
IEEE Network • May/June 202174 0890-8044/21/$25.00 © 2021 IEEE

Abstract
Collision detection and avoidance between

vehicles is one of the key services envisioned in
the Internet of Vehicles. Such services are usual-
ly deployed at the multi-access edge computing
(MEC) to ensure low-latency communication and
thus guarantee real-time reactions to avoid colli-
sions between vehicles. In order to maximize the
coverage of the road and ensure that all vehicles
are connected to an optimal MEC host (in terms
of geographical location), the collision avoid-
ance application needs to be instantiated on all
the MEC hosts. This may add a burden on the
computing resources available at the latter. In this
article, we propose an AI-empowered framework
that aims to optimize the computing resources at
the MEC hosts. Our framework uses deep learn-
ing to predict the vehicle density to be served
by a MEC host and derive the exact computing
resources required by the collision detection
application to run optimally. We evaluate the pro-
posed framework using a real dataset represent-
ing vehicle mobility in a big city. Obtained results
show the accuracy of our prediction model, and
hence the efficiency of our resources assignment
framework to exactly deduce the optimal com-
puting resources needed by each instance of the
application.

Introduction
In the vision of 5G and the Internet of Vehicles
(IoV), connected vehicles and autonomous driv-
ing are among the key envisioned applications;
they impact not only mobile operators as well
as car manufacturers business, but also everyday
life [1]. Connected vehicles and autonomous
driving involve several components, such as sen-
sors, actuators, and applications, which need to
coordinate in order to achieve the envisioned
autonomy of vehicles. Among the critical services
toward autonomous driving is the collision detec-
tion/avoidance system. It consists of continuous-
ly collecting data from vehicles and using these
data to predict collisions and communicate alerts
or send commands to vehicles in order to avoid
collisions with other vehicles. The collision detec-
tion/avoidance service comprises an application
that runs at the vehicles and collects data, such
as GPS coordinates, speed, and acceleration,
and a remote application hosted at the cloud
infrastructure that runs a collision detection algo-

rithm. The latter may send control commands to
the vehicles, when deemed appropriate, such as
reduce speed, change direction, or brake. One
of the main requirements to run the collision
avoidance service, in 5G and beyond, is to dis-
pose of a low-latency connection between the
client and server sides of the application, that is,
between the vehicles and the remote applica-
tion sitting in the infrastructure. To ensure low-la-
tency communication, it is envisioned to deploy
several instances of the collision application, for
instance, at the road intersections and close to
base stations using multi-access edge comput-
ing (MEC) [2]. This ensures that each vehicle is
connected to the closed application instance,
which guarantees low-latency communication.
MEC consists of deploying computation capabil-
ity (hosts) close to the end users, for instance, in
the vicinity of base stations [3]. Thus, all data can
be treated locally without involving the remote
cloud server, hence reducing latency and the
traffic to carry throughout the network. MEC
hosts are distributed all over the network, consti-
tuting a distributed and low-latency computation
resource for delay-sensitive applications like vehi-
cle collision detection/avoidance applications.
Indeed, the latter need low-latency communi-
cation with remote vehicles since the control
commands, such as brake or reduce speed, need
to be received by the vehicles in near real time
to react to any threat and avoid collisions. As
mentioned earlier, one pertinent solution is to
locate several instances of the collision detec-
tion application at the MEC, hence reducing the
end-to-end communication latency. The different
instances can be used to cover all the road inter-
sections; each vehicle shall always be in contact
(connected) with an instance of the application.
However, duplicating the number of instances of
the application may add a burden on the MEC
host computing resources, including CPU usage,
memory, storage, and so on. It is worth noting
that MEC host resources are limited compared
to central cloud servers. In this context, it is vital
for MEC operators (generally network operators)
to optimize the MEC resource usage, particularly
when considering that 5G will rely on, among
others, MEC to support services that require low
latency such as data caching and virtual/aug-
mented reality (VR/AR). Hence, ensuring effi-
cient sharing of the MEC computing resources
is critical.

