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Abstract
Collision detection and avoidance between 

vehicles is one of the key services envisioned in 
the Internet of Vehicles. Such services are usual-
ly deployed at the multi-access edge computing 
(MEC) to ensure low-latency communication and 
thus guarantee real-time reactions to avoid colli-
sions between vehicles. In order to maximize the 
coverage of the road and ensure that all vehicles 
are connected to an optimal MEC host (in terms 
of geographical location), the collision avoid-
ance application needs to be instantiated on all 
the MEC hosts. This may add a burden on the 
computing resources available at the latter. In this 
article, we propose an AI-empowered framework 
that aims to optimize the computing resources at 
the MEC hosts. Our framework uses deep learn-
ing to predict the vehicle density to be served 
by a MEC host and derive the exact computing 
resources required by the collision detection 
application to run optimally. We evaluate the pro-
posed framework using a real dataset represent-
ing vehicle mobility in a big city. Obtained results 
show the accuracy of our prediction model, and 
hence the efficiency of our resources assignment 
framework to exactly deduce the optimal com-
puting resources needed by each instance of the 
application. 

Introduction
In the vision of 5G and the Internet of Vehicles 
(IoV), connected vehicles and autonomous driv-
ing are among the key envisioned applications; 
they impact not only mobile operators as well 
as car manufacturers business, but also everyday 
life [1]. Connected vehicles and autonomous 
driving involve several components, such as sen-
sors, actuators, and applications, which need to 
coordinate in order to achieve the envisioned 
autonomy of vehicles. Among the critical services 
toward autonomous driving is the collision detec-
tion/avoidance system. It consists of continuous-
ly collecting data from vehicles and using these 
data to predict collisions and communicate alerts 
or send commands to vehicles in order to avoid 
collisions with other vehicles. The collision detec-
tion/avoidance service comprises an application 
that runs at the vehicles and collects data, such 
as GPS coordinates, speed, and acceleration, 
and a remote application hosted at the cloud 
infrastructure that runs a collision detection algo-

rithm. The latter may send control commands to 
the vehicles, when deemed appropriate, such as 
reduce speed, change direction, or brake. One 
of the main requirements to run the collision 
avoidance service, in 5G and beyond, is to dis-
pose of a low-latency connection between the 
client and server sides of the application, that is, 
between the vehicles and the remote applica-
tion sitting in the infrastructure. To ensure low-la-
tency communication, it is envisioned to deploy 
several instances of the collision application, for 
instance, at the road intersections and close to 
base stations using multi-access edge comput-
ing (MEC) [2]. This ensures that each vehicle is 
connected to the closed application instance, 
which guarantees low-latency communication. 
MEC consists of deploying computation capabil-
ity (hosts) close to the end users, for instance, in 
the vicinity of base stations [3]. Thus, all data can 
be treated locally without involving the remote 
cloud server, hence reducing latency and the 
traffic to carry throughout the network. MEC 
hosts are distributed all over the network, consti-
tuting a distributed and low-latency computation 
resource for delay-sensitive applications like vehi-
cle collision detection/avoidance applications. 
Indeed, the latter need low-latency communi-
cation with remote vehicles since the control 
commands, such as brake or reduce speed, need 
to be received by the vehicles in near real time 
to react to any threat and avoid collisions. As 
mentioned earlier, one pertinent solution is to 
locate several instances of the collision detec-
tion application at the MEC, hence reducing the 
end-to-end communication latency. The different 
instances can be used to cover all the road inter-
sections; each vehicle shall always be in contact 
(connected) with an instance of the application. 
However, duplicating the number of instances of 
the application may add a burden on the MEC 
host computing resources, including CPU usage, 
memory, storage, and so on. It is worth noting 
that MEC host resources are limited compared 
to central cloud servers. In this context, it is vital 
for MEC operators (generally network operators) 
to optimize the MEC resource usage, particularly 
when considering that 5G will rely on, among 
others, MEC to support services that require low 
latency such as data caching and virtual/aug-
mented reality (VR/AR). Hence, ensuring effi-
cient sharing of the MEC computing resources 
is critical. 
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In this article, we propose a novel framework 
that relies on deep learning (DL) to predict vehi-
cles’ mobility and accordingly assign comput-
ing resources to the vehicle collision detection 
application instances, aimed at better optimizing 
the overall MEC resources and ensuring optimal 
functioning of the service (i.e., guaranteeing low 
response time). The proposed framework pre-
dicts using DL, and more precisely long short-term 
memory (LSTM), the mobility of the vehicles, 
and, according to their positions in the network, 
it derives the needed MEC resources: on one 
hand, increasing MEC resources for the collision 
avoidance application instances that serve a high 
number of vehicles; on the other hand, reducing 
these resources for the instances that cover a low 
number of connected vehicles. The contributions 
of this article are as follows:
•	 Define an AI-empowered framework that 

