 1 and the set of users 
 U = fu1, u2, u3g.  A way to quantify the relevance of features for the users is to con-
sider the percentage of tags in the movies they rated. For example:  fu1  = [0.6, 0.4, 0, 
0, 0],  fu2  = [0.2, 0.2, 0.2, 0.2, 0.2] and  fu3  = [0, 0, 0, 0, 1].

21.2.2  Content preferences of users
The demand for content items is time- varying. It grows for some finite time after 
the content item first becomes available for download, and then it gradually fades 

c http://www.stephenfollows.com/long-average-movie-trailer, last accessed on Feb 20, 2019.
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out [6, 7]. Our work concerns time scales over which the demand for each item can 
be considered “fixed,” in the order of a few hours within a day [8]. Namely, content 
demand predictions and caching decisions are made once every such an interval, and 
user content request patterns change slowly over that interval.

On the user side, we distinguish between inherent content preferences of users and 
the eventually issued content requests by them. Hence, each user  fu  can be described 
by a content preference distribution,  ppref

u (i), i 2 I  , with 
 
P
i2I

ppref
u (i) = 1

 
, which captures 

her original preferences over all items. The preference of user  u  for item  i ,  ppref
u (i),  

can be inferred from the feature vectors  fu  and fi . We use for this purpose the cosine 
similarity index,  aui , of vectors  fu  and  fi.  Note that other similarity measures could also 
be applicable [9]. Then, the content preference distribution  pprefu   over all items is given 
by:

 

ppref
u (i) = auiP

i2J
aui
, where aui =

MP
j=1

fu(j)�fi(j)
vuut MP

j=1
(fu(j))2

vuut MP
j=1

(fi(j))2
.

  

(21.1)

Example 3: Consider the item- feature vector of Example 1 and the user- feature 
vector of Example 2. Then, the users’ inherent preferences for the movies “The 
Godfather,” “The Irishman” and “Amélie” are:  p

pref
1   = [ 0.38, 0.62, 0],  p

pref
2   = [ 

0.33, 0.33, 0.33],  i  = [ 0, 0, 1].
However, the content that users eventually request also depends on the recom-

mendations issued to them, so that the probability with which user  i  requests item 
 f(.) ,  prequ (i) , differs from  ppref

u (i) . We describe our modeling approach to the recom-
mendations’ impact in the next paragraph.

21.2.3  The impact of recommendations on user content requests
The system recommendations affect the relative user demand for all content items. In prin-
ciple, they boost the demand for the recommended items and at the same time proportion-
ately decrease the demand for remaining items. It is less clear how recommender systems 
quantitatively modulate the a priori preferences of a user  pprefu   so as to yield the ultimate 
content request distribution  prequ  . Modeling in literature tends to be both intuition- and 
evidence- driven. In [6], for example, the recommendations are mapped to a new distribu-
tion  precu   over the content items and  prequ (i)  is taken to be equal to max fpprefu (i), precu (i)g.  
On the other hand, there is strong experimental evidence that both the number of recom-
mended items and their order within the recommendation list have a high impact on the a 
posteriori distribution of the users’ demand. For instance, the “Related Video” recommen-
dation lists of YouTube is shown to be the main source of requests for its content, since 
items ranked higher up in a list of recommended items attract more user interest than items 
at lower positions [5]. This finding is more relevant for users that access content through 
small form- factor devices such as mobile phones, in which case it is less convenient to 
scroll down the whole recommendation list.
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Hence, in modeling the impact of recommendations, we make two assumptions:

Assumption 21.2.1. The impact of a recommendation for item  i  on the demand 
that is eventually expressed by a user  u  for this item is a non- increasing function 
 f(.)  of both the item’s  i  position in the recommendation list,  rnku(i) 2 [1,R],  and 
the number of recommended items,

In section 21.6.1 we consider specific instances of R  that satisfy this assump-
tion. For a more detailed discussion please refer to section 6.1 in [1].

Assumption 21.2.2. The content request distribution is a convex combination of 
the two distributions,  pprefu   and  precu  and is given by

 prequ (i) = wr
u � precu (i) + (1 � wr

u) � pprefu (i)  (21.2)

for each of the R  items that are recommended to  u , and by

 eprequ (i) = (1 � wr
u) � pprefu (i)  (21.3)

for each one of the  (|I | � R)  items not recommended to user  u.  The user- specific 
recommendation weights  wr

u  in (21.2) and (21.3) express the importance user 
 u  attaches to recommendations in the r- th position of their recommendation list.

Equations (21.2) and (21.3) capture the way recommendations shape content 
requests that are ultimately issued by user  u . The request probabilities are boosted 
when compared to the initial ones for recommended items, and they decrease for 
non- recommended ones, so that the resulting content request distribution remains a 
probability distribution (see Figure 21.2).

21.2.4  Engineering the user recommendations
This capability of recommender systems to shape user demand for content renders 
them a powerful tool for content demand shaping. This way, recommender systems 
could be actively used to optimize network- centric performance objectives, in what 
marks a departure from their nominal user- oriented mission. Our approach to this is 
summarized in Figure 21.2 and described in what follows.

Assume that the recommender system seeks to recommend R  new items to each 
user  u , where R  may range from 1 up to a few (e.g., 5–10) items. Instead of issuing 
recommendations for the top R  items in  u ’s content preference distribution  pprefu  , 
the system selects R  items among the ones residing within a recommendation win-
dow  Wu  that is defined by the top  Ku  items, where  Ku > R , as shown in Figure 21.2. 
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Figure 21.2   Impact of recommendations on user requests. The content items are 
ranked in decreasing order of user preference and only items within 
the recommendation window are recommended. A priori content 
preference distribution for arbitrary user  u , its recommendation 
window  Wu  of size  Ku  (black), and the resulting content request 
probability after recommendations (red).

Namely, the recommender system artificially inflates the set of candidate items for 
recommendation for each user  u  by a user- specific factor  Ku/R . When doing so, the 
system ensures the QoR, preserving two properties addressing the ethical concerns 
described in section 21.1 regarding the possible manipulation of recommendations:

• It preserves the rank of recommended items in the original user 
content preferences. If an item i is recommended at higher rank 
than item j, it holds necessarily that ppref

u (i) � ppref
u (j). 

• It controllably bounds the distortion that its recommendations 
introduce to the original user content preferences.

Although the rank of recommended items in the original user content prefer-
ences is preserved, it could happen that the absolute rank of file popularities may 
change after the recommendations. For example, an item that is high in the inherent 
user’s rank and that is not recommended may move lower in her rank than an item 
that was originally bellow it but has been recommended.