Toward Optimal MEC Resource Dimensioning for a Vehicle Collision Avoidance System:
A Deep Learning Approach
Bouziane Brik and Adlen Ksentini

AI-EMPOWERED MOBILE EDGE COMPUTING IN THE
INTERNET OF VEHICLES

Digital Object Identifier:
10.1109/MNET.011.2000577 The authors are with EURECOM.

KSENTINI_LAYOUT.indd 74KSENTINI_LAYOUT.indd 74 6/3/21 12:47 PM6/3/21 12:47 PMAuthorized licensed use limited to: Athens University of Economics and Business. Downloaded on February 15,2022 at 10:17:17 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2021 75

In this article, we propose a novel framework
that relies on deep learning (DL) to predict vehi-
cles’ mobility and accordingly assign comput-
ing resources to the vehicle collision detection
application instances, aimed at better optimizing
the overall MEC resources and ensuring optimal
functioning of the service (i.e., guaranteeing low
response time). The proposed framework pre-
dicts using DL, and more precisely long short-term
memory (LSTM), the mobility of the vehicles,
and, according to their positions in the network,
it derives the needed MEC resources: on one
hand, increasing MEC resources for the collision
avoidance application instances that serve a high
number of vehicles; on the other hand, reducing
these resources for the instances that cover a low
number of connected vehicles. The contributions
of this article are as follows:
•	 Define an AI-empowered framework that

relies on European Telecommunications
Standards Institute (ETSI) MEC to optimally
deploy the vehicle collision detection and
avoidance service.

•	 Train and build a DL module based on LSTM,
using a real dataset to predict the vehicles’
mobility.

•	 Devise a resource assignment algorithm that
runs at the MEC orchestrator (MEO) and
considers the mobility prediction of vehicles
when assigning computing resources to the
running application instances.
The rest of the article is organized as follows.

The following section presents the state of the art
on the usage of MEC to support vehicle collision
detection and avoidance systems. Following that,
we describe our proposed framework in terms
of mobility prediction model as well as resource
assignment algorithm. We then devote a section
to the performance evaluation of the proposed
framework evaluation and the obtained results
analysis. Finally, conclusions are drawn.

Related Work
Employing the MEC system to optimize the colli-
sion detection and avoidance service in IoV has
rarely been explored in the literature. Only a few
works exist. These works usually start by collecting
vehicles’ mobility information in real time before
detecting collisions and alerting the concerned
vehicles. In [4], the authors address one of the
relevant classes of automotive services, called
extended virtual sensing (EVS) services, which,
among others, shows the benefit of using edge
computing resources in the context of autono-
mous driving. In particular, the authors focus on
the EVS application that supports vehicle colli-
sion avoidance at intersections before describing
its implementation using the OpenAirInterface
MEC platform [5]. The EVS application identifies
possible collisions by discovering in real time the
distances between vehicles.

An enhanced collision avoidance (eCA) ser-
vice is proposed in [6]. eCA is deployed at the
edge of the network and comprises mainly two
algorithms:
•	 Collision Avoidance Algorithm (CAA), which

first determines the vehicle’s next trajecto-
ry via the positional information included
in the periodic beacons and then detects if
two vehicles are on a collision path or not. In

particular, the next vehicles’ trajectories are
predicted by projecting the next vehicles’
positions onto curved or straight segments.
This projection depends on the status of the
blinking lights.

•	 Collision Avoidance Strategy (CAS) notifies
the vehicles potentially involved in a collision
regarding the action needed to avoid it.
In [7], the collision avoidance application for

vehicular networks is extended to benefit vulnera-
ble users (e.g., pedestrians and bicycles) equipped
with smartphones. The authors proposed a MEC-
based collision avoidance system. Through a Basic
Safety Message (BSM), this system periodically
collects users’ information such as position, accel-
eration, speed, and direction in order to estimate
users’ trajectories and avoid collision between
them.

Although the above works addressed the col-
lision avoidance issue between vehicles through
the MEC system, they did not consider the MEC
resources usage given the limited capacity of
MEC hosts compared to centralized cloud serv-
ers. Another drawback is the collision detection
scheme, which depends mainly on the perfor-
mance of the collision avoidance system. In fact,
these works are based on simple schemes to
estimate the next trajectories of mobile users,
for instance, by only determining the distances
between vehicles in real time [4] or reading the
status of the blinking lights [6], while in this article,
we explore the usage of DL to predict vehicles
mobility and use this prediction to improve the
management of MEC computing resources.