relies on European Telecommunications 
Standards Institute (ETSI) MEC to optimally 
deploy the vehicle collision detection and 
avoidance service.

•	 Train and build a DL module based on LSTM, 
using a real dataset to predict the vehicles’ 
mobility.

•	 Devise a resource assignment algorithm that 
runs at the MEC orchestrator (MEO) and 
considers the mobility prediction of vehicles 
when assigning computing resources to the 
running application instances.
The rest of the article is organized as follows. 

The following section presents the state of the art 
on the usage of MEC to support vehicle collision 
detection and avoidance systems. Following that, 
we describe our proposed framework in terms 
of mobility prediction model as well as resource 
assignment algorithm. We then devote a section 
to the performance evaluation of the proposed 
framework evaluation and the obtained results 
analysis. Finally, conclusions are drawn.

Related Work
Employing the MEC system to optimize the colli-
sion detection and avoidance service in IoV has 
rarely been explored in the literature. Only a few 
works exist. These works usually start by collecting 
vehicles’ mobility information in real time before 
detecting collisions and alerting the concerned 
vehicles. In [4], the authors address one of the 
relevant classes of automotive services, called 
extended virtual sensing (EVS) services, which, 
among others, shows the benefit of using edge 
computing resources in the context of autono-
mous driving. In particular, the authors focus on 
the EVS application that supports vehicle colli-
sion avoidance at intersections before describing 
its implementation using the OpenAirInterface 
MEC platform [5]. The EVS application identifies 
possible collisions by discovering in real time the 
distances between vehicles.

An enhanced collision avoidance (eCA) ser-
vice is proposed in [6]. eCA is deployed at the 
edge of the network and comprises mainly two 
algorithms: 
•	 Collision Avoidance Algorithm (CAA), which 

first determines the vehicle’s next trajecto-
ry via the positional information included 
in the periodic beacons and then detects if 
two vehicles are on a collision path or not. In 

particular, the next vehicles’ trajectories are 
predicted by projecting the next vehicles’ 
positions onto curved or straight segments. 
This projection depends on the status of the 
blinking lights. 

•	 Collision Avoidance Strategy (CAS) notifies 
the vehicles potentially involved in a collision 
regarding the action needed to avoid it.
In [7], the collision avoidance application for 

vehicular networks is extended to benefit vulnera-
ble users (e.g., pedestrians and bicycles) equipped 
with smartphones. The authors proposed a MEC-
based collision avoidance system. Through a Basic 
Safety Message (BSM), this system periodically 
collects users’ information such as position, accel-
eration, speed, and direction in order to estimate 
users’ trajectories and avoid collision between 
them. 

Although the above works addressed the col-
lision avoidance issue between vehicles through 
the MEC system, they did not consider the MEC 
resources usage given the limited capacity of 
MEC hosts compared to centralized cloud serv-
ers. Another drawback is the collision detection 
scheme, which depends mainly on the perfor-
mance of the collision avoidance system. In fact, 
these works are based on simple schemes to 
estimate the next trajectories of mobile users, 
for instance, by only determining the distances 
between vehicles in real time [4] or reading the 
status of the blinking lights [6], while in this article, 
we explore the usage of DL to predict vehicles 
mobility and use this prediction to improve the 
management of MEC computing resources.