In the worst case, the system will end up recommending items that are ranked in 
positions { Ku � R + 1,Ku � R + 2, : : : ,Ku } in decreasing order of user content pref-
erences (ref. Figure 21.2), instead of the items in top- R positions  f1, 2, : : :Rg . We 
define the worst- case user preference distortion measure,  �u  to be
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�u(Ku,R) = 1 �

P
j:rnku(j)2

[Ku�R+1,Ku]

ppref
u (j)

P
j:rnku(j)2[1,R]

ppref
u (j)

.

  

(21.4)

where  rnku(i), i 2 I  , is the rank of item  i  in user’s  u  content preferences.
The denominator in (21.4) equals the total request probability of user  u  for the 

top R  items, which are the ones a typical recommender system would recommend. 
The numerator, on the other hand, equals to the total request probability of user  u  for 
the bottom R  items in the recommendation window. Hence,  �u(Ku,R)  expresses the 
worst- case deviation from initial user request probabilities that may result from the 
choices of our scheme when compared to a typical “honest” recommender system. 
As such, this metric is admittedly conservative and it denotes an upper bound on the 
possible distortion of original user request probabilities.

The size of the recommendation window,  Ku , introduces an interesting trade- 
off. Higher  Ku  values allow for more flexibility in selecting items to recommend 
to users and shaping their demand in favor of caching efficiency, as it will be 
seen in the sequel. But at the same time, a higher  Ku  value may result in higher 
distortion of user preferences, as can be readily seen in (21.4).

21.3  The joint caching and recommendations problem

In this section we assume that the user associations with network (small) cells depend 
on the quality of radio signals and the load of the radio network, without taking into 
account the availability of content at the co- located caches. A direct consequence of 
this assumption, which is in line with user association practices in current mobile 
cellular networks, is that the caching decisions can be made independently in each 
cache- enabled small cell. Any given cache placement  fPc : c 2 Cg  may satisfy a por-
tion of the total demand in the cell as measured by the cache hit ratiod

 
H =

P
u2U

P
i2P

preq
u (i)

P
u2U

P
i2I

preq
u (i)

.
  

(21.5)

On the user side, the requirement is to maximize the portion of her content requests 
that can be satisfied by the cell cache (cache hits). This results in lower content 
access delays and higher user QoE. At the same time, since fewer requests have 
to be satisfied by the back- end server, the utilization of backhaul links is lower. In 
other words, the maximization of the cache hit ratio serves both user- and network- 
oriented objectives.

Formally, let  fyig  and  fxuig, i 2 I, u 2 U   be two sets of binary decision vari-
ables with  yi = 1  when item  i  is cached and  i , otherwise; and  xui = 1  when item 

d Since in this section the caching decisions are made independently for each cache, we drop the index  c  
from subsequent references to cache placements, i.e., we write P   instead of  Pc .
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 yi, xui 2 f0, 1g u 2 U , i 2 Wu.  is recommended to user  u  and  xui = 0  when it is not. 
The objective of the joint caching and recommendation decisions is then to find the 
cache and recommendation policy that maximizes the hit ratio, as defined below:

 
max
y,x

X
u2U

X
i2Wu

yi(xuipreq
u (i) + (1 � xui)epreq

u (i))
  

(21.6)

 
s.t.

X
i2I

yiLi � S
  

(21.7)

 

X
i2Wu

xui = R, 8u 2 U
  

(21.8)

 yi, xui 2 f0, 1gu 2 U , i 2 Wu.  (21.9)

In (21.6) and (21.8),  Wu  denotes items within the recommendation window of user 
 u . The cardinality of this set is

 Ku = maxfk|�u(k,R) � rd(u)g,  (21.10)

where  rd(u) 2 [0, 1)  denotes the user- specific preference distortion tolerance, an 
upper bound on user preference distortion in (21.4) that should not be exceeded 
for any user. Our formulation implies that the system could provide users with the 
opportunity to determine themselves how much distortion tolerance they are willing 
to tolerate. Inequality (21.7) reflects the cache storage capacity constraint, whereas 
equalities (21.8) ensure that exactly R  items are recommended to every user.

21.3.1  Problem complexity and approximability properties
We refer to the problem (21.6)–(21.9) as the Joint Caching and Recommendations 
Problem (JCRP). In [1] we prove that:

Proposition 1. The Joint Caching and Recommendations Problem is NP- complete.

As a first step towards an efficient approximation algorithm, we investigate the 
monotonicity and submodularity of the  JCRP  ( JCRDP ) objective function. We 
recall the relevant definitions in what follows. Let  S   be a finite set of elements (inter-
changeably called universe or ground set) and  S  , Y   any two subsets of  S   satisfying 
 X � Y � S  . A set function  f : 2S ! R  is called monotone if  f(X) � f(Y),8X, Y � S.  
Moreover,  f   is called submodular, if for any element  e 2 S \ Y  , it holds that 
 fX(e) � fY(e),  where  fA(e) = f(A [ e) � f(A) . Namely, the extra marginal benefit 
from adding an item to a set decreases as this set grows larger. Similarly,  f   is called 
supermodular, if for any element  fX(e) � fY(e), , it holds that  fX(e) � fY(e).  In [1] we 
prove that:
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Figure 21.3  Schematic outline of the three- step algorithm for the JCR problem

Proposition 2. The objective function of JCRP is non monotone.

Proposition 3. The objective function of JCRP is neither submodular nor 
supermodular.

Hence, more general techniques that yield approximability guarantees for opti-
mization problems with (monotone) submodular objective functions, and have been 
often applied to caching problems, are not applicable to the  JCRP .

In the following section, we propose an efficient heuristic algorithm for solv-
ing the JCRP. Although the algorithm does not lend to rigorous approximability 
analysis (section 21.4.2), it is computationally simple (section 21.4.1) and exhibits 
excellent performance (section 21.6).

21.4  An algorithm for the joint caching and recommendation 
problem

21.4.1  Description of the algorithm
Our Caching- aware Recommendations (CawR) algorithm (see Algorithm 1) pro-
ceeds in three steps, as shown in Figure 21.3.

In the first step, a provisional set of recommended items  RC in
u   is derived for each 

user. Input to this step are the content preference probability distributions of users. 
Recommendations are made for the top-R  items in the user preferences but, contrary 
to what would happen with a typical recommender system, these recommendations 
are not communicated to the user; they are only relevant as intermediate result of the 
algorithm’s operation.

The second step is the content placement step, where we determine which con-
tent should be cached. To this end, we compute the content request probabilities 
according to (21.2), (21.3). All content items are assigned utilities that equal the 
aggregate request probability they attract:

 
v(i) =

X
u2U

preq
u (i) i 2 I .

  
(21.11)
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The optimal placement is then an instance of the 0- 1 Knapsack Problem (KP). 
We use the Dynamic Programming (DP) Fully Polynomial Time Approximation 
Scheme (FPTAS) algorithm in ([10], §8.2) to obtain an  (1 � "), " > 0  approximation 
of the optimal solution; let P   denote this placement.

