
1Athens University of Economics and Business, Athens, Greece

Chapter 21

On the joint optimization of content caching
and recommendations

Livia Elena Chatzieleftheriou 1, Merkourios
Karaliopoulos 1, and Iordanis Koutsopoulos 1

Content caching has been experiencing revived interest within the context of current
and next generation wireless networks. It brings content closer to users, decreasing
the aggregate delivery costs and service delays for network providers. Recommender
systems have become integral components of content provision sites. They offer per-
sonalized recommendations, increasing the individual user satisfaction and engage-
ment with the content provider’s platform. Traditionally, caching and recommen-
dation decisions are taken separately. However, there is a recent persistent trend
where both network and content providers tend to deploy their own content delivery
solutions. In light of this, we explore how the phenomenally conflicting objectives
of content caching and recommendation can be jointly addressed.

In this chapter we approach recommender systems as network traffic engineering
tools that actively shape content demand to serve both user- and network- centric per-
formance objectives. We introduce a model that captures the coupling between caching
decisions and issued recommendations. Based on experimental evidence, we describe
the impact of recommendations on user content requests and present a systematic way of
engineering the user recommendations. Our viewpoint to recommender systems raises
some concerns, not least ethical ones. Hence, we introduce a measure called prefer-
ence distortion tolerance to quantify how much the engineered recommendations distort
the original user content preferences. We describe the “recommendation window” as a
way to controllably bound the distortion that recommendations will undergo and discuss
specific properties that the recommender system should have in order to ensure that
the “Quality of Recommendations (QoR)” is kept high by the issued recommendations.
We formulate a joint optimization problem for the content to cache and recommend to
each user, aiming to maximize the cache hit ratio. The preference distortion tolerance is
embedded as a constraint to this problem formulation and marks an equally important
dimension for assessing possible solutions. We prove that the problem lacks those prop-
erties that would guarantee its approximability, and devise a low- complexity practical

582 Edge caching for mobile networks

algorithm that solves it efficiently. The algorithm is essentially a form of lightweight
control over user recommendations, so that the recommended content is both appealing
to the end- user and more friendly to the caching system and the network resources. We
thoroughly evaluate it, by establishing its main properties and analytical performance
bounds. We conduct an extensive sensitivity analysis over various system parameters,
both analytically and through simulations with real and synthetic dataset. Next we extend
our model and approach for a system in which users can access content from multiple
caches, and analyse the intermediate joint caching and user association problem. We
then discuss open directions and provide a detailed taxonomy of the related work. Due
to space limitations, we do not provide proofs for our results. However, the interested
reader may refer to [1–3] for more propositions and their detailed proofs.

21.1 Introduction

Content caching has been experiencing revived interest in recent years within the
context of current and next generation wireless cellular networks. The soaring
demand for mobile video services pushes caching functionality towards the wire-
less network edge. Storing popular content at caches close to the user results in
enhanced Quality of Experience (QoE) for the end- users and smaller footprints of
the bandwidth- demanding mobile video traffic within the wireless network.

On the other hand, the technological advances have totally reshaped the nature
of multimedia services. The plethora of content made available to users creates them
discomfort: the users either find quickly something of interest, or they abandon the
service [4]. Nevertheless, the great variety of immediately available content should
turn to users’ advantage and recommender systems play a key role to this end.

Recommender systems have become integral components of content provision
sites. Their mission is to make personalized recommendations for movies, video
clips, music songs or other content items that best match the interests and pref-
erences of individual users. This improves the users’ satisfaction and boosts their
experience, increasing the number of content downloads and keeping them engaged
with the platform. For instance, the Related Video recommendations generate about
 30% of the overall views on YouTube [5], whereas the recommender system used
by Netflix is considered responsible for about 80% of the hours streamed at Netflix.
Moreover, the combined effect of personalization and recommendations saves
Netflix more than $1B per year [4].

Typically, the recommendation engine and the caches at the wireless network
are owned and managed by different entities. Recommender systems are controlled
by content providers through apps that interact with users, whereas the caching
infrastructure is typically possessed and controlled by the wireless network operator.
Content providers often insert servers storing content within other networks through
either their own or third- party Content Delivery Networks (CDNs). In mobile cel-
lular networks, in particular, these servers tend to be placed at their egress nodes
rather than at their edge.

On the joint optimization of content caching and recommendations 583

However, players with originally distinct roles in the business value chain,
such as access network operators and content providers, tend for some time now
to deploy their own content delivery solutions, albeit for different reasons. Content
providers seek to acquire better control of the network access infrastructure so as to
improve the QoE delivered to their subscribers. Netflix Open Connecta and Google
Global Cacheb are two widely known examples of CDN solutions owned by content
providers. Access network operators, on the other hand, deploy CDNs (telco CDNs)
to minimize costs related to the delivery of video traffic through external networks.
At the same time, by having storage servers closer to the end- users, telco CDNs can
provide their subscribers with faster content access and can gain an advantage over
their competitors in the pursuit of customers.

In the case of wireless networks, these trends motivate novel content provi-
sioning scenarios, whereby the coordination of (at least) three different mech-
anisms can enhance user- and network- centric performance measures. First,
content replication at the caches of different (small) cells can be used to maxi-
mize the locally served demand and optimize the access delays experienced
by users, hence their QoE. At the same time, caching reduces the traffic at the
backhaul links and maximizes the cache hit ratio. Secondly, routing user content
requests to different cell caches, it can balance the request load across caches,
again improving user QoE but also the network resource usage. Finally, recom-
mender systems can be carefully used to nudge users towards more network-
friendly content request patterns, i.e., they can shape content demand for the
benefit of the caching mechanism.

Motivation: Recommendations appear, thus, to have interesting repercus-
sions for the design of caching algorithms. Consider, e.g., a cell cache serving the
users who are associated with the cell. The rough idea is that the recommender
system does not necessarily issue recommendations for content that ranks as the
topmost relevant according to the recommendation algorithm; instead, it could
recommend to individual users cached content that still matches adequately with
their preferences and, at the same time, attracts strong demand from many other
users. Hence, anticipating that its recommendations affect the content access pat-
terns of users, the recommender system seeks to gently blunt some of the hetero-
geneity in users’ demands, thus aiming at higher caching efficiency and better
users’ QoE (Figure 21.1).

The possibility to route content requests through different (small) cells within
reach of the user adds further degrees of freedom to the problem. Besides which
content to store, the caching decisions concern where to store it. Hence, a joint
caching and recommendation algorithm could cache and recommend to a user
content items that rank second, third, or lower in her preferences, as long as these
items are in great demand in at least one of the cells that lie within the coverage
of the user. It would instead avoid caching and recommending an item that, say,

a openconnect.netflix.com/en/
b peering.google.com/

584 Edge caching for mobile networks

ranks first in the user preferences but is of no interest to other users in the cells
the user can associate with.

21.2 System model

We consider a wireless network with a set of small cells and a macrocell that work in
conjunction, forming a two- layer heterogeneous network. In current communication
networks, macro- and micro- cells are outdoor cells with a typical radius up to a few
kilometer and a few hundred meters, respectively.

Figure 21.1 Illustration of the system model and toy example. Caches are
co- located with small cells and serve users with content of their
preference. The example shows three users with their content
preference distributions (2nd column) over six items A–F (1st
column). The three items (A, C, D) that attract the highest aggregate
preference from all users are locally cached, yielding an expected
cache hit ratio of 0.58. Consider a recommender system issuing
content recommendations to users and a naive model for their
impact: When an item is recommended to a user the preference
(demand) for that item is boosted by 0.03. On the contrary, when
an item is not recommended to a user, the preference of that user
for this item decreases by 0.03. When recommendations are issued
for the top- 3 items in users’ preferences (3rd column), the cache hit
ratio drops to 0.55. When recommendations are issued for items
that are both cached and of adequate interest to users, yet not
necessarily within the top- 3 set (4th column), the cache hit ratio
increases to 0.67.

On the joint optimization of content caching and recommendations 585

21.2.1 Caches, content, users
Our model involves a set of caches C , a catalog of content items (video clips), I , and
a set of users, U (Figure 21.1) (Table 21.1).

Caches: Caches are co- located with wireless network microcells. Each cache
 c 2 C has limited storage capacity, Sc , which is measured in normalized file size
units. At any point in time, it stores a finite set of files, referred to as the cache place-
ment Pc . An additional cache is installed on the macrocell or the cloud, operating as
a backend server. This “cache” is assumed to have enough capacity to store copies
of the entire catalog.

Content: Content items are relevant to one or more of a set of U thematic
categories. The detail and resolution of this categorical separation may vary. Such
information may be stored in content metadata in the form of (hierarchical) tags. For
example, “soccer” may form a distinct category, but it may also be further split into
“English/French/Spanish soccer.”

The M thematic categories serve as a feature set that describes items.
Namely, each item i 2 I is represented by a feature vector fi , whose jth element
 fi(j), j 2 [1, ..,M] denotes the score of item i in feature j , i.e., how relevant is item i
to thematic category j . These relevance scores assume values in [0,1] and are nor-
malized so that

PM
j=1 fi(j) = 1, 8i 2 I .