Proposed Framework
Architecture

As stated earlier, we assume that the collision 
avoidance application is duplicated (i.e., sever-
al instances) and deployed on all the MEC hosts 
of a network operator, allowing coverage, with 
low-latency access, of a large geographical area. 
We recall that a MEC host includes a virtualiza-
tion platform that runs applications’ instances in 
the form of virtual machines (VMs) or containers. 
Each MEC host has a computing capacity depend-
ing on the used hardware, which is limited com-
pared to a centralized cloud. Figure 1 depicts the 
envisioned architecture. We assume that a MEC 
host is deployed to cover a specific geographi-
cal location, which corresponds to a set of gNBs 
(5G base stations) organized in a tracking area 
(TA). A TA is a concept used in cellular networks, 
which consists of grouping together a set of cells. 
The aim is to optimize the mobility management 
algorithm by simplifying the procedures inside 
a TA group. In Fig. 1, MEC host1 covers a geo-
graphical location composed of TA1 and TA2. All 
connected vehicles moving in this area are served 
by the collision avoidance application instantiat-
ed at MEC host1. If a vehicle moves from TA2 

It is vital for MEC operators (generally the network operator) to optimize MEC resource usage,  
particularly when considering that 5G will rely, among others, on MEC to support services that require 

low-latency such as data caching, Virtual and Augmented Reality, and so on. Hence, ensuring an  
efficient share of the MEC computing resources is critical.
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to TA3, it will be served by the collision avoid-
ance application instantiated in MEC host2. It is 
important to note that the redirection of the traffi  c 
from collision avoidance application instance 1 to 
instance 2 is transparent to the vehicles. Indeed, 
to ensure seamless redirection of the traffi  c to the 
new instance, we rely on Domain Name Service 
(DNS). The DNS servers record the IP addresses 
of the running application instances along with 
their geographical location. Therefore, when a 
vehicle tries to connect to the MEC application, it 
has to resolve the service’s URL to an IP address. 
In this case, the DNS server will send the IP 
address of the closest MEC application instance. 
To avoid the DNS cache’s impact at the vehicle, 
we use a small value of the time to leave (TTL) of 
a cache entry, often leading to the resolution of 
the URL of a service.

One crucial challenge to successfully deploy 
collision avoidance applications in the context 
of IoV is to ensure broad coverage of the net-
work with low-latency connectivity. This can be 
achieved in 5G by using MEC and duplicating 
the application on all the MEC hosts to guaran-
tee broad coverage of the network and hence 
the road. Obviously, as the number of applica-
tion instances increases, the consumed overall 
MEC resources increases. In this work, we assume 
that one instance of the application can effi  cient-
ly handle, without increasing the response time, 
N connected vehicles. Indeed, the application’s 
response time is a critical metric to ensure low 
end-to-end latency. In the context of a virtualized 
environment in MEC, the collision application 
instance will run as a MEC application (MEapp) 
on top of a virtualization platform as a container 
or a VM. Therefore, an MEapp instance will use a 
certain number of computing resources, namely 
virtual CPU (vCPU), which should be optimal to 
ensure low response time of the running service. 
We assume that an MEapp consuming X vCPU 
can optimally (keeping a low response time) han-
dle N users. To handle 2N, 2X CPUs are needed. 

Later we describe how we can obtain these val-
ues. 

To recall, in MEC, the MEO handles the life 
cycle management (LCM) and orchestrates the 
computing resources of the MEapps. It is in 
charge of deploying the MEapps on top of the 
virtualized platform at the MEC host. The MEapps 
are described using an application descriptor 
(AppD), which includes configuration informa-
tion, such as the application image, and the com-
puting resources needed by the application. The 
MEO is then in charge of requesting the CPU 
resources and updating the request if deemed 
appropriate by scaling up or down the needed 
CPU, that is, increase or decrease the number of 
vCPUs assigned to an MEapp. For more details 
on ETSI MEC architecture, interfaces, and compo-
nents, readers may refer to [8].