Finally, in the recommendation amendment step, the original recommendations 
to users are amended so as to maximize the utility (i.e., expected attracted requests) 
of the cached content. To this end, we first identify for each user  u  the set of  Ku  items 
in her recommendation window from (21.10). Then we compare the item sets P   and 
 RC in

u  . Two possibilities exist:

 • If  RC in
u � P  , then the original recommendations derived in the initialization 

step remain intact (and the resulting user preference distortion is zero).
 • If  |RC in

u

T
P | = F1 2 [0,R � 1] , then the F1 items that appear in both 

sets are retained in the final recommendation list;  F = minfR � F1,F2g,
  F2 = |(Wu \ RCin

u )
T

P | , most preferred cached items appearing in the recom-
mendation window of  u  (but not in the recommendation set derived in the first 
step), are added to the recommendation list for  u , replacing the bottom-F   items 
in  RC in

u  ; and, if there is still space ( F1 + F < R ), the remaining recommendations 
are made for the  (R � F1 � F)  least popular items out of the  (R � F1)  remaining 
(non- cached) items in  RC in

u  .

The final set,  RC f
u , of R  items that are recommended to user  u  are in general 

different from the equal- size provisional set  RC in
u   derived in the first step. Since the 

values of  prequ   after the recommendation amendment step are different, one might 
think that the algorithm returns to the content placement step and runs another round 
of steps 2 and 3. However, in [1] we prove that this algorithm terminates in a single 
round:

Proposition 4. CawR terminates after a single execution of the recommendation 
amendment step.

Hence, the algorithm essentially determines the cache placement on the basis 
of the original recommendations to users (with zero user preference distortion). 
Then, it selectively changes recommendations to nudge individual user preferences 
towards content that attracts demand from the overall user population. This way, 
the utility of the cached content, i.e., the demand it attracts, grows and the expected 
cache hit ratio increases.

In the toy example of Figure 21.1, CawR first sets the provisional recommenda-
tion list  RCin

u   to the  Wu  most preferred items for every user, as highlighted in the 2nd 
column. The resulting demand distributions are shown in the 3rd column. These rec-
ommendations are not shown to the end- users. In the second step, CawR computes 



594 Edge caching for mobile networks

the utility of each item from (21.11) and caches items A,C,D. In the final step, CawR 
compares the recommendation window  Wu  of each user  u  with  fA,C,Dg  and deter-
mines the final lists of recommendations  RC f

u , which are issued to the users. In our 
case,  Wu1 = fA,B,C,Dg ,  Wu2 = fA,C,D,E,Fg , and  Wu3 = fA,B,C,D,Eg , respec-
tively. The sets  RC f

u  are those highlighted in the 4th column in Figure 21.1. The 
cache hit ratio without recommendations is 0.58. When recommendations are issued 
for the top- 3 items in users’ preferences (3rd column), the cache hit ratio drops 
to 0.55, because non- cached items are recommended. On the contrary, when rec-
ommendations are issued for items that are both cached and of adequate interest 
to users, yet not necessarily within the top- 3 set (4th column), the cache hit ratio 
increases to 0.67.

21.4.2  Complexity of the CawR algorithm
In the first step, our algorithm sorts the list of the items and finds the most preferred 
ones for each user at time  O(|U | � |I | � log |I | + |U | � |I |) = O(|U | � |I | � log |I |).  In the 
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second step the algorithm computes a utility for every item and then uses the DP FPTAS 
algorithm for the 0- 1 KSP. This implies a complexity of  O(|I | + |I | � |P |) = O(|I |2)  
since the cache capacity is upper bounded by the total catalog size. In the third 
step, the algorithm compares the items within the recommendation window of each 
user against the cache placement to define the final recommendations, leading to 
 O(|U | � maxu(|Wu|) � |P |) . Since the size of the recommendation window is natu-
rally bounded by the catalog size, the total computational complexity of CawR is 
bounded by O(|U | � |I |2). 

In the two sections that follow, we draw on both analysis (21.5) and simulations 
with real and synthetic datasets (21.6) to gain further insight to the properties of the 
proposed algorithm.

21.5  Properties and performance bounds of our algorithm

In this section, we compare the performance of our algorithm to benchmark recom-
mender schemes and analyze its sensitivity to the maximum distortion tolerance 
parameters,  frd(u)g  and the user content preference distributions,  fpprefu g .

21.5.1  Benchmark recommender schemes
We consider three alternative schemes for determining which content to cache and 
which to recommend to each user. They serve as plausible comparison references for 
our algorithm and help set bounds for its performance.

Zero- distortion (ZD) scheme. The scheme recommends to each user the top-
 R  items in her preferences and caches the  C   items attracting the highest aggregate 
demand, after accounting for the impact of recommendations. Hence, the recom-
mendations follow precisely the user preferences, in line with what recommender 
systems nominally do, and the cache placement adapts to them.

Unbounded- distortion (UD) scheme. This scheme ranks items in order of 
decreasing aggregate demand over all users, after taking into account the factors 
 (1 � wr

u)  that weigh users’ original preferences. It then caches the top- C   of those 
and recommends to all users the same top-R  items. Contrary to the ZD scheme, it is 
now the cache placement that determines the individual recommendations, catering 
for no bounds on the resulting distortion of the inherent user preferences. In [1] we 
prove that:

Proposition 5. When recommendations follow assumptions 21.2.1 and 21.2.2 
and the user preference distortion tolerances are relaxed,  Wu � I, 8u 2 U   in 
(21.6) and (21.8), the UD scheme is the optimal solution to the JCRP.

Least Frequently Used (LFU) caching algorithm. The algorithm caches 
items that attract the maximum aggregate demand over all users, but it does not 
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recommend anything to them. It is known that LFU maximizes the cache hit ratio 
for a single cache in the absence of recommendations.

Denoting the expected cache hit ratio each scheme achieves by  Hs, s 2 f ZD, 
UD, CawR g , we can show that

Proposition 6. The expected cache hit ratios achieved by the three schemes that 
issue recommendations satisfy:

 HZD � HCawR � HUD.  (21.12)

Thus, the performance of the unbounded- and zero- distortion schemes set an 
upper and a lower bound, respectively, for what is achievable with CawR. Notably, 
due to Prop. 5,  HUD  sets an upper bound to the cache hit ratio under the optimal 
algorithm,  HOPT  , for the JCRP (when the distortion constraints are not relaxed), and, 
eventually, for the cache hit ratio achieved by the CawR algorithm. Namely

 HCawR � HOPT � HUD.  (21.13)

It is less intuitive how LFU compares with the three schemes issuing recommenda-
tions since they weigh the inherent user content preferences with factors  (1 � wr

u)  to 
determine the cache placement. We explore these comparative relationships as well 
as the tightness of the bounds in (21.13) with numerical simulations in section 21.6.