Table 21.1 Notation table

Symbol Context Symbol Context

 Sc Storage capacity of cache c M Number of thematic categories

 Li Normalized length of item i aui Similarity of user u and item i
 fi Feature vector values of

content item i over the M
thematic categories

 fu Feature vector value of user u over
the M thematic categories

 p
pref
u

Inherent content preference
distribution of user u precu

Probability distribution due to
Recommendation

 p
req
u

Content item request
probability distribution
of user u (recommended
items)

 eprequ
Content item request probability

distribution of user u (non-
recommended items)

 R Number of recommended
items Wu Recommendation window of

user u
 Ku Length of Wu rd Preference distortion tolerance

 Hs Cache hit ratio under
scheme S

 P Cache placement

 RC in
u

Provisional set of
recommended items to u RC f

u
Final set of recommended items

to u
 ZD Zero- distortion scheme UD Unbounded- distortion scheme
 CawR Caching- aware

recommendations Scheme

586 Edge caching for mobile networks

The content catalog includes content items of different sizes, e.g.,entire movies
and their trailers. We denote by Li � 1 the normalized size of content item i , i.e.,
the ratio of its actual size over the smallest item size of the catalog. Indicatively,
consider the simple case where files come with only one resolution quality. Then,
 lmin = 100s and lmax = 100min = 6000s are typical values for the trailers’ and movies’
duration so that Li = lmax

lmin is in the order of 60c. Replicas of each content item may be
stored in any subset of the small cell caches, besides the backend cache, depending
on the actual caching decisions.

Example 1: Let the feature set be A = f Biography, Crime, Drama, Comedy,
Romance g , and the set of contents I = f The Godfather, The Irishman, Amélie g.
The “Godfather” falls under the Crime and Drama themes, the “Irishman” below
Biography, Crime and Drama, and “Amélie” falls under the Comedy and Romance
themes. Then, the feature vectors are fGodfather = [0, 0.5, 0.5, 0, 0], fIrishman = [0.33,
0.33, 0.34, 0, 0] and fAmKelie = [0, 0, 0, 0.5, 0.5]. Alternatively, the feature vectors
could be binary, so that a feature assumes the value 1 if a tag is relevant for the
movie, and 0, otherwise. For example, the binary feature vector for “Amélie” would
be fAmKelie = [0, 0, 0, 1, 1].

Users: At any point in time, each user u 2 U is located within range of a differ-
ent subset of the network (micro)cells. The user might access different content items
through different caches, each time dynamically changing her association depend-
ing on the requested content. In section 21.3, we assume that users do not change
their association point in the network dynamically in response to content requests,
while in section 21.7 we consider user association as an additional (indirect) road for
nudging users’ preferences on which we have control.

Users are described by similar feature vectors fu 2 [0, 1]M as the content items.
Each vector element fu(j), j 2 [1, ..,M] expresses how much user u is interested in
content classified under thematic category j . We normalize these values as well,
 i.e.,

PM
j=1 fu(j) = 1, 8u 2 U . Practically, content provision sites draw on the history

of users’ content downloads, and more broadly their interactions with the site such
as possible ratings of content items, to infer these vectors. We elaborate on this in
section 21.6.1.

Example 2: Consider the feature set of Example 1 and the set of users
 U = fu1, u2, u3g. A way to quantify the relevance of features for the users is to con-
sider the percentage of tags in the movies they rated. For example: fu1 = [0.6, 0.4, 0,
0, 0], fu2 = [0.2, 0.2, 0.2, 0.2, 0.2] and fu3 = [0, 0, 0, 0, 1].

21.2.2 Content preferences of users
The demand for content items is time- varying. It grows for some finite time after
the content item first becomes available for download, and then it gradually fades

c http://www.stephenfollows.com/long-average-movie-trailer, last accessed on Feb 20, 2019.

On the joint optimization of content caching and recommendations 587

out [6, 7]. Our work concerns time scales over which the demand for each item can
be considered “fixed,” in the order of a few hours within a day [8]. Namely, content
demand predictions and caching decisions are made once every such an interval, and
user content request patterns change slowly over that interval.

On the user side, we distinguish between inherent content preferences of users and
the eventually issued content requests by them. Hence, each user fu can be described
by a content preference distribution, ppref

u (i), i 2 I , with

P
i2I

ppref
u (i) = 1

, which captures

her original preferences over all items. The preference of user u for item i , ppref
u (i),

can be inferred from the feature vectors fu and fi . We use for this purpose the cosine
similarity index, aui , of vectors fu and fi. Note that other similarity measures could also
be applicable [9]. Then, the content preference distribution pprefu over all items is given
by:

ppref
u (i) = auiP

i2J
aui
, where aui =

MP
j=1

fu(j)�fi(j)
vuut MP

j=1
(fu(j))2

vuut MP
j=1

(fi(j))2
.

(21.1)

Example 3: Consider the item- feature vector of Example 1 and the user- feature
vector of Example 2. Then, the users’ inherent preferences for the movies “The
Godfather,” “The Irishman” and “Amélie” are: p

pref
1 = [0.38, 0.62, 0], p

pref
2 = [

0.33, 0.33, 0.33], i = [0, 0, 1].
However, the content that users eventually request also depends on the recom-

mendations issued to them, so that the probability with which user i requests item
 f(.) , prequ (i) , differs from ppref

u (i) . We describe our modeling approach to the recom-
mendations’ impact in the next paragraph.

21.2.3 The impact of recommendations on user content requests
The system recommendations affect the relative user demand for all content items. In prin-
ciple, they boost the demand for the recommended items and at the same time proportion-
ately decrease the demand for remaining items. It is less clear how recommender systems
quantitatively modulate the a priori preferences of a user pprefu so as to yield the ultimate
content request distribution prequ . Modeling in literature tends to be both intuition- and
evidence- driven. In [6], for example, the recommendations are mapped to a new distribu-
tion precu over the content items and prequ (i) is taken to be equal to max fpprefu (i), precu (i)g.
On the other hand, there is strong experimental evidence that both the number of recom-
mended items and their order within the recommendation list have a high impact on the a
posteriori distribution of the users’ demand. For instance, the “Related Video” recommen-
dation lists of YouTube is shown to be the main source of requests for its content, since
items ranked higher up in a list of recommended items attract more user interest than items
at lower positions [5]. This finding is more relevant for users that access content through
small form- factor devices such as mobile phones, in which case it is less convenient to
scroll down the whole recommendation list.

588 Edge caching for mobile networks

Hence, in modeling the impact of recommendations, we make two assumptions:

Assumption 21.2.1. The impact of a recommendation for item i on the demand
that is eventually expressed by a user u for this item is a non- increasing function
 f(.) of both the item’s i position in the recommendation list, rnku(i) 2 [1,R], and
the number of recommended items,

In section 21.6.1 we consider specific instances of R that satisfy this assump-
tion. For a more detailed discussion please refer to section 6.1 in [1].

Assumption 21.2.2. The content request distribution is a convex combination of
the two distributions, pprefu and precu and is given by

 prequ (i) = wr
u � precu (i) + (1 � wr

u) � pprefu (i) (21.2)

for each of the R items that are recommended to u , and by

 eprequ (i) = (1 � wr
u) � pprefu (i) (21.3)

for each one of the (|I | � R) items not recommended to user u. The user- specific
recommendation weights wr

u in (21.2) and (21.3) express the importance user
 u attaches to recommendations in the r- th position of their recommendation list.

Equations (21.2) and (21.3) capture the way recommendations shape content
requests that are ultimately issued by user u . The request probabilities are boosted
when compared to the initial ones for recommended items, and they decrease for
non- recommended ones, so that the resulting content request distribution remains a
probability distribution (see Figure 21.2).

21.2.4 Engineering the user recommendations
This capability of recommender systems to shape user demand for content renders
them a powerful tool for content demand shaping. This way, recommender systems
could be actively used to optimize network- centric performance objectives, in what
marks a departure from their nominal user- oriented mission. Our approach to this is
summarized in Figure 21.2 and described in what follows.

Assume that the recommender system seeks to recommend R new items to each
user u , where R may range from 1 up to a few (e.g., 5–10) items. Instead of issuing
recommendations for the top R items in u ’s content preference distribution pprefu ,
the system selects R items among the ones residing within a recommendation win-
dow Wu that is defined by the top Ku items, where Ku > R , as shown in Figure 21.2.

On the joint optimization of content caching and recommendations 589

Figure 21.2 Impact of recommendations on user requests. The content items are
ranked in decreasing order of user preference and only items within
the recommendation window are recommended. A priori content
preference distribution for arbitrary user u , its recommendation
window Wu of size Ku (black), and the resulting content request
probability after recommendations (red).

Namely, the recommender system artificially inflates the set of candidate items for
recommendation for each user u by a user- specific factor Ku/R . When doing so, the
system ensures the QoR, preserving two properties addressing the ethical concerns
described in section 21.1 regarding the possible manipulation of recommendations:

• It preserves the rank of recommended items in the original user
content preferences. If an item i is recommended at higher rank
than item j, it holds necessarily that ppref

u (i) � ppref
u (j).