Proposed Framework
Architecture

As stated earlier, we assume that the collision
avoidance application is duplicated (i.e., sever-
al instances) and deployed on all the MEC hosts
of a network operator, allowing coverage, with
low-latency access, of a large geographical area.
We recall that a MEC host includes a virtualiza-
tion platform that runs applications’ instances in
the form of virtual machines (VMs) or containers.
Each MEC host has a computing capacity depend-
ing on the used hardware, which is limited com-
pared to a centralized cloud. Figure 1 depicts the
envisioned architecture. We assume that a MEC
host is deployed to cover a specific geographi-
cal location, which corresponds to a set of gNBs
(5G base stations) organized in a tracking area
(TA). A TA is a concept used in cellular networks,
which consists of grouping together a set of cells.
The aim is to optimize the mobility management
algorithm by simplifying the procedures inside
a TA group. In Fig. 1, MEC host1 covers a geo-
graphical location composed of TA1 and TA2. All
connected vehicles moving in this area are served
by the collision avoidance application instantiat-
ed at MEC host1. If a vehicle moves from TA2

It is vital for MEC operators (generally the network operator) to optimize MEC resource usage,
particularly when considering that 5G will rely, among others, on MEC to support services that require

low-latency such as data caching, Virtual and Augmented Reality, and so on. Hence, ensuring an
efficient share of the MEC computing resources is critical.

KSENTINI_LAYOUT.indd 75KSENTINI_LAYOUT.indd 75 6/3/21 12:47 PM6/3/21 12:47 PMAuthorized licensed use limited to: Athens University of Economics and Business. Downloaded on February 15,2022 at 10:17:17 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 202176

to TA3, it will be served by the collision avoid-
ance application instantiated in MEC host2. It is
important to note that the redirection of the traffi c
from collision avoidance application instance 1 to
instance 2 is transparent to the vehicles. Indeed,
to ensure seamless redirection of the traffi c to the
new instance, we rely on Domain Name Service
(DNS). The DNS servers record the IP addresses
of the running application instances along with
their geographical location. Therefore, when a
vehicle tries to connect to the MEC application, it
has to resolve the service’s URL to an IP address.
In this case, the DNS server will send the IP
address of the closest MEC application instance.
To avoid the DNS cache’s impact at the vehicle,
we use a small value of the time to leave (TTL) of
a cache entry, often leading to the resolution of
the URL of a service.

One crucial challenge to successfully deploy
collision avoidance applications in the context
of IoV is to ensure broad coverage of the net-
work with low-latency connectivity. This can be
achieved in 5G by using MEC and duplicating
the application on all the MEC hosts to guaran-
tee broad coverage of the network and hence
the road. Obviously, as the number of applica-
tion instances increases, the consumed overall
MEC resources increases. In this work, we assume
that one instance of the application can effi cient-
ly handle, without increasing the response time,
N connected vehicles. Indeed, the application’s
response time is a critical metric to ensure low
end-to-end latency. In the context of a virtualized
environment in MEC, the collision application
instance will run as a MEC application (MEapp)
on top of a virtualization platform as a container
or a VM. Therefore, an MEapp instance will use a
certain number of computing resources, namely
virtual CPU (vCPU), which should be optimal to
ensure low response time of the running service.
We assume that an MEapp consuming X vCPU
can optimally (keeping a low response time) han-
dle N users. To handle 2N, 2X CPUs are needed.

Later we describe how we can obtain these val-
ues.

To recall, in MEC, the MEO handles the life
cycle management (LCM) and orchestrates the
computing resources of the MEapps. It is in
charge of deploying the MEapps on top of the
virtualized platform at the MEC host. The MEapps
are described using an application descriptor
(AppD), which includes configuration informa-
tion, such as the application image, and the com-
puting resources needed by the application. The
MEO is then in charge of requesting the CPU
resources and updating the request if deemed
appropriate by scaling up or down the needed
CPU, that is, increase or decrease the number of
vCPUs assigned to an MEapp. For more details
on ETSI MEC architecture, interfaces, and compo-
nents, readers may refer to [8].