21.5.2  Sensitivity analysis to parameters of CawR
21.5.2.1  Monotonicity and submodularity of  HCawR  with respect to the 

distortion tolerance parameters
The parameters { rd(u)g, u 2 U   in CawR control the amount of distortion that is 
tolerated with respect to the original user content preferences. Higher  rd(u)  val-
ues imply larger  Wu  sizes, as can be seen from (21.4), and higher chances to find 
cached items in them. This is interpreted into higher cache hit ratio when at least 
one of the currently issued recommendations is for a non- cached item. In that 
case, CawR can replace its recommendation(s) for one (or more) of these items 
with recommendations for one (or more) of the cached items that are included in 
the enlarged  HCawR .

Proposition 7.  HCawR  is a monotonically increasing function of the distortion 
tolerance parameters  frd(u), u 2 Ug.  .

Less strict claims can be made about the submodularity  HCawR  of with the  frd(u)g  
parameters [1].
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21.5.2.2  Sensitivity of  HCawR  to the individual user content preferences
Although the exact values of  HCawR  and  HCawR  may vary widely depending on the 
user content preference distributions,  fppref

u , u 2 Ug , we can state that:

Proposition 8. As the individual content preference distributions become more 
skewed,  HZD  and  HCawR  tend to converge with each other.

The key remark is that as the distributions  fpprefu g  become more skewed, the 
recommendation windows become smaller. Therefore, the additional flexibility of 
CawR in selecting items to recommend tends to vanish and its recommendations to 
the users coincide with those of the ZD scheme. In fact, the recommendations of the 
two schemes exactly coincide when  Ku = R .

21.6  Experimental evaluation of CawR

21.6.1  Datasets and default parameter settings
We use both synthetic and real datasets [11] to derive the user and item feature vec-
tors,  fu u 2 U   and  fi i 2 I  , respectively, and then infer the user content preference 
distributions  pprefu   (see section 21.2). The purpose of using real datasets is three- fold: 
(a) to show how our model of user preferences and content items can be informed 
by real data; (b) to drive a more “realistic” evaluation of the cache hit ratio CawR 
achieves; and (while doing so) (c) to validate the theoretical claims made in section 
21.5. With synthetic datasets, on the other hand, we can control the experimentation 
settings and analyze the sensitivity of our algorithm to important variables such as 
the (dis)similarity of content preferences across users. Experiments were performed 
with the MovieLens dataset as well as with synthetic datasets.

MovieLens dataset [11]: We analyze different samples of 700 users and 
10.000 items of the catalog. Each of these movies is described by  M = 19  thematic 
tags, i.e. the feature set contains 19 themes. In populating our model, we draw 
on the fact that a user did rate a specific item, rather than the actual rating she 
assigned to it. More specifically, the item tags are directly used to generate the 
item- feature vectors, as described in Example 1. Then, if  Ir(u)  is the set of items 
that user  u  has rated, we estimate the element  fu(j) ,  j 2 [1,M] , of user’s  u  feature 
vector as in Example 2.

Synthetic datasets: In this set of experiments, the elements of the two vectors 
are populated with values drawn from random probability distributions, by default 
from the standard uniform distribution. The default parameter values for simulations 
with synthetic datasets are  |U | =150 users,  |I | =1000 items and  M = 8  thematic areas.

For simulations with both types of datasets, the normalized item size  Li  is 
sampled from a discrete uniform distribution  j 2 [1,M] , with default  Lmax = 4 . Our 
baseline assumption is that recommendations provide all  |U |  items in the list with 
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Figure 21.4   Experiments with MovieLens traces. Cache hit ratio, H, capacity 
for different number of recommended items, R . UD (dotted line) and 
LFU (dash- dot line) are not affected by R , solid lines correspond to 
CawR and dashed ones to ZD.

an equal boost  precu (i) = 1/R,  which fades out with R . The intuition is that the fewer 
the recommendations are, the less cognitive load they demand from users to process 
them, and the more significant their impact is on the eventual user content requests. 
This assumption is more realistic for users accessing content from large- display 
devices, where it is more comfortable to scroll down the recommendations’ list.

The choices of user recommendation weights, R , are aligned with experimental 
evidence in [5], according to which YouTube users request one of the top 10 recom-
mended items with a probability that varies in [0.5, 0.7]. Thus, in our experiments 
the user recommendation weights are sampled from  U(0.5, 0.7) .

21.6.2  Trace-Driven simulations
Figure 21.4 and 21.5 validate the performance bounds we found analytically for the 
cache hit ratio under CawR in section 21.5. The extent to which these bounds are 
tight depends on the number of issued recommendations per user, R , and the prefer-
ence distortion tolerance parameter, rd.

The impact of the number of recommended items on cache hit ratio: On 
the one hand, R  does not affect the performance of UD and LFU schemes. On the 
other hand, the achievable cache hit ratio under CawR and ZD deteriorates with 
higher R  values. Intuitively, as the recommendation effect is spread across more 
items, some of it is wasted because it gets harder to find R  cached items within the 
users’ recommendation window (in the case of CawR) and among the top- R items 
in their preferences (in the case of ZD). Hence, the upper bound becomes looser 
as the number of recommendations grows. Interestingly, so does the lower bound 
when the relative gain of CawR over the zero- distortion scheme grows with R . This 
is the case as far as the size of the recommendation window size  Ku  is higher than 
 R  so that CawR has higher chances to find a cached item to recommend. For  R = 10  
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Figure 21.5   Experiments with MovieLens traces. Cache hit ratio, H, capacity 
as a function of the preference distortion tolerance, rd (identical for 
all users). Dotted and dashed lines correspond to the UD and ZD 
scheme, respectively. The four intermediate curves correspond to 
CawR.

and rd=0.01, ZD performs up to 16.6% worse than CawR in terms of cache hit ratio, 
especially for really small instances of cache capacity (Figure 21.4a). For rd=0.1, 
this gap grows to 121% (Figure 21.4b). At the same time, CawR reaches the 96% 
and 97% of the performance of the UD scheme, for rd=0.01 and rd=0.1 respectively, 
and realistic cache capacities (Figure 21.4a-21.4b). An alternative way to quantify 
the benefits of our algorithm is by looking into cache capacity requirements. For 
rd=0.01, ZD needs up to 35% more cache capacity than CawR to reach the maximum 
achievable cache hit ratio when R =10 (Figure 21.4a). For rd=0.1, this value climbs 
to 147% (Figure 21.4b). In all cases, the LFU scheme is significantly outperformed 
by schemes that use recommendations.