• It controllably bounds the distortion that its recommendations
introduce to the original user content preferences.

Although the rank of recommended items in the original user content prefer-
ences is preserved, it could happen that the absolute rank of file popularities may
change after the recommendations. For example, an item that is high in the inherent
user’s rank and that is not recommended may move lower in her rank than an item
that was originally bellow it but has been recommended.

In the worst case, the system will end up recommending items that are ranked in
positions { Ku � R + 1,Ku � R + 2, : : : ,Ku } in decreasing order of user content pref-
erences (ref. Figure 21.2), instead of the items in top- R positions f1, 2, : : :Rg . We
define the worst- case user preference distortion measure, �u to be

590 Edge caching for mobile networks

�u(Ku,R) = 1 �

P
j:rnku(j)2

[Ku�R+1,Ku]

ppref
u (j)

P
j:rnku(j)2[1,R]

ppref
u (j)

.

(21.4)

where rnku(i), i 2 I , is the rank of item i in user’s u content preferences.
The denominator in (21.4) equals the total request probability of user u for the

top R items, which are the ones a typical recommender system would recommend.
The numerator, on the other hand, equals to the total request probability of user u for
the bottom R items in the recommendation window. Hence, �u(Ku,R) expresses the
worst- case deviation from initial user request probabilities that may result from the
choices of our scheme when compared to a typical “honest” recommender system.
As such, this metric is admittedly conservative and it denotes an upper bound on the
possible distortion of original user request probabilities.

The size of the recommendation window, Ku , introduces an interesting trade-
off. Higher Ku values allow for more flexibility in selecting items to recommend
to users and shaping their demand in favor of caching efficiency, as it will be
seen in the sequel. But at the same time, a higher Ku value may result in higher
distortion of user preferences, as can be readily seen in (21.4).

21.3 The joint caching and recommendations problem

In this section we assume that the user associations with network (small) cells depend
on the quality of radio signals and the load of the radio network, without taking into
account the availability of content at the co- located caches. A direct consequence of
this assumption, which is in line with user association practices in current mobile
cellular networks, is that the caching decisions can be made independently in each
cache- enabled small cell. Any given cache placement fPc : c 2 Cg may satisfy a por-
tion of the total demand in the cell as measured by the cache hit ratiod

H =

P
u2U

P
i2P

preq
u (i)

P
u2U

P
i2I

preq
u (i)

.

(21.5)

On the user side, the requirement is to maximize the portion of her content requests
that can be satisfied by the cell cache (cache hits). This results in lower content
access delays and higher user QoE. At the same time, since fewer requests have
to be satisfied by the back- end server, the utilization of backhaul links is lower. In
other words, the maximization of the cache hit ratio serves both user- and network-
oriented objectives.

Formally, let fyig and fxuig, i 2 I, u 2 U be two sets of binary decision vari-
ables with yi = 1 when item i is cached and i , otherwise; and xui = 1 when item

d Since in this section the caching decisions are made independently for each cache, we drop the index c
from subsequent references to cache placements, i.e., we write P instead of Pc .

On the joint optimization of content caching and recommendations 591

 yi, xui 2 f0, 1g u 2 U , i 2 Wu. is recommended to user u and xui = 0 when it is not.
The objective of the joint caching and recommendation decisions is then to find the
cache and recommendation policy that maximizes the hit ratio, as defined below:

max
y,x

X
u2U

X
i2Wu

yi(xuipreq
u (i) + (1 � xui)epreq

u (i))

(21.6)

s.t.

X
i2I

yiLi � S

(21.7)

X
i2Wu

xui = R, 8u 2 U

(21.8)

 yi, xui 2 f0, 1gu 2 U , i 2 Wu. (21.9)

In (21.6) and (21.8), Wu denotes items within the recommendation window of user
 u . The cardinality of this set is

 Ku = maxfk|�u(k,R) � rd(u)g, (21.10)

where rd(u) 2 [0, 1) denotes the user- specific preference distortion tolerance, an
upper bound on user preference distortion in (21.4) that should not be exceeded
for any user. Our formulation implies that the system could provide users with the
opportunity to determine themselves how much distortion tolerance they are willing
to tolerate. Inequality (21.7) reflects the cache storage capacity constraint, whereas
equalities (21.8) ensure that exactly R items are recommended to every user.

21.3.1 Problem complexity and approximability properties
We refer to the problem (21.6)–(21.9) as the Joint Caching and Recommendations
Problem (JCRP). In [1] we prove that:

Proposition 1. The Joint Caching and Recommendations Problem is NP- complete.

As a first step towards an efficient approximation algorithm, we investigate the
monotonicity and submodularity of the JCRP (JCRDP) objective function. We
recall the relevant definitions in what follows. Let S be a finite set of elements (inter-
changeably called universe or ground set) and S , Y any two subsets of S satisfying
 X � Y � S . A set function f : 2S ! R is called monotone if f(X) � f(Y),8X, Y � S.
Moreover, f is called submodular, if for any element e 2 S \ Y , it holds that
 fX(e) � fY(e), where fA(e) = f(A [e) � f(A) . Namely, the extra marginal benefit
from adding an item to a set decreases as this set grows larger. Similarly, f is called
supermodular, if for any element fX(e) � fY(e), , it holds that fX(e) � fY(e). In [1] we
prove that:

592 Edge caching for mobile networks

Figure 21.3 Schematic outline of the three- step algorithm for the JCR problem

Proposition 2. The objective function of JCRP is non monotone.

Proposition 3. The objective function of JCRP is neither submodular nor
supermodular.

Hence, more general techniques that yield approximability guarantees for opti-
mization problems with (monotone) submodular objective functions, and have been
often applied to caching problems, are not applicable to the JCRP .

In the following section, we propose an efficient heuristic algorithm for solv-
ing the JCRP. Although the algorithm does not lend to rigorous approximability
analysis (section 21.4.2), it is computationally simple (section 21.4.1) and exhibits
excellent performance (section 21.6).

21.4 An algorithm for the joint caching and recommendation
problem

21.4.1 Description of the algorithm
Our Caching- aware Recommendations (CawR) algorithm (see Algorithm 1) pro-
ceeds in three steps, as shown in Figure 21.3.

In the first step, a provisional set of recommended items RC in
u is derived for each

user. Input to this step are the content preference probability distributions of users.
Recommendations are made for the top-R items in the user preferences but, contrary
to what would happen with a typical recommender system, these recommendations
are not communicated to the user; they are only relevant as intermediate result of the
algorithm’s operation.

The second step is the content placement step, where we determine which con-
tent should be cached. To this end, we compute the content request probabilities
according to (21.2), (21.3). All content items are assigned utilities that equal the
aggregate request probability they attract:

v(i) =

X
u2U

preq
u (i) i 2 I .

(21.11)

On the joint optimization of content caching and recommendations 593

The optimal placement is then an instance of the 0- 1 Knapsack Problem (KP).
We use the Dynamic Programming (DP) Fully Polynomial Time Approximation
Scheme (FPTAS) algorithm in ([10], §8.2) to obtain an (1 � "), " > 0 approximation
of the optimal solution; let P denote this placement.

Finally, in the recommendation amendment step, the original recommendations
to users are amended so as to maximize the utility (i.e., expected attracted requests)
of the cached content. To this end, we first identify for each user u the set of Ku items
in her recommendation window from (21.10). Then we compare the item sets P and
 RC in

u . Two possibilities exist:

 • If RC in
u � P , then the original recommendations derived in the initialization

step remain intact (and the resulting user preference distortion is zero).
 • If |RC in

u

T
P | = F1 2 [0,R � 1] , then the F1 items that appear in both

sets are retained in the final recommendation list; F = minfR � F1,F2g,
 F2 = |(Wu \ RCin

u)
T

P | , most preferred cached items appearing in the recom-
mendation window of u (but not in the recommendation set derived in the first
step), are added to the recommendation list for u , replacing the bottom-F items
in RC in

u ; and, if there is still space (F1 + F < R), the remaining recommendations
are made for the (R � F1 � F) least popular items out of the (R � F1) remaining
(non- cached) items in RC in

u .

The final set, RC f
u , of R items that are recommended to user u are in general

different from the equal- size provisional set RC in
u derived in the first step. Since the

values of prequ after the recommendation amendment step are different, one might
think that the algorithm returns to the content placement step and runs another round
of steps 2 and 3. However, in [1] we prove that this algorithm terminates in a single
round:

Proposition 4. CawR terminates after a single execution of the recommendation
amendment step.

Hence, the algorithm essentially determines the cache placement on the basis
of the original recommendations to users (with zero user preference distortion).
Then, it selectively changes recommendations to nudge individual user preferences
towards content that attracts demand from the overall user population. This way,
the utility of the cached content, i.e., the demand it attracts, grows and the expected
cache hit ratio increases.

