
Towards no regret with no service outages in online
resource allocation for edge computing

Ayman Chouayakh
Huawei Technologies, France

aymanchouayakh90@gmail.com

Apostolos Destounis
Huawei Technologies, France

apostolos.destounis@huawei.com

Abstract—This paper presents a new framework to
deal with the unpredictable nature of demands in
Edge Computing. We formulate the edge resource
reservation problem as a constrained Online Convex
Optimization (OCO) problem with time-varying cost
and constraint functions and introduce a new metric,
termed Outage Fit, to capture the fact that constraint
violation by even a small amount can lead to service
outages. Based on this notion, an online algorithm
which provably learns to avoid service outages and
constraint violations while resulting in a good latency
cost is proposed and numerical results, based on real
data traces showcase the improvement with respect to
the state of the art algorithms.

Index Terms—Online convex optimization, edge
computing, resource allocation.

I. Introduction

Internet of Things (IoT) plays a remarkable role in
improving the quality of life and growing the world’s
economy by introducing new use cases [1]. In many use
cases such as driverless vehicles, the level of latency is
vital [2]. Traditional centralized cloud-based network are
unfit for these applications due to latency that results from
cloud processing. In order to support the deployments of
those systems, Edge Computing (EC) was proposed [3].
EC deploys servers nears the devices in order to extend the
capabilities of computation and network connection from
the cloud to the edge of the network with the ultimate
objective of bringing intelligence to the edge systems to
support the changing IoT environment.

In this context, to deal with uncertainty in dynamic
environments, online learning has emerged as a promising
solution [4]. More specifically, the framework of Online
Convex Optimization (OCO) is an ideal fit for edge com-
puting settings where the network topology and tasks can
vary unpredictably and have unpredictable returns due to
the variation of wireless channel conditions and service
demands. In this paper, we use OCO to make online
resource reservation decisions that lead to low latency.
Since resource reservations are made before the demands
arrive, a challenge, in addition to achieving low latency,
is to learn how to avoid service outages that result from

This work was supported by the CHIST-ERA LeadingEdge
project, grant CHIST-ERA-18-SDCDN-004 through ANR grant
number ANR-19-CHR3-0007-06.

possible under-allocation of resources with respect to the
demand.

In general, OCO seeks to find a sequence of decisions,
that minimizes the sum of convex loss functions over time.
The challenge is that the function itself is revealed to the
decision maker only after the action is chosen and may
vary arbitrarily as if an adversary selected it to disrupt
system control decisions. Due to the lack of information
about the current loss function, the decision maker cannot
select an optimal decision at each time slot. Instead, the
decision maker aims at minimizing the regret [5], i.e., the
performance gap between the online decision sequence and
some performance benchmark.

Most works on OCO benchmark algorithms with static
regret which measures the difference of costs between
the online solution and best static solution in hindsight
[4]. However, static regret is not necessarily a sufficient
metric in dynamic IoT environments. A more suitable
metric is the dynamic regret in which the benchmark
is formed via a sequence of best dynamic solutions for
the instantaneous cost minimization. Recent works [6], [7]
benchmark algorithms with dynamic regret under time-
invariant constraints. However, in real environments we
often have to deal with time-varying constraints. Since
the constraint functions are also revealed after making the
decision, it is impossible to satisfy them at each time slot.
Therefore a more realistic goal is to find a sequence of
online decisions that minimizes the regret and ensures that
the constraints are satisfied in the long term on average
[8]. Most of the papers in this line of work suppose that
constraint violations at some times could be compensated
by strictly feasible decisions at other times. This is appro-
priate only for constraints that have a cumulative nature,
such as in applications with long term energy budgets. But
for other applications, see e.g. [9], constraint violations at
some steps can not be compensated by other times; this
type of constraints is referred to as clipped constraints.