The impact of the preference distortion tolerance, rd  , on cache hit ratio: 
This enhanced flexibility of CawR is also the reason why it approaches the upper 
bound faster (i.e., for smaller cache) when rd=0.1 (Figure 21.4b), increasing its 
advantage over the ZD scheme that is insensitive to rd.

The only scheme that is affected by the preference distortion tolerance param-
eter is CawR. Higher values of rd provide the scheme with more flexibility in 
recommending items that are simultaneously parts of the cache placement and 
the user recommendation windows. Hence, as can be seen in Figure 21.5(a- b), 
but also in Figure 21.4(a- b), the CawR performance increases monotonically with 
rd moving away from its lower bound (ZD scheme) towards its upper bound (UD 
scheme). Indicatively, for  rd = 0.01  and  rd = 0.1 , we evidence with CawR cache 
hit ratios up to 71% higher than those under the ZD scheme at very small caches 
(Figure 21.5a). The respective performance gain increases to 121% for  R = 10  
(Figure 21.5b).
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Regarding cache capacity requirements, even for distortion tolerance values 
smaller than  rd = 0.01  and  R = 3 , CawR needs up to 35% less storage capacity to 
converge to the upper bound confronted to the ZD scheme. This gain escalates up to 
65% when  rd = 0.1  (Figure 21.5a).

The impact of cache capacity, catalog size, and number of users on cache 
hit ratio: A final set of experiments with the MovieLens traces addresses basic scal-
ing properties of the algorithm, i.e., how the cache hit ratio varies as a function of 
the content catalog size, cache size, and population of users. They report the positive 
impact of ratio 

 
˛ = cache capacity

catalog size = C
|I| 

 on the cache hit ratio. We further notice that 
the CawR and the ZD schemes approach the hit ratio of the UD scheme slower when 
compared to a system with fewer items. Related figures can be found in [1].

21.6.3  Simulations with synthetic datasets
In this subsection, we explore how the performance of our algorithm is affected by the 
sensitivity of users to recommendations and the heterogeneity in their content preferences.

User recommendation weights: In the experiments of this subsection we con-
sider two scenarios for the range of the user recommendation weights  wr

u  in (21.3), 
namely  wr

u 2 [0, 0.2]  and R . The achieved cache hit ratio for each scenario is shown 
in Figure 21.6.

As is expected, for small recommendation weights, the cache hit ratio under 
all recommendation schemes is small and comparable to that achieved under the 
recommendation- agnostic LFU scheme. However, CawR remains attractive when 
cache space is a concern. With storage spaces smaller than the 5% of the total cata-
log size, CawR scores similarly to the ZD scheme, needing up to 35% less cache 
capacity. Compared to the UD scheme, CawR reaches the 89% of the performance 
of the UD scheme, performing always more than 14% better than ZD.

On the contrary, for larger recommendation weight values, UD, ZD and CawR 
schemes differ more clearly from each other. The cache hit ratio under CawR is 33% 
higher than under ZD, for modest cache capacities in the order of 2% of the catalog 
size. In terms of cache capacity, CawR equals ZD needing up to 32% less cache 
capacity even for capacities lower than the 2% of the total catalog size. Compared 
to the UD scheme, for high recommendation weights, CawR reaches the 97% of the 
performance of the UD scheme, performing always more than 6% better than the 
ZD scheme. Overall, Figure 21.6 indicates that the more users assign importance to 
recommendations made to them, the higher the advantage of our algorithm over the 
“honest” recommendation scheme.

Heterogeneity in user content preferences: Due to space limitations, this sec-
tion is briefly presented. For a more detailed presentation of the results regarding the 
heterogeneity in user content preferences, the interested reader may see [1].

The heterogeneity in user content preferences can manifest itself in multiple 
ways. To control heterogeneity, we generate the user content preference distribu-
tion as a convex combination of two distributions: a user- specific component  pegou  , 
which is modeled as described earlier in section 21.2.2; and a second user- agnostic 
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Figure 21.6   Experiments with Synthetic datasets. Cache hit ratio capacity 
as a function of user recommendation weights, R=10, rd=0.01, 
 
ˇ̌
I

ˇ̌
= 1.000  items. Dotted lines correspond to the UD scheme, 

dashed lines to ZD, dash- dot lines to LFU, and solid lines to the 
CawR.

probability distribution,  weu = 0 , which is modeled after a Zipf distribution, in line 
with experimental evidence [12].

We have experimented with different values for  wue  , concluding that for  weu = 0  
the three schemes that issue recommendations collapse to one. Moreover, the total 
achieved cache hit ratio is higher when the content preference distributions are 
homogeneous ( weu = 0 8u 2 U  ). Moreover, we experimented with the impact of the 
content preference distribution. Namely, we let various Zipf and uniform distribu-
tions serve as the user content preference distributions, permuting the order of items 
for each one of them. We confirm that the performance of CawR, much as that of 
other caching schemes, is quite sensitive to the shape of the original user content 
preferences, which set hard bounds on what is achievable. Our results are inline with 
the previously proposed Propositions.

21.7  User associations as additional control parameter: 
extending the model

Until now, our analysis has assumed that the associations of users to small cells 
are driven by physical proximity and radio signal quality considerations, in line 
with current practices in mobile cellular networks. As a result, the caching and 
recommendation decisions are taken independently in each cell, as detailed in 
section 21.4.
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However, both in current generation cellular systems and, even more, in the ultra 
dense radio network architectures envisaged for 5G and beyond systems [13], users 
have the choice to associate with multiple different cells. Controlling then which 
users are associated with each cell and which content is stored at each cell- colocated 
cache may offer additional degrees of freedom when trying to satisfy locally the 
user demand for content and alleviate the load on the backhaul links. While recom-
mendations shape the individual user demand, the user associations intervene on its 
spatial distribution across the radio network.

In principle, the two mechanisms may be exercised over different time scales. 
For instance, with online caches the cache placement may be reiterated upon each 
and every content item request by a user. Alternatively, the cached content may be 
determined periodically (e.g., every day or half a day) out of estimates for the local 
content demand and remain fixed for the respective interval of time. On the other 
hand, a new user association to a small cell may let its cache intact or trigger changes 
that budget for her individual content demand distribution.

In general, the more aggressively the network carries out these control func-
tions, the better the performance it can achieve (smaller content access delay on the 
user side, offloading of mobile backhaul) at the expense of computational resources. 
More recently, in light of the disruptive network capacity and latency targets adver-
tised by 5G cellular networks [14], the wireless community has been investigating 
scenarios of joint content caching and user association, where the stored content 
across the network small caches and the associations of users to small cells are 
simultaneously determined [15–17]. Putting this into the context of real mobile net-
works, it essentially implies that the cache placements and user associations are 
revisited every time a new user joins the network associating with a cell. We expand 
on this thread adding the recommendation dimension to the problem and explore 
how these three control mechanisms, i.e., content caching, recommendations and 
user associations can be jointly tuned to enhance the network performance.