In this work, our objective is to derive at the 
MEO, for each MEapp instance, the needed 
number of vCPUs by fi nding a trade-off  between 
optimizing the MEC host computing resources 
and ensuring low response time to optimally 
run the service. Intuitively, one solution would 
be that each time a vehicle (or a batch of vehi-
cles) has moved from one MEC host to another, 
the resource management algorithm running at 
the MEO computes the needed vCPUs for each 
application instance it manages. However, this 
solution requires continuous tracking of vehicles’ 
mobility at the network layer, which is diffi  cult to 
enforce. Accordingly, we propose to leverage the 
above-mentioned solution with a mobility predic-
tion model using LSTM to anticipate the update 
of resources (vCPUs) needed by each MEapp 
instance. The aim is to not only optimize the MEC 
resources, but also ensure that an MEapp instance 
performs optimally (low response time) consider-
ing the number of vehicles connected to it. 

The proposed algorithm runs at the MEO, as 
shown in Fig. 1. It is composed of two modules. 
The fi rst one, namely the mobility prediction mod-
ule, takes as inputs the vehicle GPS coordinates 
obtained from the collision avoidance MEapps 
(via Mp1 interface [8]) and predicts, through the 
LSTM module, the next position of the vehicles. 
The second module, namely LCM decision, uses 
the predicted next vehicle positions to derive the 
needed computing resources (vCPUs) of each 
MEapp instance, which allows optimal running of 
the collision avoidance service. The MEO enforc-
es the LCM decisions via the MEC edge platform 
manager (MEPM), which, according to ETSI, is 
in charge of updating the CPUs resources of the 
running MEapps through the MEC host/edge vir-
tualization infrastructure manager (MEP/VIM) [8]. 
The global algorithm runs as follows:
• Initialize the configuration of all MEapp 

instances of the collision avoidance applica-
tion with X0 CPUs.

• Epoch Loop
1) Mobility prediction: Receive a batch of GPS 

coordinates from the MEapp.
2) Mobility prediction: Predict the new location 

of vehicles for epoch t + 1, and hence the 
number of users to be connected for each 
MEapp instance.

3) LCM: Run a decision algorithm that (1) takes 
as inputs the predicted number of served 
vehicle per MEapp for t + 1, (2) extracts the 

FIGURE 1. The envisioned architecture and deployment.
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necessary computing resources according 
to the predicted number, and (3) changes 
the configuration of the MEapp instances 
through the MEPM if deemed appropriate.
In the next sections, we detail the mobility and 

resources prediction as well as LCM modules.

VehIcles mobIlItY PredIctIon model
To predict the vehicles’ mobility, we use deep 
recurrent neural networks (RNNs) with an LSTM 
algorithm. The main procedures are the dataset, 
designing the neural network, training the neural 
network, and testing the network. The three fi rst 
steps are described in the following subsections, 
while the last step is described in the performance 
evaluation section.

Taxi Mobility Data: We use real and public-
ly available taxi trace data, which is composed 
of 464,019 records and gathered over 30 days 
in San Francisco, California [9]. This dataset was 
collected in May 2008 and contains mobility trac-
es in terms of GPS coordinates of approximately 
500 taxis. Each taxi is equipped with a GPS mod-
ule and sends periodically, each 10 s, its location 
(timestamp, ID, geo-coordinates) to a central serv-
er. 

It is worth noting that we consider the San 
Francisco map as (n  m) grid cells, and we trans-
late each taxi’s GPS coordinates to a cell ID. The 
dataset is used to provide actual taxis’ GPS coor-
dinates to our mobility prediction model in order 
to predict the next ones, and hence the vehi-
cles’ next location, which is used as input by the 
resource assignment algorithm to update or not 
the assigned computing resources to the running 
MEapp instances. We use this dataset rather than 
simulated GPS coordinates to validate our algo-
rithm under real mobility traces.