In the toy example of Figure 21.1, CawR first sets the provisional recommenda-
tion list RCin

u to the Wu most preferred items for every user, as highlighted in the 2nd
column. The resulting demand distributions are shown in the 3rd column. These rec-
ommendations are not shown to the end- users. In the second step, CawR computes

594 Edge caching for mobile networks

the utility of each item from (21.11) and caches items A,C,D. In the final step, CawR
compares the recommendation window Wu of each user u with fA,C,Dg and deter-
mines the final lists of recommendations RC f

u , which are issued to the users. In our
case, Wu1 = fA,B,C,Dg , Wu2 = fA,C,D,E,Fg , and Wu3 = fA,B,C,D,Eg , respec-
tively. The sets RC f

u are those highlighted in the 4th column in Figure 21.1. The
cache hit ratio without recommendations is 0.58. When recommendations are issued
for the top- 3 items in users’ preferences (3rd column), the cache hit ratio drops
to 0.55, because non- cached items are recommended. On the contrary, when rec-
ommendations are issued for items that are both cached and of adequate interest
to users, yet not necessarily within the top- 3 set (4th column), the cache hit ratio
increases to 0.67.

21.4.2 Complexity of the CawR algorithm
In the first step, our algorithm sorts the list of the items and finds the most preferred
ones for each user at time O(|U | � |I | � log |I | + |U | � |I |) = O(|U | � |I | � log |I |). In the

On the joint optimization of content caching and recommendations 595

second step the algorithm computes a utility for every item and then uses the DP FPTAS
algorithm for the 0- 1 KSP. This implies a complexity of O(|I | + |I | � |P |) = O(|I |2)
since the cache capacity is upper bounded by the total catalog size. In the third
step, the algorithm compares the items within the recommendation window of each
user against the cache placement to define the final recommendations, leading to
 O(|U | � maxu(|Wu|) � |P |) . Since the size of the recommendation window is natu-
rally bounded by the catalog size, the total computational complexity of CawR is
bounded by O(|U | � |I |2).

In the two sections that follow, we draw on both analysis (21.5) and simulations
with real and synthetic datasets (21.6) to gain further insight to the properties of the
proposed algorithm.

21.5 Properties and performance bounds of our algorithm

In this section, we compare the performance of our algorithm to benchmark recom-
mender schemes and analyze its sensitivity to the maximum distortion tolerance
parameters, frd(u)g and the user content preference distributions, fpprefu g .

21.5.1 Benchmark recommender schemes
We consider three alternative schemes for determining which content to cache and
which to recommend to each user. They serve as plausible comparison references for
our algorithm and help set bounds for its performance.

Zero- distortion (ZD) scheme. The scheme recommends to each user the top-
 R items in her preferences and caches the C items attracting the highest aggregate
demand, after accounting for the impact of recommendations. Hence, the recom-
mendations follow precisely the user preferences, in line with what recommender
systems nominally do, and the cache placement adapts to them.

Unbounded- distortion (UD) scheme. This scheme ranks items in order of
decreasing aggregate demand over all users, after taking into account the factors
 (1 � wr

u) that weigh users’ original preferences. It then caches the top- C of those
and recommends to all users the same top-R items. Contrary to the ZD scheme, it is
now the cache placement that determines the individual recommendations, catering
for no bounds on the resulting distortion of the inherent user preferences. In [1] we
prove that:

Proposition 5. When recommendations follow assumptions 21.2.1 and 21.2.2
and the user preference distortion tolerances are relaxed, Wu � I, 8u 2 U in
(21.6) and (21.8), the UD scheme is the optimal solution to the JCRP.

Least Frequently Used (LFU) caching algorithm. The algorithm caches
items that attract the maximum aggregate demand over all users, but it does not

596 Edge caching for mobile networks

recommend anything to them. It is known that LFU maximizes the cache hit ratio
for a single cache in the absence of recommendations.

Denoting the expected cache hit ratio each scheme achieves by Hs, s 2 f ZD,
UD, CawR g , we can show that

Proposition 6. The expected cache hit ratios achieved by the three schemes that
issue recommendations satisfy:

 HZD � HCawR � HUD. (21.12)

Thus, the performance of the unbounded- and zero- distortion schemes set an
upper and a lower bound, respectively, for what is achievable with CawR. Notably,
due to Prop. 5, HUD sets an upper bound to the cache hit ratio under the optimal
algorithm, HOPT , for the JCRP (when the distortion constraints are not relaxed), and,
eventually, for the cache hit ratio achieved by the CawR algorithm. Namely

 HCawR � HOPT � HUD. (21.13)

It is less intuitive how LFU compares with the three schemes issuing recommenda-
tions since they weigh the inherent user content preferences with factors (1 � wr

u) to
determine the cache placement. We explore these comparative relationships as well
as the tightness of the bounds in (21.13) with numerical simulations in section 21.6.

21.5.2 Sensitivity analysis to parameters of CawR
21.5.2.1 Monotonicity and submodularity of HCawR with respect to the

distortion tolerance parameters
The parameters { rd(u)g, u 2 U in CawR control the amount of distortion that is
tolerated with respect to the original user content preferences. Higher rd(u) val-
ues imply larger Wu sizes, as can be seen from (21.4), and higher chances to find
cached items in them. This is interpreted into higher cache hit ratio when at least
one of the currently issued recommendations is for a non- cached item. In that
case, CawR can replace its recommendation(s) for one (or more) of these items
with recommendations for one (or more) of the cached items that are included in
the enlarged HCawR .

Proposition 7. HCawR is a monotonically increasing function of the distortion
tolerance parameters frd(u), u 2 Ug. .

Less strict claims can be made about the submodularity HCawR of with the frd(u)g
parameters [1].

On the joint optimization of content caching and recommendations 597

21.5.2.2 Sensitivity of HCawR to the individual user content preferences
Although the exact values of HCawR and HCawR may vary widely depending on the
user content preference distributions, fppref

u , u 2 Ug , we can state that:

Proposition 8. As the individual content preference distributions become more
skewed, HZD and HCawR tend to converge with each other.

The key remark is that as the distributions fpprefu g become more skewed, the
recommendation windows become smaller. Therefore, the additional flexibility of
CawR in selecting items to recommend tends to vanish and its recommendations to
the users coincide with those of the ZD scheme. In fact, the recommendations of the
two schemes exactly coincide when Ku = R .

21.6 Experimental evaluation of CawR

21.6.1 Datasets and default parameter settings
We use both synthetic and real datasets [11] to derive the user and item feature vec-
tors, fu u 2 U and fi i 2 I , respectively, and then infer the user content preference
distributions pprefu (see section 21.2). The purpose of using real datasets is three- fold:
(a) to show how our model of user preferences and content items can be informed
by real data; (b) to drive a more “realistic” evaluation of the cache hit ratio CawR
achieves; and (while doing so) (c) to validate the theoretical claims made in section
21.5. With synthetic datasets, on the other hand, we can control the experimentation
settings and analyze the sensitivity of our algorithm to important variables such as
the (dis)similarity of content preferences across users. Experiments were performed
with the MovieLens dataset as well as with synthetic datasets.

MovieLens dataset [11]: We analyze different samples of 700 users and
10.000 items of the catalog. Each of these movies is described by M = 19 thematic
tags, i.e. the feature set contains 19 themes. In populating our model, we draw
on the fact that a user did rate a specific item, rather than the actual rating she
assigned to it. More specifically, the item tags are directly used to generate the
item- feature vectors, as described in Example 1. Then, if Ir(u) is the set of items
that user u has rated, we estimate the element fu(j) , j 2 [1,M] , of user’s u feature
vector as in Example 2.

Synthetic datasets: In this set of experiments, the elements of the two vectors
are populated with values drawn from random probability distributions, by default
from the standard uniform distribution. The default parameter values for simulations
with synthetic datasets are |U | =150 users, |I | =1000 items and M = 8 thematic areas.

For simulations with both types of datasets, the normalized item size Li is
sampled from a discrete uniform distribution j 2 [1,M] , with default Lmax = 4 . Our
baseline assumption is that recommendations provide all |U | items in the list with

598 Edge caching for mobile networks

Figure 21.4 Experiments with MovieLens traces. Cache hit ratio, H, capacity
for different number of recommended items, R . UD (dotted line) and
LFU (dash- dot line) are not affected by R , solid lines correspond to
CawR and dashed ones to ZD.

an equal boost precu (i) = 1/R, which fades out with R . The intuition is that the fewer
the recommendations are, the less cognitive load they demand from users to process
them, and the more significant their impact is on the eventual user content requests.
This assumption is more realistic for users accessing content from large- display
devices, where it is more comfortable to scroll down the recommendations’ list.

The choices of user recommendation weights, R , are aligned with experimental
evidence in [5], according to which YouTube users request one of the top 10 recom-
mended items with a probability that varies in [0.5, 0.7]. Thus, in our experiments
the user recommendation weights are sampled from U(0.5, 0.7) .