21.7.1  Model extension
We consider, as before, a two- layer heterogeneous network with cache- enabled 
small cells: multiple Small Base Stations (SBSs) and a Macro Base Station (MBS). 
A user can be associated either to one SBS  Bc, , or to the MBS M  . The association 
of a user to an SBS is the preferred alternative since it can exploit the capacity and 
caching capability of the SBSs more efficiently, preserving the radio resources of the 
macro cell. Nevertheless, a user can always associate with the MBS, as a fallback 
solution, when the association to an SBS is not feasible. At any given time slot, each 
user  u 2 U   is located within the range of a different subset of SBSs. We define as 
 N (u)  the “neighborhood” of user  u , the set of cells user  u  can be associated with. 
Each SBS can serve a set of mobile users within its range, while the MBS can serve 
the users within range of any SBS. Each cell  c  has a limited service rate,  Bc,  split 
among all user devices associated with it. A minimum downlink data rate is guaran-
teed to each user  u,  incurring an association cost  bcu  for her association to cache  c . 
This cost is strongly related to the physical distance between the user and the cell. In 
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fact, a more distant user generates higher association cost in terms of transmit power 
for the cell, network interference or even power consumption (for her own device). 
Thus, the number of users that an SBS can serve is limited by the aggregate asso-
ciation cost, which should not be higher than  Bc , for all cache- enabled SBSs  c 2 C .

21.7.2  The Joint Caching, Recommendations and Association 
problem

The objective of the Joint Caching, Recommendation, and Association (JCRA) prob-
lem is to maximize the portion of total demand that can be satisfied by all caches, 
assuming also control over the user association process. Let  fxuig ,  fyicg  and  fzcug  be 
three sets of binary decision variables, with  xui = 1  if item  i  is recommended to user 
 u  and  xui = 0  otherwise;  yic = 1  if item  i  is cached in cache  c  and  yic = 0  otherwise; 
 zcu = 1  if user  u  is associated to cache  c  and  zcu = 0  otherwise. Then, reusing the 
notation in section 21.3, the JCRA problem is formulated as:

 
max
y,x,z

X
u2U

X
c2C

X
i2;I

yiczcu(xuipreq
u (i) + (1 � xui)epreq

u (i))
  

(21.14)

 
s.t.

X
i2I

yicLi � Sc, 8c 2 C
  

(21.15)

 

X
u2U

bcuzcu � Bc, 8c 2 C
  

(21.16)

 

X
c2N (u)

zcu � 1, 8u 2 U ,
  

(21.17)

 xui = 0, 8i … Wu, u 2 U ,  (21.18)

 

X
i2I

xui = R, 8u 2 U
  

(21.19)

 yic, xui, zcu 2 f0, 1g, u 2 U , i 2 I, c 2 C,  (21.20)

Constraints (21.15) and (21.16) reflect the cache storage and service cost constraints 
for each cache, respectively. Constraints (21.17) capture the unique association of 
users either to cells in their neighbourhood or to the MBS. Constraints (21.18) and 
(21.19) ensure that the content items recommended to each user are always within 
her recommendation window and that exactly R  items will be recommended to her, 
respectively.

Controlling the user- to- cache association creates an additional optimization 
potential. However, it makes the (already difficult) optimization problem even more 
difficult. In [3], we use generalization arguments to prove that:

Proposition 9. The Joint Caching, Recommendations and Association problem 
is NP- hard.
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21.7.3  Heuristic algorithms for the JCRA problem
We present two heuristic solutions to the JCRA problem. The core of both algo-
rithms is the same, i.e., an iterative process for jointly determining the user asso-
ciations to the small cells and the content to be stored at the small cell caches (see 
section 21.7.3.1). What changes between the two algorithms is the way recommen-
dations are introduced.

The first heuristic proceeds in three phases:

1. Initialization phase:
(a) At each SBS, assume that all users within its range are associated with it.
(b) Determine the cache placements at the SBSs caches by solving inde-

pendent instances of the 0- 1 KP, where the utilities of content items equal the 
aggregate user demand they satisfy if honest recommendations are issued to 
users (ref. section 21.4,  rd = 0 ).

2. Iterative phase: Until the cache hit ratio in (21.14) is no further improved do:
(a) Given the cache placements determined in (1b), update the user asso-

ciations at each SBS solving an instance of Generalized Assignment Problem 
(GAP). Users correspond to items and cells to bins, the cell- specific user costs 
are the association costs  c  and the cell- specific user profits are the user demands 
covered by the current cell cache placement assuming honest recommendations.

(b) With the new user associations computed in (2a), recompute the content 
item utility values and solve anew the  C  0- 1 KP instances for each SBS assum-
ing honest recommendations.

3. Recommendation amendment phase: Adjust recommendations to be both within 
each user’s recommendation window  zcu = 1  and the cache placement at the cell 
of user’s attachment. The user associations and the cell cache placements are 
the outputs of the last iteration in (2a) and (2b), respectively.

This heuristic mimics the rationale of the CawR scheme in Algorithm 1. 
Namely, it uses honest recommendations, corresponding exactly to the user content 
preferences, as an intermediate step to determine the cache placements (here, also, 
the user associations). It then amends the recommendations in line with the cache 
placements to boost the portion of demand that can be locally served by the small 
cell caches.

An apparent alternative would be to not account for (honest) recommendations 
at all in the first and second phase of this heuristic and only derive them once as 
part of the third phase, after the iterations for the determination of cached content 
and user associations terminate. With this second heuristic, recommendations are 
caching- aware and still boost the part of user content demand that can be satisfied 
locally. Yet, they do not have an impact on what is eventually cached at the small 
cells and who are the users served by each of them.