Design of the Taxi Mobility Prediction Model: 
An RNN with an LSTM algorithm is well suited 
to classify, process, and predict time series, given 
time lags of unknown duration [10]. In fact, RNN 
with LSTM is capable of learning long-term depen-
dencies between input data by using an internal 
memory to remember past data in memory. This 
makes it suitable for our problem to predict the 
next location of vehicles (Cell IDs) based on the 
past one.

Figure 2 illustrates our LSTM-based vehicle 
mobility prediction model. The prediction process 
comprises three main steps. The input vehicle’s 
trajectory is fi rst processed by a fully connected 
input layer with 56 neurons. Each vehicle’s posi-
tion (Cell ID) is mapped to a 56-dimensional fea-
ture tensor. Then the resulting sequence is sent to 
a deep RNN composed of three stacked LSTM 
layers, each with 56 neurons.

Each LSTM layer considers the previous LSTM 
layer’s output as input and feeds its output to the 
next LSTM layer. Finally, a fully connected output 
layer with 45 neurons maps the output of the last 
LSTM layer to the cell ID, corresponding to the 
predicted vehicle’s cell ID of the next time step, 
lt+1. We argue for the usage of 45 neurons due 
to the fact that we divided the San Francisco map 
into 45 cells, 

Finally, the training of the model phase aims  
to minimize the distance between the predict-
ed and real location of vehicles (Cell ID). Hence, 
we choose the mean squared error (MSE) as the 

loss function and adopt the Stochastic Gradient 
Descent algorithm to update the neural network 
parameters [11].

lcm resources AssIGnment
As indicated earlier, the LCM module runs the 
decision algorithm, which may request resourc-
es update for the running instances of the colli-
sion avoidance MEapp. Let assume v(), loc(), u() 
as vectors that represent the vCPU used by an 
MEapp, the location of an MEapp (MEC server 
ID), and the number of vehicles connected to 
an MEapp, respectively. The index of the vector 
corresponds to the collision avoidance MEapp 
instance number. We note by v_t, u_t the value 
of the vectors at epoch t. At the initial epoch (t
= 0), we note v_0 = {c0, c0, …, c0}, and u_0 = {0, 
.., 0}, where c0 corresponds to the initial confi gu-
ration of the MEapp (i.e., number of vCPUs), and 
u_0 is the initial number of connected vehicles to 
the collision avoidance application. The decision 
algorithm is detailed in Algorithm 1, where N is 
the number of instances, Change() is a vector of 
Boolean, and C(X) is a function that gives the nec-
essary vCPUs to optimally handle X users. C(X) 
is an integer value between 1 and M. Note that 
C(X) can be derived by benchmarking an instance 
of the collision avoidance application, which can 
be obtained by simulation or using a real deploy-
ment. The C(X) function aims to indicate the num-
ber of users that can be handled by one instance 
while ensuring the computing latency is very low, 
hence reducing the response time. 

First, the decision algorithm considers as input 
the predicted number of vehicles to be served by 
each MEapp instance for the next epoch. Second, 
it verifies if the current number of vCPUs used 
by the MEapp is not optimal (more resources are 
needed or overusage of the resources). If so, an 
update of the resources is requested. Finally, for 
all the MEapp instances that need to be updated, 
a request is sent to the MEPM.

PerFormAnce eVAluAtIon
We divide the performance analysis of the pro-
posed framework into two parts: the performance 
and accuracy of the mobility prediction module, 
and the LCM resource assignment performance. 