The use of OCO algorithms for online routing and
resource reservation in networks has recently received at-
tention from the research community. Indeed, treating the
traffic demands as controlled by an adversary is a means
to bypass its unpredictable nature and its difficulty to
model. Chen et al. [10] study online resource allocation in a
more general setting, which is applied in [11] for resource
allocation in IoT systems. These works characterize the

static and dynamic regret, as well as constraint violations,
under the model that underprovisioning at some time
instances can be compensated by overprovisioning in other
time instances. A similar setting is examined in [12] for
CPU and memory reservations in a cloud server, where
the cloud resource reservations must satisfy a time-average
constraint for violations (as opposed to instantaneous
ones). Finally, Donassolo et al. [13] focus on the migration
of the components of fog computing tasks and compare
multiple service migration algorithms.

The present paper studies a framework with clipped
time-varying constraints and provides new guarantees for
constraint violations by introducing a new metric termed
Outage Fit. The intuition behind this new metric is that
most of the existing metrics that capture constraint vio-
lations in the literature are not sufficient: we may have
good performances with respect to those metrics even
when constraints are violated at each time slot; see Section
IV for more details. Relative to existing works, the main
contributions of this paper are:

1) We formulate online edge resource reservation as
a constrained online convex problem with time-
varying costs and constraints, by defining the delays
resulting from a resource allocation decision from
queueing-theoretic models. Contrary to prior work,
the constraints should be satisfied at every time
instance, and underprovisioning cannot be compen-
sated by later overprovisioning.

2) We introduce a new metric called outage fit in
order to capture the fact that even small constraint
violations can be undesirable as they lead to service
outages due to unacceptable long delays caused by
overloading some parts of the system.

3) We propose an online algorithm that provably learns
to avoid service outages and achieve asymptotically
zero amount of constraint violations while keeping
the ”no regret” property for the latency cost of the
computation tasks.

II. System model and Problem Formulation
This section presents the system model and formalizes

the resource allocation problem as an OCO problem with
constraints.

Figure 1: Illustration of the edge computing framework.

A. Model components
We consider a network composed of a set L (|L| = L)

of device locations (LOCs), a set B (|B| = B) of Base
Stations (BSs), a set N (|N | = N) of Edge Servers (ESs)
and a remote data center in the cloud. Time is slotted but
each slot is long enough to assume that a large number of
devices and computing tasks have arrived in its duration.
Per time slot t, each location l has an arrival rate of
computing tasks dtl . We make no assumptions on how the
computing demands vary, in order to capture the highly
dynamic and unpredictable conditions that is envisaged in
future IoT and edge computing environments. Devices at
location l can process computing tasks at rate cl, while
Edge Server n can process computation tasks at rate cn.
The objective is to reserve at the beginning of t and for the
rest of the duration of the slot, without a prior knowledge
of traffic demands and channel conditions, the following
resources (see Fig. 1 and Table I):
• Computation tasks from LOC l to BS b: wtl,b ≤ dmax

l .
• Computation tasks at LOC l to be processed locally:
wtl,0 ≤ cl.

• Computation tasks from BS b to be routed to ES n:
ztb,n ≤ z̄b,n.

• Computation tasks from BS b to be routed to the
cloud ztb,c ≤ z̄b,c.

• Computation tasks from ES n to be rerouted to ES
m: ytn,m ≤ ȳn,m.

• Computation tasks from ES n to be rerouted to the
cloud: ytn,c ≤ ȳn,m.

• Computation tasks at EC n to be processed locally:
ytn,n ≤ cn.

• Transmission power from LOC l to BS b: ptl,b ≤ p̄l,b.
• Transmission power from BS b to ES n: ptb,n ≤ p̄b,n.

In addition, the resource allocation decision must satisfy
the following flow conservation constraints∑

l∈L

wtl,b ≤ ztb,c +
∑
n∈N

ztb,n∀b ∈ B∑
b∈B

ztb,n +
∑

m∈N in
n

ytm,n ≤
∑

m∈N out
n

ytn,m + ytn,n + ytn,c∀n ∈ N ,

where N in
n and N in

n represent the sets of edge servers with
in-coming links to edge server n and those with out-going
links from edge server n.