Both heuristics demand an algorithmic solution for the intermediate joint con-
tent caching and user association problem. We turn to this problem next.
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Table 21.2  Accuracy of the iterative heuristic

Comparison Scenario
var Users
random demand

var Users 
Clustered 
demand

var Items 
random demand

median Δ H(G) 0.001(0.2%) 0(0%) 0.004(0.81%)
95th perc. ΔH(G) 0.097(17.7%) 0.1(14.2%) 0.081(13.3%)
max ΔH(G) 0.161(29.2%) 0.21(25%) 0.189(35.2%)

21.7.3.1  The Intermediate Joint Caching and Association problem
The intermediate Joint Caching and Association (JCAP) problem results from the 
JCRA problem when omitting the recommendation- related variables and constraints.

 
max
y,z

X
u2U

X
c2C

X
i2I

yiczcuppref
u (i))

  
(21.21)

 s.t.(21.15), (21.16), (21.17)  (21.22)
 yic, zcu 2 f0, 1g, u 2 U , i 2 I, c 2 C,  (21.23)
JCAP is an instance of bilinear programming, a special class of non- convex qua-
dratic programming. To show that it is NP- hard, it suffices to remark that when we 
fix variables  fyicg , we get the generalized- assignment type problem first treated in 
[18]. This problem is equivalent to the maximum GAPe, where SBSs correspond to 
agents (knapsacks) and users to jobs (items) with agent- specific requirements  fbucg  
and profits 

 
f
P
i2I

yicpprefu (i)g, c 2 Nu
 
. Since the maximum GAP is an NP- hard prob-

lem, the generalization (JCAP) of its equivalent problem in [18] is NP- hard as well. 
We tackle this problem in [20] and [21], but due to space limitation we will restrict 
our presentation to the first.

In [20], we propose an iterative algorithm for solving JCAP that corresponds 
to the first two phases of the heuristic for the JCRA problem (see section 21.7.3), if 
recommendations are let aside. We first prove its correctness and discuss its com-
putational complexity. Then we proceed in a two- phase evaluation of the algorithm. 
In the first phase, we consider small problem instances and compare it against the 
optimal solution, as this can emerge from linearization techniques and use of stan-
dard ILP solvers. Table 21.2 gathers statistics on �H  , the empirical gap between the 
cache hit rates achieved by the two solutions and  G = �H

HRopt
x100% , the percentage 

ratio of �H   to the optimal value. The median of  G  over all experiments is practi-
cally 0% and the two solutions coincide in more than half of the experiments under 
two scenarios for the content demand distribution across the network: uniform at 
random and with strong spatial locality properties.

e The inequalities in (21.17) are replaced by equalities in the maximum GAP. The equivalence of the two 
problems is shown in e.g., [19], pp. 190- 191
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Figure 21.7   Comparison of the three heuristics as a function of the number of 
users: I  =1000,  C  =20,  Bc =200,  lmax =12,  bmax =20

In a second phase, we consider more realistic problem instances and compare 
the heuristic against simpler algorithms for tackling the user association and con-
tent caching tasks: a greedy- like algorithm and another heuristic, called Decoupled, 
which decouples the user association decisions from the content caching ones and 
tackles user associations first.

Of particular interest are the experiments that look into the sensitivity of the 
algorithms to the existence or not of spatial locality in the content demand. Under 
no spatial locality, the decoupled heuristic competes with our iterative heuristic, and 
even slightly outperforms it for high numbers of users, as shown in Figure 21.7a. 
At those user levels, the decoupled approach can match all users to SBSs, whereas 
our iterative heuristic is forced to associate a few with the MBS. The non- satisfied 
demand of these users corresponds to the marginal performance gain of the decoupled 
heuristic. The greedy heuristics cannot compete with either of the two alternatives.

When there is spatial locality, the performance of all three heuristics improves 
(Figure 21.7b). In this scenario, it matters more which users will be grouped in a cell 
rather than how many. Factoring the content preferences of users in its decisions, 
the iterative heuristic clearly outperforms the decoupled one. This performance gain 
fades out as the number of users grows since the latter manages to squeeze more 
users in small cells. For more details on the performance characteristics of the itera-
tive heuristic, the interested reader is referred to [20].

21.8  Open directions

Understanding the precise way recommendations shape individual content prefer-
ences is a research thread per se, mainly pursued in the context of marketing and 
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recommender systems. An open research direction consists in translating these 
largely experimental findings into solid models and validating the presented findings 
with them as starting points. This should address the human behavior heterogeneity, 
possibly leveraging data- driven machine learning techniques and principles from 
behavioral science.

In this chapter, we considered one round of interaction between the users and 
the system. An interesting extension would be to consider how the dynamics of this 
interaction evolve in the long- term under such recommendations, addressing aspects 
like the trust users build in the system and including possible system penalization 
(e.g., churn effects). In a fully transparent system, where users are aware of the 
nudging recommendation practices, users might even choose themselves and trade 
the distortion their recommendations will undergo.

Another direction is to consider that the different mechanisms (content cach-
ing, recommendations and user association) are controlled by different entities with 
opposing interests and objectives. For example, the recommendation is controlled 
by the content provider with the aim to maximize the user engagement and relevance 
of content recommended; the caching is controlled by the infrastructure provider 
with the aim to maximize hit ratio; and the association is controlled by the user 
to minimize the delivery delay or the energy consumption. Game- theoretical tools, 
either cooperative or not, could be used to describe such kind of scenarios, with each 
player holding her own objective.

21.9  Related work

Related works about the interplay between caching and Recommender Systems 
(RS) are divided in two main categories: RS are considered either as predicting tools 
in order to decide a better caching placement (e.g., [6, 22]), or as traffic engineer-
ing mechanisms, used as demand- shaping tools. In both categories, RS are used as 
proxies for inferring the content popularity. However, the last are distinctly different 
regarding the way they approach RS: not just as alternative predictors of content 
demand but also as demand- shaping tools that can actively be used to trade- off user- 
and network- centric performance objectives. In fact, their approach to increasing the 
utility of cache content could be seen as dual to the first: Rather than struggling for 
accurate predictions of the users’ demand for content, they nudge the users’ demand 
towards content items that are common in their preferences.

Due to space limitations, we will provide a taxonomy only for the second cate-
gory (Figure 21.8), in which our work has made significant contribution. We identify 
five key factors that differentiate existing works that use the RS as demand- shaping 
tools: Do they jointly optimize RS and caching decisions? How are recommenda-
tions accepted by users? Which is the RS mechanism they use to issue recommen-
dations? Do they take into consideration the general Quality of Service (QoS) that 
users will receive? Last but not least, are they concerned about the Quality of the 
issued Recommendations (QoR) and the ethics around “nudged” recommendations? 
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Figure 21.8   Taxonomy of works considering the interplay between RS and 
wireless caching. Solid lines under a category imply that all 
subcategories can be chosen (the various criteria that characterize 
works), while dotted lines imply that a work can belong only to 
one subcategory (either it considers uniform or position- dependent 
recommendation influence)

We briefly discuss these factors and their main subcategories, presenting some rep-
resentative works.

Joint or aware? Works are distinguished based on the relation of caching and 
recommendation decisions. The “soft cache hits” in [23] considers systems where 
users requesting uncached content are informed about cached content which is simi-
lar to their request, and systems where alternative content is directly delivered to 
them. For a given cache placement, the goal is to find a set of recommendations 
that will maximize the cache hit ratio. On the contrary, a cache placement is a priori 
given and only recommendations are decided for sequential recommendations in 
[24, 25] and list reordering [5] or rating shaping [8] are proposed, aiming at the same 
goal. The same in [26], aiming to the service cost minimization in P2P networks. We 
are actually different from this thread of works in jointly taking both recommenda-
tions and caching decisions.