FIGURE 2. Basic LSTM-based prediction model of 
vehicle locations.
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For the fi rst part, we used the Tensorfl ow engine 
to implement our RNN with the LSTM-based pre-
diction model [12]. In addition, we compared 
our learning model with two other learning algo-
rithms: 
• RNN with gated recurrent unit (GRU) model, 

which is similar to LSTM, but has fewer 
parameters than LSTM, as it lacks an output 
gate [13]

• Convolutional neural network (CNN) model, 
a deep learning algorithm designed to pro-
cess arrays of data that can also be applied 
for time series forecasting problems [14]

Table 1 presents the considered parameters to 
compare the three algorithms. For the sake of fair-
ness in terms of comparison, the three algorithms 
share the same activation function and optimizer 
(stochastic gradient descent). 

For the second part, we simulated a distributed 
MEC system that covers the city of San Francisco. 
The city map has been divided into (n  m) grid 
cells. We assume that the grid cells are covered 
by six MEC hosts, and each host is in charge of 
covering a set of cells. Furthermore, we assume 
that each collision avoidance instance needs one 
vCPU to manage two vehicles. It should be noted 

that this number can be fixed by benchmarking 
the application in real deployment or by simula-
tion. Finally, we suppose that each MEC host has 
15 vCPUs, which means that an MEapp instance 
may get a maximum of 15 vCPUs; thus, it can 
manage up to 30 vehicles. We then compare our 
resources assignment scheme to a static scheme 
that assigns a fi xed number of vCPUs (10) to each 
MEapp instance, whatever the vehicle density (i.e., 
the number of vehicles to be served by a MEapp 
instance). We focus on two main metrics to val-
idate our scheme: overloaded MEapp instances 
(i.e., the demand exceeds server capacity in terms 
of vCPU resources) and overprovisioned MEapp 
instances (i.e., less than 20 percent of an MEapp’s 
vCPU resources are used); which corresponds to 
a high response time of the application instance-
and a non-optimal usage of the MEC host com-
puting resources, respectively. 

mobIlItY PredIctIon eVAluAtIon
Figure 3a compares the considered learning algo-
rithms’ performance in terms of MSE on the test 
dataset, aiming at validating the performance of 
our prediction model using unseen data, that is, 
data that the models have not seen before. We 
remark that our LSTM-based model minimizes 
the MSE compared to the other algorithms even 
when we increase the number of test samples. 
We also observe that CNN and RNN with GRU 
generate almost the same performance. To val-
idate these results, we depict in Fig. 3b a com-
parison between the real and predicted cars’ cell 

TABLE 1. Implementation parameters.

Parameters Values 

Dataset 

Number of records 464,019  

Number of cars 500  

Collection time period May 2008 

Percentage of training set 80% of the dataset 

Percentage of test set 20% of the dataset 

Deep learning

Deep learning tool Tensorfl ow 

LSTM timestamp window 60 

Activation functions
Relu (hidden layers) 
Softmax (output layer)

Optimizer
Stochastic gradient descent 
(SGD) 

Loss function Mean squared error 

Learning rate 0.01 

Dropout 0.2 

Batch size 50 samples 

Number of epoch [20, 60] epochs 

MEC

Number of MEC hosts 6 hosts 

Number of vCPUs 15 vCPUs

FIGURE 3. Performance comparison between learning algorithms: a) mean 
squared error on the test dataset; b) real and predicted cell ID values.
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ID values of 10 test samples. Mostly, we notice 
that the predicted cell IDs using the LSTM-based 
model are similar to the real cell ID values. How-
ever, RNN with GRU and CNN algorithms fail 
to predict the correct cell ID for some test sam-
ples (e.g., test samples ID = 2, 3, 8, and 9). These 
results confi rm Fig. 3a’s results, that is, the effi  cien-
cy and the accuracy of the LSTM-based model in 
predicting cars’ cell IDs.