21.6.2 Trace-Driven simulations
Figure 21.4 and 21.5 validate the performance bounds we found analytically for the
cache hit ratio under CawR in section 21.5. The extent to which these bounds are
tight depends on the number of issued recommendations per user, R , and the prefer-
ence distortion tolerance parameter, rd.

The impact of the number of recommended items on cache hit ratio: On
the one hand, R does not affect the performance of UD and LFU schemes. On the
other hand, the achievable cache hit ratio under CawR and ZD deteriorates with
higher R values. Intuitively, as the recommendation effect is spread across more
items, some of it is wasted because it gets harder to find R cached items within the
users’ recommendation window (in the case of CawR) and among the top- R items
in their preferences (in the case of ZD). Hence, the upper bound becomes looser
as the number of recommendations grows. Interestingly, so does the lower bound
when the relative gain of CawR over the zero- distortion scheme grows with R . This
is the case as far as the size of the recommendation window size Ku is higher than
 R so that CawR has higher chances to find a cached item to recommend. For R = 10

On the joint optimization of content caching and recommendations 599

Figure 21.5 Experiments with MovieLens traces. Cache hit ratio, H, capacity
as a function of the preference distortion tolerance, rd (identical for
all users). Dotted and dashed lines correspond to the UD and ZD
scheme, respectively. The four intermediate curves correspond to
CawR.

and rd=0.01, ZD performs up to 16.6% worse than CawR in terms of cache hit ratio,
especially for really small instances of cache capacity (Figure 21.4a). For rd=0.1,
this gap grows to 121% (Figure 21.4b). At the same time, CawR reaches the 96%
and 97% of the performance of the UD scheme, for rd=0.01 and rd=0.1 respectively,
and realistic cache capacities (Figure 21.4a-21.4b). An alternative way to quantify
the benefits of our algorithm is by looking into cache capacity requirements. For
rd=0.01, ZD needs up to 35% more cache capacity than CawR to reach the maximum
achievable cache hit ratio when R =10 (Figure 21.4a). For rd=0.1, this value climbs
to 147% (Figure 21.4b). In all cases, the LFU scheme is significantly outperformed
by schemes that use recommendations.

The impact of the preference distortion tolerance, rd , on cache hit ratio:
This enhanced flexibility of CawR is also the reason why it approaches the upper
bound faster (i.e., for smaller cache) when rd=0.1 (Figure 21.4b), increasing its
advantage over the ZD scheme that is insensitive to rd.

The only scheme that is affected by the preference distortion tolerance param-
eter is CawR. Higher values of rd provide the scheme with more flexibility in
recommending items that are simultaneously parts of the cache placement and
the user recommendation windows. Hence, as can be seen in Figure 21.5(a- b),
but also in Figure 21.4(a- b), the CawR performance increases monotonically with
rd moving away from its lower bound (ZD scheme) towards its upper bound (UD
scheme). Indicatively, for rd = 0.01 and rd = 0.1 , we evidence with CawR cache
hit ratios up to 71% higher than those under the ZD scheme at very small caches
(Figure 21.5a). The respective performance gain increases to 121% for R = 10
(Figure 21.5b).

600 Edge caching for mobile networks

Regarding cache capacity requirements, even for distortion tolerance values
smaller than rd = 0.01 and R = 3 , CawR needs up to 35% less storage capacity to
converge to the upper bound confronted to the ZD scheme. This gain escalates up to
65% when rd = 0.1 (Figure 21.5a).

The impact of cache capacity, catalog size, and number of users on cache
hit ratio: A final set of experiments with the MovieLens traces addresses basic scal-
ing properties of the algorithm, i.e., how the cache hit ratio varies as a function of
the content catalog size, cache size, and population of users. They report the positive
impact of ratio

˛ = cache capacity

catalog size = C
|I|

 on the cache hit ratio. We further notice that
the CawR and the ZD schemes approach the hit ratio of the UD scheme slower when
compared to a system with fewer items. Related figures can be found in [1].

21.6.3 Simulations with synthetic datasets
In this subsection, we explore how the performance of our algorithm is affected by the
sensitivity of users to recommendations and the heterogeneity in their content preferences.

User recommendation weights: In the experiments of this subsection we con-
sider two scenarios for the range of the user recommendation weights wr

u in (21.3),
namely wr

u 2 [0, 0.2] and R . The achieved cache hit ratio for each scenario is shown
in Figure 21.6.

As is expected, for small recommendation weights, the cache hit ratio under
all recommendation schemes is small and comparable to that achieved under the
recommendation- agnostic LFU scheme. However, CawR remains attractive when
cache space is a concern. With storage spaces smaller than the 5% of the total cata-
log size, CawR scores similarly to the ZD scheme, needing up to 35% less cache
capacity. Compared to the UD scheme, CawR reaches the 89% of the performance
of the UD scheme, performing always more than 14% better than ZD.

On the contrary, for larger recommendation weight values, UD, ZD and CawR
schemes differ more clearly from each other. The cache hit ratio under CawR is 33%
higher than under ZD, for modest cache capacities in the order of 2% of the catalog
size. In terms of cache capacity, CawR equals ZD needing up to 32% less cache
capacity even for capacities lower than the 2% of the total catalog size. Compared
to the UD scheme, for high recommendation weights, CawR reaches the 97% of the
performance of the UD scheme, performing always more than 6% better than the
ZD scheme. Overall, Figure 21.6 indicates that the more users assign importance to
recommendations made to them, the higher the advantage of our algorithm over the
“honest” recommendation scheme.

Heterogeneity in user content preferences: Due to space limitations, this sec-
tion is briefly presented. For a more detailed presentation of the results regarding the
heterogeneity in user content preferences, the interested reader may see [1].

The heterogeneity in user content preferences can manifest itself in multiple
ways. To control heterogeneity, we generate the user content preference distribu-
tion as a convex combination of two distributions: a user- specific component pegou ,
which is modeled as described earlier in section 21.2.2; and a second user- agnostic

On the joint optimization of content caching and recommendations 601

20 30 40 50 60 70 80 90 100

Cache Capacity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
ac

he
 H

it
R

at
io

w ϵ
ϵ
r

(0.5, 1)

w
r

(0.01, 0.2)

Figure 21.6 Experiments with Synthetic datasets. Cache hit ratio capacity
as a function of user recommendation weights, R=10, rd=0.01,

ˇ̌
I

ˇ̌
= 1.000 items. Dotted lines correspond to the UD scheme,

dashed lines to ZD, dash- dot lines to LFU, and solid lines to the
CawR.

probability distribution, weu = 0 , which is modeled after a Zipf distribution, in line
with experimental evidence [12].

We have experimented with different values for wue , concluding that for weu = 0
the three schemes that issue recommendations collapse to one. Moreover, the total
achieved cache hit ratio is higher when the content preference distributions are
homogeneous (weu = 0 8u 2 U). Moreover, we experimented with the impact of the
content preference distribution. Namely, we let various Zipf and uniform distribu-
tions serve as the user content preference distributions, permuting the order of items
for each one of them. We confirm that the performance of CawR, much as that of
other caching schemes, is quite sensitive to the shape of the original user content
preferences, which set hard bounds on what is achievable. Our results are inline with
the previously proposed Propositions.

21.7 User associations as additional control parameter:
extending the model

Until now, our analysis has assumed that the associations of users to small cells
are driven by physical proximity and radio signal quality considerations, in line
with current practices in mobile cellular networks. As a result, the caching and
recommendation decisions are taken independently in each cell, as detailed in
section 21.4.

602 Edge caching for mobile networks

However, both in current generation cellular systems and, even more, in the ultra
dense radio network architectures envisaged for 5G and beyond systems [13], users
have the choice to associate with multiple different cells. Controlling then which
users are associated with each cell and which content is stored at each cell- colocated
cache may offer additional degrees of freedom when trying to satisfy locally the
user demand for content and alleviate the load on the backhaul links. While recom-
mendations shape the individual user demand, the user associations intervene on its
spatial distribution across the radio network.

In principle, the two mechanisms may be exercised over different time scales.
For instance, with online caches the cache placement may be reiterated upon each
and every content item request by a user. Alternatively, the cached content may be
determined periodically (e.g., every day or half a day) out of estimates for the local
content demand and remain fixed for the respective interval of time. On the other
hand, a new user association to a small cell may let its cache intact or trigger changes
that budget for her individual content demand distribution.

In general, the more aggressively the network carries out these control func-
tions, the better the performance it can achieve (smaller content access delay on the
user side, offloading of mobile backhaul) at the expense of computational resources.
More recently, in light of the disruptive network capacity and latency targets adver-
tised by 5G cellular networks [14], the wireless community has been investigating
scenarios of joint content caching and user association, where the stored content
across the network small caches and the associations of users to small cells are
simultaneously determined [15–17]. Putting this into the context of real mobile net-
works, it essentially implies that the cache placements and user associations are
revisited every time a new user joins the network associating with a cell. We expand
on this thread adding the recommendation dimension to the problem and explore
how these three control mechanisms, i.e., content caching, recommendations and
user associations can be jointly tuned to enhance the network performance.