In this work, our objective is to derive at the
MEO, for each MEapp instance, the needed
number of vCPUs by fi nding a trade-off between
optimizing the MEC host computing resources
and ensuring low response time to optimally
run the service. Intuitively, one solution would
be that each time a vehicle (or a batch of vehi-
cles) has moved from one MEC host to another,
the resource management algorithm running at
the MEO computes the needed vCPUs for each
application instance it manages. However, this
solution requires continuous tracking of vehicles’
mobility at the network layer, which is diffi cult to
enforce. Accordingly, we propose to leverage the
above-mentioned solution with a mobility predic-
tion model using LSTM to anticipate the update
of resources (vCPUs) needed by each MEapp
instance. The aim is to not only optimize the MEC
resources, but also ensure that an MEapp instance
performs optimally (low response time) consider-
ing the number of vehicles connected to it.

The proposed algorithm runs at the MEO, as
shown in Fig. 1. It is composed of two modules.
The fi rst one, namely the mobility prediction mod-
ule, takes as inputs the vehicle GPS coordinates
obtained from the collision avoidance MEapps
(via Mp1 interface [8]) and predicts, through the
LSTM module, the next position of the vehicles.
The second module, namely LCM decision, uses
the predicted next vehicle positions to derive the
needed computing resources (vCPUs) of each
MEapp instance, which allows optimal running of
the collision avoidance service. The MEO enforc-
es the LCM decisions via the MEC edge platform
manager (MEPM), which, according to ETSI, is
in charge of updating the CPUs resources of the
running MEapps through the MEC host/edge vir-
tualization infrastructure manager (MEP/VIM) [8].
The global algorithm runs as follows:
• Initialize the configuration of all MEapp

instances of the collision avoidance applica-
tion with X0 CPUs.

• Epoch Loop
1) Mobility prediction: Receive a batch of GPS

coordinates from the MEapp.
2) Mobility prediction: Predict the new location

of vehicles for epoch t + 1, and hence the
number of users to be connected for each
MEapp instance.

3) LCM: Run a decision algorithm that (1) takes
as inputs the predicted number of served
vehicle per MEapp for t + 1, (2) extracts the

FIGURE 1. The envisioned architecture and deployment.

TA1 TA2 TA3 TA4 TA5

Edge VIM Edge VIM

Collision
Avoidance app

Collision
Avoidance app

Region 1 Region 2

MEC host 2MEC host 1

MEO

Mobility
prediction

LCM
Decision

KSENTINI_LAYOUT.indd 76KSENTINI_LAYOUT.indd 76 6/3/21 12:47 PM6/3/21 12:47 PMAuthorized licensed use limited to: Athens University of Economics and Business. Downloaded on February 15,2022 at 10:17:17 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2021 77

necessary computing resources according
to the predicted number, and (3) changes
the configuration of the MEapp instances
through the MEPM if deemed appropriate.
In the next sections, we detail the mobility and

resources prediction as well as LCM modules.

VehIcles mobIlItY PredIctIon model
To predict the vehicles’ mobility, we use deep
recurrent neural networks (RNNs) with an LSTM
algorithm. The main procedures are the dataset,
designing the neural network, training the neural
network, and testing the network. The three fi rst
steps are described in the following subsections,
while the last step is described in the performance
evaluation section.

Taxi Mobility Data: We use real and public-
ly available taxi trace data, which is composed
of 464,019 records and gathered over 30 days
in San Francisco, California [9]. This dataset was
collected in May 2008 and contains mobility trac-
es in terms of GPS coordinates of approximately
500 taxis. Each taxi is equipped with a GPS mod-
ule and sends periodically, each 10 s, its location
(timestamp, ID, geo-coordinates) to a central serv-
er.

It is worth noting that we consider the San
Francisco map as (n  m) grid cells, and we trans-
late each taxi’s GPS coordinates to a cell ID. The
dataset is used to provide actual taxis’ GPS coor-
dinates to our mobility prediction model in order
to predict the next ones, and hence the vehi-
cles’ next location, which is used as input by the
resource assignment algorithm to update or not
the assigned computing resources to the running
MEapp instances. We use this dataset rather than
simulated GPS coordinates to validate our algo-
rithm under real mobility traces.