For the rest of the paper, we will denote xt =
(wt, zt,yt,pt,pt)> be the allocation vector. Then, xt ∈ Ω,
where the latter set is defined as the set of all allocation
vectors with non-negative elements x ≥ 0 satisfying the
box and flow conservation constraints above.

B. Cost function
The components of the cost are as follows:
• ctl,0(wtl,0): the mean computation delay of the amount

of traffic wtl,0 processed locally at location l. Since we
assume that the duration of a slot is large enough

for many computation jobs to arrive to the system,
these delays can be given by a standard queueing
theoretic model as proportional to 1

wt
l,0

wt
l,0/cl

1−wt
l,0/cl

. This
is well defined only for wtl,0 < cl, thus, we will use the
following convex extension for cl ≥ wtl,0:

ctl,0(wtl,0) =


1

cl−wt
l,0

, wtl,0 ≤ (1− a)cl
1
acl

+
(
wt

l,0−(1−a)cl

)
a2 , wtl,b ≥ (1− a)cl

.

• ctl,b(wtl,b, ptl,b): the transmission delay of the offloaded
jobs from location l to the base station b. Similar
to the previous cost, the mean transmission delay of
a job is given as 1

Rt
l,b

wt
l,b/R

t
l,b

1−wt
l,b
/Rt

l,b
, where Rtl,b is the

channel capacity between LOC l and BS b. It is
given by Rtl,b = bw log2

(
1 + αtl,bp

t
l,b

)
, where αtl,b is

a parameter that captures interference and noise and
bw is the system bandwidth. Since the channel can
vary unpredictably, we may have that Rtl,b > wtl,b,
in which cases there will be a service outage due to
acceptably high delays (or a flow control mechanism
will start dropping jobs to ensure acceptable delays
to the rest of the transmitted jobs). We will use the
convex extension of this function, ctl,b(wtl,b, ptl,b) =

1
Rt

l,b
−wt

l,b
,
wt

l,b

Rt
l,b
≤ (1− a)

1
aRt

l,b
+
(
wt

l,0−(1−a)Rt
l,b

)2

a2 ,
wt

l,b

Rt
l,b
≥ (1− a)

and handle the service outage caused in cases with
overloads with the constraints defined in II.C.

• ctb,n(ztb,n,ptb,n): the transmission delay ztb,n under the
transmission power ptb,n. The delay depends on the

channel capacity given by Rtb,n = bw log2

(
1 +

αtb,nptb,n
)

, where αtb,n is a parameter that cap-
tures noise and channel conditions on the link.
ctb,n(ztb,n,ptb,n) is similar to ctl,b(wtl,b, ptl,b).

• ctb,c(ztb,c): the mean delay of the offloaded traffic ztb,c
from BS b to the cloud. Specifically, as the computa-
tion delay is usually negligible for data centers, the
latency for cloud offloading is mainly due to the com-
munication delay [11]. Following [14], we suppose that
the transmission time to the cloud is given by dtb,cztb,c ,
where dtb,c denotes the delay of the transmission path
from BS b to the cloud. ctb,c(ztb,c) = dtb,cz

t
b,c

• ctn,n(ytn,n): the mean processing delay of computation
demands ytn,n at ES n is similar to ctl,0(wtl,0) (replacing
cl by cn, cn is the processing capacity of ES n).

• ctn,c(ytn,c): the mean delay of the offloaded amount ytn,c
from ES n to the cloud. Similarly to ctb,c(ztb,c), it cost
is given by: ctn,c(ytn,c) = dtn,cy

t
n,c

Let f t(xt) be the aggregate cost as a result of the

resource reservation xt at slot t. It can be written as

f t(xt) := β1
∑
l∈L

(
ctl,0(wtl,0) +

∑
b∈B

ctl,b(wtl,b, ptl,b)
)

+ β1
∑
b∈B

(
ctb,c(ztb,c) +

∑
n∈N

ctb,n(ztb,n,ptb,n)
)

+ β1
∑
n∈N

(
ctn,n(ytn,n) + ctn,c(ytn,c)

)
+ β2

(∑
l∈L,b∈B

(ptl,b)2 +
∑

b∈B,n∈N

(ptb,n)2
)
,

where β1 and β2 are weights that reflect the relative
importance of the delay and energy consumption.