resource AssIGnment eVAluAtIon
Figures 4a and 4b represent the vehicle densi-
ty under the coverage of each MEC host (and 
hence the number of vehicles to be served by 
an MEapp instantiated at the MEC host) during a 
rush hour (from 8 a.m. to 9 a.m.), and the number 
of overloaded MEapp instances during that hour, 
respectively. The number of overloaded MEapp 
instances is a critical metric for the service-lev-
el performance as an overloaded MEapp means 
high response time, which degrades the perfor-
mance and may lead to safety issues. From Fig. 
4a, we observe that the vehicle density is high; 
most of the MEapp has more than 20 vehicles 
to serve, which requires more than 10 vCPUs. 
We remark in Fig. 4b that our scheme keeps the 
number of overloaded MEapp instances very low 
compared to the static scheme. We argue this by 
the fact that the LSTM-based model can predict 
the density of vehicles in each group of cells and 
hence can anticipate the needed vCPU resources 
of the collision avoidance instances (i.e., MEapp 
instances), which allows adapting to the vehi-
cle density to be served. However, by fixing the 
vCPU value to be used by each MEapp instance, 
the static scheme results in a high number of over-
loaded MEapp instances. This is mainly due to the 
fact that the demand (vehicle density) exceeds 
the MEapp instances’ capacity (i.e., 20 vehicles), 
which can clearly be observed in Fig. 4a. 

Figures 5a and 5b illustrate the vehicle den-
sity during low traffic hours (from 3 p.m. to 4 
p.m.) and the number of overprovisioned MEapp 
instances during that hour, respectively. From Fig. 
5a, we observe that the vehicle density is low, 
and most of the MEC host covers fewer than 10 
vehicles, which requires only 5 vCPUs. We notice 
from Fig. 5b that again, our scheme minimizes 
the number of overprovisioned MEapp instances 
compared to the static scheme. In fact, anticipat-
ing the required resources also helps to reduce 
the number of overprovisioned MEapp instances, 
as the LCM computes exactly the needed number 
of vCPUs to use with the current vehicle density 
to serve. However, in the static scheme, several 
MEapps are overprovisioned. Only 5 of 10 vCPUs 
are used to manage the current vehicle density, 
which leaves 5 unused that cannot be assigned to 
another MEapp instance in the MEC host.

To summarize, we can deduce that our 
resource assignment algorithm’s performance 
depends mainly on the accuracy of the LSTM-
based prediction model. The generated results 
show the efficiency of our LSTM-based model 
to estimate the number of vehicles at each cell, 
which in turn improves the efficiency of our 
resource assignment algorithm in forecasting 
exactly the needed resources by each MEapp 
instance, hence improving the overall resource 
of the MEC host. Contrariwise, the static scheme 

uses the same computing resources, whatever 
the density of vehicles, to serve for all the MEapp 
instances, which leads to degrading both the MEC 
computing resource usage and the service perfor-
mance.

conclusIon
In this work, we introduce an AI-empowered 
framework that aimed to improve the manage-
ment of MEC resources (mainly computing) 
when deploying vehicle collision detection and 
avoidance service in IoV. The framework aims 
to fi nd a trade-off  between improving the overall 
usage of MEC resources and guaranteeing that 
each instance of the deployed vehicle collision 
detection and avoidance application is assigned 
enough resources to optimally run (i.e., low 
response time). To fi nd this trade-off , our frame-
work uses RNN with LSTM to predict vehicle 
density at each cell and then computes the exact 
computing resources needed by each instance of 
the application. 

We built our RNN with LSTM-based model 
and evaluated our framework using a real data-
set of vehicle mobility in a big city. The obtained 

FIGURE 4. Performance Evaluation of our Resources Assignment Algorithm 
(8am-9am); a) Vehicle Density per MEC Host; b) Overloaded MEapp 
instances.
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results show the accuracy of our prediction model 
in estimating the exact number of vehicles at each 
group of cells and the effi  ciency of the resource 
allocation resource to optimize both the overall 
MEC resources and the application performance.

One of our future work directions is to per-
form position prediction in a distributed way, 
using distributed learning, which will allow the 
vehicle to make the prediction locally.
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FIGURE 5. Performance evaluation of our resources assignment algorithm (3 
p.m.–4 p.m.): a) vehicle density per MEC host; b) overprovisioned MEapp 
instances.
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