Design of the Taxi Mobility Prediction Model:
An RNN with an LSTM algorithm is well suited
to classify, process, and predict time series, given
time lags of unknown duration [10]. In fact, RNN
with LSTM is capable of learning long-term depen-
dencies between input data by using an internal
memory to remember past data in memory. This
makes it suitable for our problem to predict the
next location of vehicles (Cell IDs) based on the
past one.

Figure 2 illustrates our LSTM-based vehicle
mobility prediction model. The prediction process
comprises three main steps. The input vehicle’s
trajectory is fi rst processed by a fully connected
input layer with 56 neurons. Each vehicle’s posi-
tion (Cell ID) is mapped to a 56-dimensional fea-
ture tensor. Then the resulting sequence is sent to
a deep RNN composed of three stacked LSTM
layers, each with 56 neurons.

Each LSTM layer considers the previous LSTM
layer’s output as input and feeds its output to the
next LSTM layer. Finally, a fully connected output
layer with 45 neurons maps the output of the last
LSTM layer to the cell ID, corresponding to the
predicted vehicle’s cell ID of the next time step,
lt+1. We argue for the usage of 45 neurons due
to the fact that we divided the San Francisco map
into 45 cells,

Finally, the training of the model phase aims
to minimize the distance between the predict-
ed and real location of vehicles (Cell ID). Hence,
we choose the mean squared error (MSE) as the

loss function and adopt the Stochastic Gradient
Descent algorithm to update the neural network
parameters [11].

lcm resources AssIGnment
As indicated earlier, the LCM module runs the
decision algorithm, which may request resourc-
es update for the running instances of the colli-
sion avoidance MEapp. Let assume v(), loc(), u()
as vectors that represent the vCPU used by an
MEapp, the location of an MEapp (MEC server
ID), and the number of vehicles connected to
an MEapp, respectively. The index of the vector
corresponds to the collision avoidance MEapp
instance number. We note by v_t, u_t the value
of the vectors at epoch t. At the initial epoch (t
= 0), we note v_0 = {c0, c0, …, c0}, and u_0 = {0,
.., 0}, where c0 corresponds to the initial confi gu-
ration of the MEapp (i.e., number of vCPUs), and
u_0 is the initial number of connected vehicles to
the collision avoidance application. The decision
algorithm is detailed in Algorithm 1, where N is
the number of instances, Change() is a vector of
Boolean, and C(X) is a function that gives the nec-
essary vCPUs to optimally handle X users. C(X)
is an integer value between 1 and M. Note that
C(X) can be derived by benchmarking an instance
of the collision avoidance application, which can
be obtained by simulation or using a real deploy-
ment. The C(X) function aims to indicate the num-
ber of users that can be handled by one instance
while ensuring the computing latency is very low,
hence reducing the response time.

First, the decision algorithm considers as input
the predicted number of vehicles to be served by
each MEapp instance for the next epoch. Second,
it verifies if the current number of vCPUs used
by the MEapp is not optimal (more resources are
needed or overusage of the resources). If so, an
update of the resources is requested. Finally, for
all the MEapp instances that need to be updated,
a request is sent to the MEPM.

PerFormAnce eVAluAtIon
We divide the performance analysis of the pro-
posed framework into two parts: the performance
and accuracy of the mobility prediction module,
and the LCM resource assignment performance.

FIGURE 2. Basic LSTM-based prediction model of
vehicle locations.