C. Constraints
In addition to minimizing the cost, a good resource

allocation decision must also ensure that, first, each of
the incoming computation demands will be either served
locally or offloaded to the edge/cloud network, that is

gtl (xt) = dtl − wtl,0 −
∑
b∈B

wtl,b,∀l ∈ L

and, second, that the rates in the wireless access and
channels between the BSs and ESs are enough to carry
all the traffic assigned, that is

gtl,b(wtl,b, ptl,b) = wtl,b − bw log2
(
1 + αtl,bp

t
l,b

)
,∀l, b ∈ L × B

gtb,n(ztb,n,ptb,n) = ztb,n−bw log2
(
1+αtb,nptb,n

)
,∀b, n ∈ B×N .

Notation in summarized in the following table.

L the set of locations
B the set of base stations
N the set of edge servers
dt

l demands of computational tasks at LOC l
wt

l,0 computational tasks from LOC l processed locally
wt

l,b computational tasks from LOC l to BS b

zt
b,n computational tasks from BS b to be routed to ES n

zt
b,c computational tasks from BS b to be routed to the

cloud server
yt

n,m computational tasks from ES n to be routed to ES m

yt
n,c computational tasks from ES n to the cloud server

yt
n,n computational tasks from ES n processed locally

pt
l,b transmission power from LOC l to BS b

pt
b,n transmission power from BS b to ES n

xt xt = (wt, zt,yt,pt, pt) allocation vector
gt(.) time-varying constraint function
f t(.) cost function

Table I: Notations

III. Design Objectives
Since the computing requests can vary arbitrarily, we

make no assumptions and, instead, treat them if controlled
by an adversary who tries to harm the performance of
the system. In this setting, meaningful metrics are no-
tions of regret [4], [5], which quantify the performance of
the algorithm against a benchmark action and fit, which

quantifies how well the constraints are satisfied. We detail
these concepts next.
• Static regret: Static regret is adopted as a metric

by standard OCO schemes. It measures the difference
between the loss incurred by the decisions of an online
algorithm and the best static decision in hindsight x∗:

RegTs =
T∑
t=1

f t(xt)− min
x∈Ω:gt(x)≤0,∀t

T∑
t=1

f t(x)

• Dynamic regret: Here the performance of the on-
line algorithm is compared to the sequence of best
dynamic decisions {xt∗} for the instantaneous cost
minimization, that is:

RegTd =
T∑
t=1

f t(xt)−
T∑
t=1

min
x∈Ω:gt(x)≤0

f t(x) (1)

The dynamic regret is always larger than the static
regret, as the latter is more restricted.

• Fit: The fit is introduced to measure the accumulated
violation of constraints. In our scenario, for the con-
straints related to the transmission rates and channel
capacities in Sec. III.C, constraint violations from one
step can not be compensated by strictly feasible de-
cisions (e.g. overprovisioning) in other steps because
the slots last for a relatively long time and a violation
leads to a service outage due to overloading some
nodes. The most relevant definition of the constraint
fit is therefore an extension of the definition in [9] for
time varying constraints

FitT :=
T∑
t=1

M∑
i=1

[gti(xt)]+ (2)

so that these cancellation effects cannot occur.
The goal of online learning in the literature is to ob-

tain algorithms with the ”no regret” property, that is
algorithms such that the regret and fit scale sublinearly
with the horizon T . However, in our case, even having
FitT = o(T) does not necessarily reflect a good per-
formance. Indeed, an algorithm may have a fit that is
sublinear in T but some (or even all) constraints are
violated by a small amount at every slot, for example if
gti(xt) = O(1/ log(T)). Since a constraint violation even
by a small amount leads to service outages due to unac-
ceptable delays, this is clearly an undesirable operating
point. We, therefore introduce the corresponding notion
of outage fit:

Definition 1 (Outage Fit). We define the outage fit of an
online resource allocation algorithm as the total number of
constraints that have been violated, i.e.