21.7.1 Model extension
We consider, as before, a two- layer heterogeneous network with cache- enabled
small cells: multiple Small Base Stations (SBSs) and a Macro Base Station (MBS).
A user can be associated either to one SBS Bc, , or to the MBS M . The association
of a user to an SBS is the preferred alternative since it can exploit the capacity and
caching capability of the SBSs more efficiently, preserving the radio resources of the
macro cell. Nevertheless, a user can always associate with the MBS, as a fallback
solution, when the association to an SBS is not feasible. At any given time slot, each
user u 2 U is located within the range of a different subset of SBSs. We define as
 N (u) the “neighborhood” of user u , the set of cells user u can be associated with.
Each SBS can serve a set of mobile users within its range, while the MBS can serve
the users within range of any SBS. Each cell c has a limited service rate, Bc, split
among all user devices associated with it. A minimum downlink data rate is guaran-
teed to each user u, incurring an association cost bcu for her association to cache c .
This cost is strongly related to the physical distance between the user and the cell. In

On the joint optimization of content caching and recommendations 603

fact, a more distant user generates higher association cost in terms of transmit power
for the cell, network interference or even power consumption (for her own device).
Thus, the number of users that an SBS can serve is limited by the aggregate asso-
ciation cost, which should not be higher than Bc , for all cache- enabled SBSs c 2 C .

21.7.2 The Joint Caching, Recommendations and Association
problem

The objective of the Joint Caching, Recommendation, and Association (JCRA) prob-
lem is to maximize the portion of total demand that can be satisfied by all caches,
assuming also control over the user association process. Let fxuig , fyicg and fzcug be
three sets of binary decision variables, with xui = 1 if item i is recommended to user
 u and xui = 0 otherwise; yic = 1 if item i is cached in cache c and yic = 0 otherwise;
 zcu = 1 if user u is associated to cache c and zcu = 0 otherwise. Then, reusing the
notation in section 21.3, the JCRA problem is formulated as:

max
y,x,z

X
u2U

X
c2C

X
i2;I

yiczcu(xuipreq
u (i) + (1 � xui)epreq

u (i))

(21.14)

s.t.

X
i2I

yicLi � Sc, 8c 2 C

(21.15)

X
u2U

bcuzcu � Bc, 8c 2 C

(21.16)

X
c2N (u)

zcu � 1, 8u 2 U ,

(21.17)

 xui = 0, 8i … Wu, u 2 U , (21.18)

X
i2I

xui = R, 8u 2 U

(21.19)

 yic, xui, zcu 2 f0, 1g, u 2 U , i 2 I, c 2 C, (21.20)

Constraints (21.15) and (21.16) reflect the cache storage and service cost constraints
for each cache, respectively. Constraints (21.17) capture the unique association of
users either to cells in their neighbourhood or to the MBS. Constraints (21.18) and
(21.19) ensure that the content items recommended to each user are always within
her recommendation window and that exactly R items will be recommended to her,
respectively.

Controlling the user- to- cache association creates an additional optimization
potential. However, it makes the (already difficult) optimization problem even more
difficult. In [3], we use generalization arguments to prove that:

Proposition 9. The Joint Caching, Recommendations and Association problem
is NP- hard.

604 Edge caching for mobile networks

21.7.3 Heuristic algorithms for the JCRA problem
We present two heuristic solutions to the JCRA problem. The core of both algo-
rithms is the same, i.e., an iterative process for jointly determining the user asso-
ciations to the small cells and the content to be stored at the small cell caches (see
section 21.7.3.1). What changes between the two algorithms is the way recommen-
dations are introduced.

The first heuristic proceeds in three phases:

1. Initialization phase:
(a) At each SBS, assume that all users within its range are associated with it.
(b) Determine the cache placements at the SBSs caches by solving inde-

pendent instances of the 0- 1 KP, where the utilities of content items equal the
aggregate user demand they satisfy if honest recommendations are issued to
users (ref. section 21.4, rd = 0).

2. Iterative phase: Until the cache hit ratio in (21.14) is no further improved do:
(a) Given the cache placements determined in (1b), update the user asso-

ciations at each SBS solving an instance of Generalized Assignment Problem
(GAP). Users correspond to items and cells to bins, the cell- specific user costs
are the association costs c and the cell- specific user profits are the user demands
covered by the current cell cache placement assuming honest recommendations.

(b) With the new user associations computed in (2a), recompute the content
item utility values and solve anew the C 0- 1 KP instances for each SBS assum-
ing honest recommendations.

3. Recommendation amendment phase: Adjust recommendations to be both within
each user’s recommendation window zcu = 1 and the cache placement at the cell
of user’s attachment. The user associations and the cell cache placements are
the outputs of the last iteration in (2a) and (2b), respectively.

This heuristic mimics the rationale of the CawR scheme in Algorithm 1.
Namely, it uses honest recommendations, corresponding exactly to the user content
preferences, as an intermediate step to determine the cache placements (here, also,
the user associations). It then amends the recommendations in line with the cache
placements to boost the portion of demand that can be locally served by the small
cell caches.

An apparent alternative would be to not account for (honest) recommendations
at all in the first and second phase of this heuristic and only derive them once as
part of the third phase, after the iterations for the determination of cached content
and user associations terminate. With this second heuristic, recommendations are
caching- aware and still boost the part of user content demand that can be satisfied
locally. Yet, they do not have an impact on what is eventually cached at the small
cells and who are the users served by each of them.

Both heuristics demand an algorithmic solution for the intermediate joint con-
tent caching and user association problem. We turn to this problem next.

On the joint optimization of content caching and recommendations 605

Table 21.2 Accuracy of the iterative heuristic

Comparison Scenario
var Users
random demand

var Users
Clustered
demand

var Items
random demand

median Δ H(G) 0.001(0.2%) 0(0%) 0.004(0.81%)
95th perc. ΔH(G) 0.097(17.7%) 0.1(14.2%) 0.081(13.3%)
max ΔH(G) 0.161(29.2%) 0.21(25%) 0.189(35.2%)

21.7.3.1 The Intermediate Joint Caching and Association problem
The intermediate Joint Caching and Association (JCAP) problem results from the
JCRA problem when omitting the recommendation- related variables and constraints.

max
y,z

X
u2U

X
c2C

X
i2I

yiczcuppref
u (i))

(21.21)

 s.t.(21.15), (21.16), (21.17) (21.22)
 yic, zcu 2 f0, 1g, u 2 U , i 2 I, c 2 C, (21.23)
JCAP is an instance of bilinear programming, a special class of non- convex qua-
dratic programming. To show that it is NP- hard, it suffices to remark that when we
fix variables fyicg , we get the generalized- assignment type problem first treated in
[18]. This problem is equivalent to the maximum GAPe, where SBSs correspond to
agents (knapsacks) and users to jobs (items) with agent- specific requirements fbucg
and profits

f
P
i2I

yicpprefu (i)g, c 2 Nu

. Since the maximum GAP is an NP- hard prob-

lem, the generalization (JCAP) of its equivalent problem in [18] is NP- hard as well.
We tackle this problem in [20] and [21], but due to space limitation we will restrict
our presentation to the first.

In [20], we propose an iterative algorithm for solving JCAP that corresponds
to the first two phases of the heuristic for the JCRA problem (see section 21.7.3), if
recommendations are let aside. We first prove its correctness and discuss its com-
putational complexity. Then we proceed in a two- phase evaluation of the algorithm.
In the first phase, we consider small problem instances and compare it against the
optimal solution, as this can emerge from linearization techniques and use of stan-
dard ILP solvers. Table 21.2 gathers statistics on �H , the empirical gap between the
cache hit rates achieved by the two solutions and G = �H

HRopt
x100% , the percentage

ratio of �H to the optimal value. The median of G over all experiments is practi-
cally 0% and the two solutions coincide in more than half of the experiments under
two scenarios for the content demand distribution across the network: uniform at
random and with strong spatial locality properties.

e The inequalities in (21.17) are replaced by equalities in the maximum GAP. The equivalence of the two
problems is shown in e.g., [19], pp. 190- 191

606 Edge caching for mobile networks

Figure 21.7 Comparison of the three heuristics as a function of the number of
users: I =1000, C =20, Bc =200, lmax =12, bmax =20

In a second phase, we consider more realistic problem instances and compare
the heuristic against simpler algorithms for tackling the user association and con-
tent caching tasks: a greedy- like algorithm and another heuristic, called Decoupled,
which decouples the user association decisions from the content caching ones and
tackles user associations first.

Of particular interest are the experiments that look into the sensitivity of the
algorithms to the existence or not of spatial locality in the content demand. Under
no spatial locality, the decoupled heuristic competes with our iterative heuristic, and
even slightly outperforms it for high numbers of users, as shown in Figure 21.7a.
At those user levels, the decoupled approach can match all users to SBSs, whereas
our iterative heuristic is forced to associate a few with the MBS. The non- satisfied
demand of these users corresponds to the marginal performance gain of the decoupled
heuristic. The greedy heuristics cannot compete with either of the two alternatives.