Input trajectory of k points:

Input sequence : X′ 1

Input Layer

LSTM

LSTM

LSTM

Prediction result:

l't+1

Output Layer

-

>

>

-

KSENTINI_LAYOUT.indd 77KSENTINI_LAYOUT.indd 77 6/3/21 12:47 PM6/3/21 12:47 PMAuthorized licensed use limited to: Athens University of Economics and Business. Downloaded on February 15,2022 at 10:17:17 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 202178

For the fi rst part, we used the Tensorfl ow engine
to implement our RNN with the LSTM-based pre-
diction model [12]. In addition, we compared
our learning model with two other learning algo-
rithms:
• RNN with gated recurrent unit (GRU) model,

which is similar to LSTM, but has fewer
parameters than LSTM, as it lacks an output
gate [13]

• Convolutional neural network (CNN) model,
a deep learning algorithm designed to pro-
cess arrays of data that can also be applied
for time series forecasting problems [14]

Table 1 presents the considered parameters to
compare the three algorithms. For the sake of fair-
ness in terms of comparison, the three algorithms
share the same activation function and optimizer
(stochastic gradient descent).

For the second part, we simulated a distributed
MEC system that covers the city of San Francisco.
The city map has been divided into (n  m) grid
cells. We assume that the grid cells are covered
by six MEC hosts, and each host is in charge of
covering a set of cells. Furthermore, we assume
that each collision avoidance instance needs one
vCPU to manage two vehicles. It should be noted

that this number can be fixed by benchmarking
the application in real deployment or by simula-
tion. Finally, we suppose that each MEC host has
15 vCPUs, which means that an MEapp instance
may get a maximum of 15 vCPUs; thus, it can
manage up to 30 vehicles. We then compare our
resources assignment scheme to a static scheme
that assigns a fi xed number of vCPUs (10) to each
MEapp instance, whatever the vehicle density (i.e.,
the number of vehicles to be served by a MEapp
instance). We focus on two main metrics to val-
idate our scheme: overloaded MEapp instances
(i.e., the demand exceeds server capacity in terms
of vCPU resources) and overprovisioned MEapp
instances (i.e., less than 20 percent of an MEapp’s
vCPU resources are used); which corresponds to
a high response time of the application instance-
and a non-optimal usage of the MEC host com-
puting resources, respectively.

mobIlItY PredIctIon eVAluAtIon
Figure 3a compares the considered learning algo-
rithms’ performance in terms of MSE on the test
dataset, aiming at validating the performance of
our prediction model using unseen data, that is,
data that the models have not seen before. We
remark that our LSTM-based model minimizes
the MSE compared to the other algorithms even
when we increase the number of test samples.
We also observe that CNN and RNN with GRU
generate almost the same performance. To val-
idate these results, we depict in Fig. 3b a com-
parison between the real and predicted cars’ cell

TABLE 1. Implementation parameters.

Parameters Values

Dataset

Number of records 464,019

Number of cars 500

Collection time period May 2008

Percentage of training set 80% of the dataset

Percentage of test set 20% of the dataset

Deep learning

Deep learning tool Tensorfl ow

LSTM timestamp window 60

Activation functions
Relu (hidden layers)
Softmax (output layer)

Optimizer
Stochastic gradient descent
(SGD)

Loss function Mean squared error

Learning rate 0.01

Dropout 0.2

Batch size 50 samples

Number of epoch [20, 60] epochs

MEC

Number of MEC hosts 6 hosts

Number of vCPUs 15 vCPUs

FIGURE 3. Performance comparison between learning algorithms: a) mean
squared error on the test dataset; b) real and predicted cell ID values.

KSENTINI_LAYOUT.indd 78KSENTINI_LAYOUT.indd 78 6/3/21 12:47 PM6/3/21 12:47 PMAuthorized licensed use limited to: Athens University of Economics and Business. Downloaded on February 15,2022 at 10:17:17 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2021 79

ID values of 10 test samples. Mostly, we notice
that the predicted cell IDs using the LSTM-based
model are similar to the real cell ID values. How-
ever, RNN with GRU and CNN algorithms fail
to predict the correct cell ID for some test sam-
ples (e.g., test samples ID = 2, 3, 8, and 9). These
results confi rm Fig. 3a’s results, that is, the effi cien-
cy and the accuracy of the LSTM-based model in
predicting cars’ cell IDs.