Influenced by [5], in [2] we introduced a mathematical model that captures the 
coupling between caching decisions and personalized recommendations. Then [1, 
27–30], studied how to jointly take these decisions under different assumptions. In 
[3] the user- to- AP association is an additional decision taken jointly with the others, 
capturing the case of Telefonica, the giant network provider that also holds the huge 
Latin- American content provider Movistar. Works [31, 32] jointly consider recom-
mendation and content pushing decisions, while [33] considers coded caching and 
recommendations.

RS Impact. We consider two factors that characterize the impact of RS on 
the users’ final requests: The probability of acceptance of the recommendation 
and, if accepted, the distribution of the influence across various positions in the 
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recommendations list. Regarding the acceptance, in [26] it is assumed that users 
either accept the recommendation, or leave the system. Other works consider users 
that accept a recommendation with a user- specific [1–3] or universal [24, 25, 27, 
30, 34] probability if it is “good enough,” while in [23, 33] they accept it with a 
probability in any case, and in [35] this probability is learned. Regarding the impact 
after acceptance, in [2] we assumed uniform influence across items in the recom-
mendation list, while in [1] we introduced a model according to which the demand 
attracted by recommendations in a non- increasing function of both the item’s posi-
tion in the recommendation list and the number of recommended items, inline with 
experimental evidence [5] and providing insights about characteristics of the prob-
lem. Similar models are considered also in [3, 25, 29].

RS mechanism. Most of the works provide recommendations before the users’ 
requests, either as a recommendation list as described above, or by informing users 
about the cached content [35]. In [23] the authors recommend alternative cached 
content to users after their request for uncached content.

Quality of Service (QoS). The QoS is taken into consideration in [3] by con-
sidering that users receive content from a BS if the received SINR is greater than 
threshold, ensuring it as an embedded constraint in the optimization problem. In [29] 
the authors consider a probability of users offloading content from caches, based on 
their distances, while in [34] users are directly asked through questionnaires.

Quality of Recommendations (QoR) and ethics. We consider three factors 
that characterize the QoR: Appropriateness, personalization and transparency. 
Appropriateness is about being good enough and matching adequately the users’ 
preferences. Personalization is about taking into consideration the specific inherent 
preferences of the individual users when issuing recommendations, in contrast to 
issuing generic recommendations to all users in the system. These are not equiv-
alent: A recommendation can be personalized while not being adequate, e.g., by 
violating the user’s preferences over an accepted threshold. It can be appropriate 
for many users but not personalized, e.g., when issuing recommendations about the 
most popular items to all users. In that case, the recommendations will be adequate 
to the majority of users, albeit not personalized. Transparency is about being trans-
parent with the user, in anything that could violate their preferences. In both of the 
previous cases, recommendations can be non- transparent if users are not informed 
about their preferences’ violation.

In [26] and [8] these aspects are not taken into consideration: The authors in 
[26] propose to recommend content cached by peers and those in [8] to modify 
the ratings shown to users, without personalization or adequateness constraints. In 
[33], although the personalized model of [2] is adopted, the interplay with coded 
caching does not allow to consider the distortion of the users’ preferences in the 
issued recommendations. Some other works consider adequate but not personal-
ized recommendations. In [29], recommendations that are above a certain (global) 
threshold of quality, same for all uses in the system. Works [5, 23, 24, 27] and [26], 
indirectly consider a kind of adequateness in recommendations, in the sense that 
they recommend cached content similar to that requested by users, or reorder the 
recommendation lists of YouTube putting the cached on top of them [5]. However, 
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this item- item similarity- based approach does not necessarily lead to personalized 
recommendations. Moreover, it could end up recommending items from the same, 
very restricted, pool of cached items.

Our viewpoint to RS raises some concerns, not least ethical ones. To this end, 
in [2] we introduced a measure called preference distortion tolerance, to quantify 
and strictly bound how much the engineered recommendations distort the original 
user content preferences. The algorithm we proposed is essentially a form of light-
weight control over user recommendations so that the recommended content is both 
appealing to the end- user and more friendly to the caching system and the network 
resources. An important consideration of the conservative [1, 2] or more general 
[3] quality metrics we presented is that recommendations should be both personal-
ized and adequate, following their original reason of existence: to provide users 
with personalized, appealing content, in order to increase their overall satisfaction 
and engagement with the platform. Additionally, to the best of our understanding, 
discussion about ethics and transparency of network- related recommendations is 
only made in [1, 2] and [3], where both a bounded distortion from the users’ inher-
ent preferences is guaranteed and a preferences rank- preserving recommendation 
list is issued. By carefully nudging the individual user demand towards content that 
attracts preference from many users, the RS can result in higher cache hit ratios and 
enhanced QoE for users. Our results suggest that the proposed approach could yield 
significant gains for the network performance and the users’ satisfaction without 
disrespecting their individual preferences.

21.10  Conclusions

This thread of works is motivated by the trend that wants both content providers and 
network operators also assuming roles in content delivery by owning and managing 
content delivery networks. We have looked into the possible benefits that can arise 
for the end- users and the network when there is some coordination between recom-
mender systems and caching decisions. This coordination, at least in these works, 
implies that recommender systems actively engineer the recommendations issued 
to users in ways that enhance the caching performance. Practically, this engineering 
consists in recommending content that may not necessarily rank top in the inferred 
user content preferences but still score high in them. By carefully nudging the indi-
vidual user demand towards content that attracts preference from many users, the 
recommender system can result in higher cache hit ratios and enhanced QoE for 
end- users.

Practitioners in areas like e- commerce are more familiar with this demand- 
shaping (more broadly: behavior- shaping) dimension of recommendations. There 
is strong evidence that the willingness to consume can be affected by online recom-
mendations. Their manipulation there aims at nudging consumers to spend more on 
products and services. We rather advocate their “manipulation” for “good” purpose, 
as an additional network traffic engineering tool that can be used to jointly optimize 
or balance user- and network- oriented performance objectives.
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We have attempted to show this potential in the context of wireless networks 
with small cells. At the same time, we tried to explicitly and systematically address 
ethical concerns that are raised by this approach. Simulation results show that the 
proposed caching- aware recommender systems bring significant caching perfor-
mance gains that persist over a broad range of parameters for the diversity in users’ 
preferences, the capacity of caches, the number of recommended items and the con-
tent catalog size.

This chapter includes material from the following paper: “Jointly Optimizing 
Content Caching and Recommendations in Small Cell Networks,” IEEE Transactions 
on Mobile Computing, 2018. Reproduced by permission of IEEE.
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