When there is spatial locality, the performance of all three heuristics improves
(Figure 21.7b). In this scenario, it matters more which users will be grouped in a cell
rather than how many. Factoring the content preferences of users in its decisions,
the iterative heuristic clearly outperforms the decoupled one. This performance gain
fades out as the number of users grows since the latter manages to squeeze more
users in small cells. For more details on the performance characteristics of the itera-
tive heuristic, the interested reader is referred to [20].

21.8 Open directions

Understanding the precise way recommendations shape individual content prefer-
ences is a research thread per se, mainly pursued in the context of marketing and

On the joint optimization of content caching and recommendations 607

recommender systems. An open research direction consists in translating these
largely experimental findings into solid models and validating the presented findings
with them as starting points. This should address the human behavior heterogeneity,
possibly leveraging data- driven machine learning techniques and principles from
behavioral science.

In this chapter, we considered one round of interaction between the users and
the system. An interesting extension would be to consider how the dynamics of this
interaction evolve in the long- term under such recommendations, addressing aspects
like the trust users build in the system and including possible system penalization
(e.g., churn effects). In a fully transparent system, where users are aware of the
nudging recommendation practices, users might even choose themselves and trade
the distortion their recommendations will undergo.

Another direction is to consider that the different mechanisms (content cach-
ing, recommendations and user association) are controlled by different entities with
opposing interests and objectives. For example, the recommendation is controlled
by the content provider with the aim to maximize the user engagement and relevance
of content recommended; the caching is controlled by the infrastructure provider
with the aim to maximize hit ratio; and the association is controlled by the user
to minimize the delivery delay or the energy consumption. Game- theoretical tools,
either cooperative or not, could be used to describe such kind of scenarios, with each
player holding her own objective.

21.9 Related work

Related works about the interplay between caching and Recommender Systems
(RS) are divided in two main categories: RS are considered either as predicting tools
in order to decide a better caching placement (e.g., [6, 22]), or as traffic engineer-
ing mechanisms, used as demand- shaping tools. In both categories, RS are used as
proxies for inferring the content popularity. However, the last are distinctly different
regarding the way they approach RS: not just as alternative predictors of content
demand but also as demand- shaping tools that can actively be used to trade- off user-
and network- centric performance objectives. In fact, their approach to increasing the
utility of cache content could be seen as dual to the first: Rather than struggling for
accurate predictions of the users’ demand for content, they nudge the users’ demand
towards content items that are common in their preferences.

Due to space limitations, we will provide a taxonomy only for the second cate-
gory (Figure 21.8), in which our work has made significant contribution. We identify
five key factors that differentiate existing works that use the RS as demand- shaping
tools: Do they jointly optimize RS and caching decisions? How are recommenda-
tions accepted by users? Which is the RS mechanism they use to issue recommen-
dations? Do they take into consideration the general Quality of Service (QoS) that
users will receive? Last but not least, are they concerned about the Quality of the
issued Recommendations (QoR) and the ethics around “nudged” recommendations?

608 Edge caching for mobile networks

Figure 21.8 Taxonomy of works considering the interplay between RS and
wireless caching. Solid lines under a category imply that all
subcategories can be chosen (the various criteria that characterize
works), while dotted lines imply that a work can belong only to
one subcategory (either it considers uniform or position- dependent
recommendation influence)

We briefly discuss these factors and their main subcategories, presenting some rep-
resentative works.

Joint or aware? Works are distinguished based on the relation of caching and
recommendation decisions. The “soft cache hits” in [23] considers systems where
users requesting uncached content are informed about cached content which is simi-
lar to their request, and systems where alternative content is directly delivered to
them. For a given cache placement, the goal is to find a set of recommendations
that will maximize the cache hit ratio. On the contrary, a cache placement is a priori
given and only recommendations are decided for sequential recommendations in
[24, 25] and list reordering [5] or rating shaping [8] are proposed, aiming at the same
goal. The same in [26], aiming to the service cost minimization in P2P networks. We
are actually different from this thread of works in jointly taking both recommenda-
tions and caching decisions.

Influenced by [5], in [2] we introduced a mathematical model that captures the
coupling between caching decisions and personalized recommendations. Then [1,
27–30], studied how to jointly take these decisions under different assumptions. In
[3] the user- to- AP association is an additional decision taken jointly with the others,
capturing the case of Telefonica, the giant network provider that also holds the huge
Latin- American content provider Movistar. Works [31, 32] jointly consider recom-
mendation and content pushing decisions, while [33] considers coded caching and
recommendations.

RS Impact. We consider two factors that characterize the impact of RS on
the users’ final requests: The probability of acceptance of the recommendation
and, if accepted, the distribution of the influence across various positions in the

On the joint optimization of content caching and recommendations 609

recommendations list. Regarding the acceptance, in [26] it is assumed that users
either accept the recommendation, or leave the system. Other works consider users
that accept a recommendation with a user- specific [1–3] or universal [24, 25, 27,
30, 34] probability if it is “good enough,” while in [23, 33] they accept it with a
probability in any case, and in [35] this probability is learned. Regarding the impact
after acceptance, in [2] we assumed uniform influence across items in the recom-
mendation list, while in [1] we introduced a model according to which the demand
attracted by recommendations in a non- increasing function of both the item’s posi-
tion in the recommendation list and the number of recommended items, inline with
experimental evidence [5] and providing insights about characteristics of the prob-
lem. Similar models are considered also in [3, 25, 29].

RS mechanism. Most of the works provide recommendations before the users’
requests, either as a recommendation list as described above, or by informing users
about the cached content [35]. In [23] the authors recommend alternative cached
content to users after their request for uncached content.

Quality of Service (QoS). The QoS is taken into consideration in [3] by con-
sidering that users receive content from a BS if the received SINR is greater than
threshold, ensuring it as an embedded constraint in the optimization problem. In [29]
the authors consider a probability of users offloading content from caches, based on
their distances, while in [34] users are directly asked through questionnaires.

Quality of Recommendations (QoR) and ethics. We consider three factors
that characterize the QoR: Appropriateness, personalization and transparency.
Appropriateness is about being good enough and matching adequately the users’
preferences. Personalization is about taking into consideration the specific inherent
preferences of the individual users when issuing recommendations, in contrast to
issuing generic recommendations to all users in the system. These are not equiv-
alent: A recommendation can be personalized while not being adequate, e.g., by
violating the user’s preferences over an accepted threshold. It can be appropriate
for many users but not personalized, e.g., when issuing recommendations about the
most popular items to all users. In that case, the recommendations will be adequate
to the majority of users, albeit not personalized. Transparency is about being trans-
parent with the user, in anything that could violate their preferences. In both of the
previous cases, recommendations can be non- transparent if users are not informed
about their preferences’ violation.

In [26] and [8] these aspects are not taken into consideration: The authors in
[26] propose to recommend content cached by peers and those in [8] to modify
the ratings shown to users, without personalization or adequateness constraints. In
[33], although the personalized model of [2] is adopted, the interplay with coded
caching does not allow to consider the distortion of the users’ preferences in the
issued recommendations. Some other works consider adequate but not personal-
ized recommendations. In [29], recommendations that are above a certain (global)
threshold of quality, same for all uses in the system. Works [5, 23, 24, 27] and [26],
indirectly consider a kind of adequateness in recommendations, in the sense that
they recommend cached content similar to that requested by users, or reorder the
recommendation lists of YouTube putting the cached on top of them [5]. However,

610 Edge caching for mobile networks

this item- item similarity- based approach does not necessarily lead to personalized
recommendations. Moreover, it could end up recommending items from the same,
very restricted, pool of cached items.

Our viewpoint to RS raises some concerns, not least ethical ones. To this end,
in [2] we introduced a measure called preference distortion tolerance, to quantify
and strictly bound how much the engineered recommendations distort the original
user content preferences. The algorithm we proposed is essentially a form of light-
weight control over user recommendations so that the recommended content is both
appealing to the end- user and more friendly to the caching system and the network
resources. An important consideration of the conservative [1, 2] or more general
[3] quality metrics we presented is that recommendations should be both personal-
ized and adequate, following their original reason of existence: to provide users
with personalized, appealing content, in order to increase their overall satisfaction
and engagement with the platform. Additionally, to the best of our understanding,
discussion about ethics and transparency of network- related recommendations is
only made in [1, 2] and [3], where both a bounded distortion from the users’ inher-
ent preferences is guaranteed and a preferences rank- preserving recommendation
list is issued. By carefully nudging the individual user demand towards content that
attracts preference from many users, the RS can result in higher cache hit ratios and
enhanced QoE for users. Our results suggest that the proposed approach could yield
significant gains for the network performance and the users’ satisfaction without
disrespecting their individual preferences.

21.10 Conclusions

This thread of works is motivated by the trend that wants both content providers and
network operators also assuming roles in content delivery by owning and managing
content delivery networks. We have looked into the possible benefits that can arise
for the end- users and the network when there is some coordination between recom-
mender systems and caching decisions. This coordination, at least in these works,
implies that recommender systems actively engineer the recommendations issued
to users in ways that enhance the caching performance. Practically, this engineering
consists in recommending content that may not necessarily rank top in the inferred
user content preferences but still score high in them. By carefully nudging the indi-
vidual user demand towards content that attracts preference from many users, the
recommender system can result in higher cache hit ratios and enhanced QoE for
end- users.