resource AssIGnment eVAluAtIon
Figures 4a and 4b represent the vehicle densi-
ty under the coverage of each MEC host (and
hence the number of vehicles to be served by
an MEapp instantiated at the MEC host) during a
rush hour (from 8 a.m. to 9 a.m.), and the number
of overloaded MEapp instances during that hour,
respectively. The number of overloaded MEapp
instances is a critical metric for the service-lev-
el performance as an overloaded MEapp means
high response time, which degrades the perfor-
mance and may lead to safety issues. From Fig.
4a, we observe that the vehicle density is high;
most of the MEapp has more than 20 vehicles
to serve, which requires more than 10 vCPUs.
We remark in Fig. 4b that our scheme keeps the
number of overloaded MEapp instances very low
compared to the static scheme. We argue this by
the fact that the LSTM-based model can predict
the density of vehicles in each group of cells and
hence can anticipate the needed vCPU resources
of the collision avoidance instances (i.e., MEapp
instances), which allows adapting to the vehi-
cle density to be served. However, by fixing the
vCPU value to be used by each MEapp instance,
the static scheme results in a high number of over-
loaded MEapp instances. This is mainly due to the
fact that the demand (vehicle density) exceeds
the MEapp instances’ capacity (i.e., 20 vehicles),
which can clearly be observed in Fig. 4a.

Figures 5a and 5b illustrate the vehicle den-
sity during low traffic hours (from 3 p.m. to 4
p.m.) and the number of overprovisioned MEapp
instances during that hour, respectively. From Fig.
5a, we observe that the vehicle density is low,
and most of the MEC host covers fewer than 10
vehicles, which requires only 5 vCPUs. We notice
from Fig. 5b that again, our scheme minimizes
the number of overprovisioned MEapp instances
compared to the static scheme. In fact, anticipat-
ing the required resources also helps to reduce
the number of overprovisioned MEapp instances,
as the LCM computes exactly the needed number
of vCPUs to use with the current vehicle density
to serve. However, in the static scheme, several
MEapps are overprovisioned. Only 5 of 10 vCPUs
are used to manage the current vehicle density,
which leaves 5 unused that cannot be assigned to
another MEapp instance in the MEC host.

To summarize, we can deduce that our
resource assignment algorithm’s performance
depends mainly on the accuracy of the LSTM-
based prediction model. The generated results
show the efficiency of our LSTM-based model
to estimate the number of vehicles at each cell,
which in turn improves the efficiency of our
resource assignment algorithm in forecasting
exactly the needed resources by each MEapp
instance, hence improving the overall resource
of the MEC host. Contrariwise, the static scheme

uses the same computing resources, whatever
the density of vehicles, to serve for all the MEapp
instances, which leads to degrading both the MEC
computing resource usage and the service perfor-
mance.

conclusIon
In this work, we introduce an AI-empowered
framework that aimed to improve the manage-
ment of MEC resources (mainly computing)
when deploying vehicle collision detection and
avoidance service in IoV. The framework aims
to fi nd a trade-off between improving the overall
usage of MEC resources and guaranteeing that
each instance of the deployed vehicle collision
detection and avoidance application is assigned
enough resources to optimally run (i.e., low
response time). To fi nd this trade-off , our frame-
work uses RNN with LSTM to predict vehicle
density at each cell and then computes the exact
computing resources needed by each instance of
the application.

We built our RNN with LSTM-based model
and evaluated our framework using a real data-
set of vehicle mobility in a big city. The obtained

FIGURE 4. Performance Evaluation of our Resources Assignment Algorithm
(8am-9am); a) Vehicle Density per MEC Host; b) Overloaded MEapp
instances.

KSENTINI_LAYOUT.indd 79KSENTINI_LAYOUT.indd 79 6/3/21 12:47 PM6/3/21 12:47 PMAuthorized licensed use limited to: Athens University of Economics and Business. Downloaded on February 15,2022 at 10:17:17 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 202180

results show the accuracy of our prediction model
in estimating the exact number of vehicles at each
group of cells and the effi ciency of the resource
allocation resource to optimize both the overall
MEC resources and the application performance.

One of our future work directions is to per-
form position prediction in a distributed way,
using distributed learning, which will allow the
vehicle to make the prediction locally.

AcknoWledGments
This work has been partially supported by the
European Union’s H2020 MonB5G (grant no.
871780) project and the ANR Chist-era Leading
Edge project.

reFerences
[1] H. Cao et al., “A 5G v2x Testbed for Cooperative Automat-

ed Driving,” Proc. 2016 IEEE VNC, 2016, pp. 1–4.
[2] H. Ma et al., “Cooperative Autonomous Driving Oriented

MEC-Aided 5g-v2x: Prototype System Design, Field Tests
and Ai-Based Optimization Tools,” IEEE Access, vol. 8, 2020,
pp. 54,288–54 302.

[3] A. Huang et al., “Low Latency MEC Framework for SDN-
Based LTE/LTE-A Networks,” Proc. IEEE IICC 2017, Paris,
France, May 21–25, 2017, pp. 1–6.

[4] G. Avino et al., “A MEC-Based Extended Virtual Sensing for
Automotive Services,” IEEE Trans. Network and Service Man-
agement, vol. 16, no. 4, 2019, pp. 1450–63.

[5] S. Arora, P. A. Frangoudis, and A. Ksentini, “Exposing Radio
Network Information in a MEC-in-NFV Environment: The
RNISAAS Concept,” Proc. 5th IEEE Conf. Network Soft-
warization, Paris, France, June 24–28, 2019, C. Jacquenet et
al., Eds. 2019, pp. 306–10.

[6] M. Malinverno et al., “An Edge-Based Framework for
Enhanced Road Safety of Connected Cars,” IEEE Access, vol.
8, 2020, pp. 58,018–31.

[7] M. Malinverno et al., “MEC-Based Collision Avoidance for
Vehicles and Vulnerable Users,” 2019.

[8] A. Ksentini and P. Frangoudis, “Toward Slicing-Enabled
Multi-Access Edge Computing in 5G,” IEEE Network, vol. 34,
no. 1, Jan./Feb. 2020, pp. 99–105.

[9] M. Piorkowski, N. Sarafi janovic-Djukic, and M. Grossglaus-
er, “CRAWDAD Dataset EPFL/Mobility (v. 2009-02-24)”;
https://crawdad.org/epfl /mobility/20090224, downloaded
Feb. 2009.

[10] S. Hochreiter and J. Schmidhuber, “Long Short-Term Mem-
ory,” Neural Comp., vol. 9, no. 8, Nov. 1997, pp. 1735–80.

[11] C. De Sa et al., “Understanding and Optimizing Asynchro-
nous Low-Precision Stochastic Gradient Descent,” Proc.
2017 ACM/IEEE 44th Annual Int’l. Symp. Computer Architec-
ture, 2017, pp. 561–74.

[12] P. Goldsborough, “A Tour of Tensorfl ow,” 2016.
[13] K. Cho et al., “Learning Phrase Representations Using RNN

Encoder-Decoder for Statistical Machine Translation,” 2014.
[14] B. Zhao et al., “Convolutional Neural Networks for Time

Series Classifi cation,” J. Systems Engineering and Electronics,
vol. 28, no. 1, 2017, pp. 162–69.

bIoGrAPhIes
BOUZIANE BRIK received his Ph.D degree from Laghouat and La
Rochelle Universities, France, in 2017. He is currently working
as an associate professor at Burgundy University and DRIVE Lab-
oratory. He has been working on network slicing in the context
of the H2020 European project on 5G. His research interests
also include the Internet of Things (IoT), IoT in industrial sys-
tems, smart grid, and vehicular networks.

ADLEN KSENTINI is an IEEE Communications Society Distin-
guished Lecturer. He obtained his Ph.D. degree in computer
science from the University of Cergy-Pontoise in 2005. Since
March 2016, he is a professor in the Communication Systems
Department of EURECOM. He has been working on several EU
projects on 5G, network slicing, and MEC.

FIGURE 5. Performance evaluation of our resources assignment algorithm (3
p.m.–4 p.m.): a) vehicle density per MEC host; b) overprovisioned MEapp
instances.

KSENTINI_LAYOUT.indd 80KSENTINI_LAYOUT.indd 80 6/3/21 12:47 PM6/3/21 12:47 PMAuthorized licensed use limited to: Athens University of Economics and Business. Downloaded on February 15,2022 at 10:17:17 UTC from IEEE Xplore. Restrictions apply.