Practitioners in areas like e- commerce are more familiar with this demand-
shaping (more broadly: behavior- shaping) dimension of recommendations. There
is strong evidence that the willingness to consume can be affected by online recom-
mendations. Their manipulation there aims at nudging consumers to spend more on
products and services. We rather advocate their “manipulation” for “good” purpose,
as an additional network traffic engineering tool that can be used to jointly optimize
or balance user- and network- oriented performance objectives.

On the joint optimization of content caching and recommendations 611

We have attempted to show this potential in the context of wireless networks
with small cells. At the same time, we tried to explicitly and systematically address
ethical concerns that are raised by this approach. Simulation results show that the
proposed caching- aware recommender systems bring significant caching perfor-
mance gains that persist over a broad range of parameters for the diversity in users’
preferences, the capacity of caches, the number of recommended items and the con-
tent catalog size.

This chapter includes material from the following paper: “Jointly Optimizing
Content Caching and Recommendations in Small Cell Networks,” IEEE Transactions
on Mobile Computing, 2018. Reproduced by permission of IEEE.

Funding

This work was supported by the CHIST- ERA grant CHIST- ERA- 18- SDCDN- 004,
through the General Secretariat for Research and Innovation (GSRI), grant number
T11EPA4- 00056. This work was supported by the Hellenic Foundation for Research
and Innovation (H.F.R.I.) under theFirst Call for H.F.R.I. Research Projects to sup-
port Faculty members and Researchers and the procurementof high- cost research
equipment grant (Project Number: HFRI- FM17- 352).

References

 [1] Chatzieleftheriou L.E., Karaliopoulos M., Koutsopoulos I. ‘Jointly optimiz-
ing content caching and recommendations in small cell networks’. IEEE
Transactions on Mobile Computing. 2019;18(1):125–38.

 [2] Chatzieleftheriou L.E., Karaliopoulos M., Koutsopoulos I. Caching- aware
recommendations: Nudging user preferences towards better caching perfor-
mance. In: Proc. IEEE INFOCOM; 2017. pp. 1–9.

 [3] Chatzieleftheriou L.E., Darzanos G., Karaliopoulos M.,
Koutsopoulos I. ‘Joint user association, content caching and recommendations
in wireless edge networks’. ACM SIGMETRICS Performance Evaluation
Review. 2018;46(3):12–17.

 [4] Gomez- Uribe C.A., Hunt N. ‘The netflix recommender system: algorithms,
business value, and innovation’. ACM Trans on Management Information
Systems. 2016;6(4):13:1–13:19.

 [5] Krishnappa D.K., Zink M., Griwodz C., Halvorsen P. ‘Cache centric video
recommendation: an approach to improve the efficiency of YouTube cach-
es’. ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM)Tomm. 2015;11(4):1–20.

 [6] Verhoeyen M. Optimizing for video storage networking with recommender
systems’. Bell Labs Technical Journal. 2012;16(4):97–113.

 [7] Lee M.-C., Molisch A.F., Sastry N., Raman A. ‘Individual preference prob-
ability modeling and parameterization for video content in wireless caching
networks’. IEEE/ACM Transactions on Networking. 2019 Apr;27(2):676–90.

612 Edge caching for mobile networks

 [8] Tadrous J., Eryilmaz A., El Gamal H., et al. ‘Proactive content download
and user demand shaping for data networks’. IEEE/ACM Transactions on
Networking. 2015;23(6):1917–30.

 [9] Vegelius J., Janson S., Johansson F. ‘Measures of similarity between distribu-
tions’. Quality and Quantity. 1986;20(4):437–41.

 [10] Vazirani V.V. Approximation algorithms. Springer; 2001.
 [11] Harper F., Konstan J. ‘The movielens datasets: history and context’. ACM

Transactions on Interactive Intelligent Systems (TiiS). 2015;5(4):1–19.
 [12] Paschos G., Iosifidis G., Caire G. ‘Cache optimization models and algo-

rithms’. Foundations and Trends in Communications and Information Theory.
2020;16(3 - 4):156–345.

 [13] Andreev S., Petrov V., Dohler M., Yanikomeroglu H. ‘Future of ultra-
dense networks beyond 5G: harnessing heterogeneous moving cells’. IEEE
Communications Magazine. 2019;57(6):86–92.

 [14] Andrews J.G., Buzzi S., Choi W., et al. ‘What will 5G be?’ IEEE Journal on
Selected Areas in Communications. 2014 June;32(6):1065–82.

 [15] ElBamby M.S., Bennis M., Saad W., et al. Content- aware user clustering
and caching in wireless small cell networks. In: International Symposium on
Wireless Communications Systems (ISWCS); 2014. pp. 945–9.

 [16] Pantisano F., Bennis M., Saad W., et al. Cache- aware user association in
backhaul- constrained small cell networks. In: International Symposium
on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt). IEEE; 2014. pp. 37–42.

 [17] Wang Y., Tao X., Zhang X., Mao G. ‘Joint caching placement and user asso-
ciation for minimizing user download delay’. IEEE Access. 2016;4:8625–33.

 [18] Chalmet L., Gelders L. Lagrangian relaxations for a generalized assignment-
type problem. In: Proc. Second European Congress on Operations Research;
1976. pp. 103–9.

 [19] Martello S., Toth P. ‘Knapsack Problems’. Algorithms and Computer
Implementations. New York, NY, USA: John Wiley & Sons, Inc; 1990.

 [20] Karaliopoulos M., Chatzieleftheriou L.E., Darzanos G., Koutsopoulos I . On
the joint content caching and user association problem in small cell networks.
In: IEEE International Conference on Communications Workshops (ICC
Workshops); 2020. pp. 1–6.

 [21] Darzanos G., Chatzieleftheriou L.E., Karaliopoulos M.,
Koutsopoulos I . Content preference- aware user association and caching in
cellular networks. In: WiOPT Workshop on Content Caching and Delivery in
Wireless Networks (CCDWN); 2020. pp. 1–8.

 [22] Kaafar M.A., Berkovsky S., Donnet B., et al. ‘On the potential of recommen-
dation technologies for efficient content delivery networks’. ACM SIGCOMM
Computer Communication Review. 2013;43(3):74–7.

 [23] Sermpezis P., Giannakas T., Spyropoulos T., Vigneri L. ‘Soft cache hits:
improving performance through recommendation and delivery of re-
lated content’. IEEE Journal on Selected Areas in Communications.
2018;36(6):1300–13.

On the joint optimization of content caching and recommendations 613

 [24] Giannakas T., Sermpezis P., Spyropoulos T. Show me the Cache: Optimizing
Cache- Friendly Recommendations for Sequential Content Access. In: IEEE
WoWMoM; 2018. pp. 1–9.

 [25] Giannakas T., Spyropoulos T., Sermpezis P. The Order of Things: Position-
Aware Network- friendly Recommendations in Long Viewing Sessions. In:
WiOpt; 2019. pp. 1–6.

 [26] Munaro D., Delgado C., Menasché D.S. Content recommendation and service
costs in swarming systems. In: ICC; 2015. pp. 1–6.

 [27] Kastanakis S., Sermpezis P., Kotronis V., Dimitropoulos X. CABaRet:
Leveraging Recommendation Systems for Mobile Edge Caching. In: ACM
SIGCOMM workshops: MECOMM; 2018. pp. 1–7.

 [28] Liu D., Yang C. A Learning- based approach to joint content caching and rec-
ommendation at base stations. In: IEEE GLOBECOM; 2018. pp. 1–6.

 [29] Qi K., Chen B., Yang C., et al. Optimizing caching and recommendation to-
wards user satisfaction. In: 2018 10th International Conference on Wireless
Communications and Signal Processing (WCSP); 2018. pp. 1–7.

 [30] Guo K., Yang C. ‘Temporal- spatial recommendation for caching at base sta-
tions via deep reinforcement learning’. IEEE Access. 2019;7:58519–32.

 [31] Lin Z., Chen W. Joint pushing and recommendation for susceptible users with
time- varying connectivity. In: IEEE GLOBECOM; 2018. pp. 1–6.

 [32] Liu D., Yang C. ‘A deep reinforcement learning approach to proactive
content pushing and recommendation for mobile users’. IEEE Access.
2019;7:83120–36.

 [33] Zhu B., Chen W. Coded caching with joint content recommendation and user
grouping. In: IEEE GLOBECOM; 2018. pp. 1–6.

 [34] Sermpezis P., Kastanakis S., Pinheiro J.I., et al. ‘Towards QoS- Aware recom-
mendations’. In: arXiv: 1907.06392. 2019:1–6.

 [35] Guo K., Yang C., Liu T. Caching in base station with recommendation
via q- learning. In: 2017 IEEE Wireless Communications and Networking
Conference (WCNC); 2017. pp. 1–6.