OutageFitT =
T∑
t=1

∑
i

1{gt
i
(xt)≥0}

Having an outage fit that is sublinear with T would lead
to learning to avoid service outages altogether In addition,

the fit is still a meaningful performance metric because an
algorithm with a good outage fit may lead to few but very
severe overflows, which is also undesirable. In addition,
1gt≥0 is not convex. We design an algorithm that resolves
both issues in the next Section.

IV. Online Algorithm
The first step in order to deal with the non-convexity of

the outage fit is to define the function

gtε(x) := 1
ε

(gt(x) + ε1), (3)

which has the following convenient property:

Lemma 1. For any 0 < ε ≤ 1, if lim
T→∞

1
T

T∑
t=1

[1
ε (gt+ ε)]+ =

0 then lim
T→∞

1
T

T∑
t=1

[gt]+ = 0 and lim
T→∞

1
T

T∑
t=1

1gt>0 = 0

Proof. The result is a consequence of the following:
• [1

εg
t + 1]+ > 1

ε [gt]+ ≥ [gt]+
• [1

εg
t + 1]+ ≥ [1

εg
t + 1]+1gt>0 ≥ 1gt>0

Note that gtε are convex (since gt are). In addition, defining

FitTε :=
T∑
t=1

[gtε]+, Lemma 1 states that if FitTε is sub-linear
in T then both the outage fit and the fit are also sub-
linear in T . We therefore propose to use [gε(xt)]+ as the
constraint functions in the online learning problem. We
define the corresponding Lagrangian Ltε(xt,λ

t) = f t(xt)+
[gtε(xt)]+λ

t, whose (sub)gradient is given by

∇xLtε(xt,λ
t) = ∇xf

t(xt) +
∑
i

λti∇x[gti,ε(xt)]+ (4)

We then update the primal and dual variables as

xt+1 = PΩ

(
xt − α∇xLtε(xt,λ

t)
)
, (5)

λt+1 =
[
(
gtε(xt+1)]+

ασ
, (6)

where σ is a parameter chosen such that σ > MG2

ε2 . The
procedure is summarized in Algorithm 1.

Algorithm 1 Online learning algorithm with no regret
and no outages

1: Inputs: Parameters ε, σ and step size α.
2: Initialize primal iterate x1 and dual iterates λ1.
3: for t = 1, · · · , T do
4: Take resource allocation decision xt.
5: The loss f t(xt) and the constraint function gt(xt)

are revealed.
6: Update the primal variables xt+1 according to (5)
7: Update the dual variables λt+1 according to (6)
8: end for

In the rest of this Section, we provide the bounds for
the regret and the fit under Alg. 1. First, we can show

that if the incoming computation demands are bounded
the standard assumptions in the OCO literature, hold:

Lemma 2. Assume the dt ≤ dmax <∞. Then:
1. For every t, the functions f t(x) and gt(x) are convex

and Lipschitz continuous.
2. Function f t(x) is bounded over the set Ω, and has

bounded gradients meaning |f t(x)| ≤ F , ‖∇f t(x)‖ ≤
G and maxn ‖∇gtn(x)‖ ≤ G

3. The radius of the convex set Ω is bounded; i.e.,
‖x− y‖ ≤ R,∀x,y ∈ Ω.

In addition, to provide bounds for the outage fit, we need
an additional assumption, which is essentially a Slater
condition on the constraints:

Assumption 1. Define E := {x ∈ Ω such that gti(x) <
−ε ∀i = 1, ..,M ∀t = 1..T}. Then, given T and ε, E is not
empty.

The performance of Algorithm 1 can be then character-
ized as follows (proof omitted due to lack of space):

Theorem 1. Suppose that the traffic is bounded, assump-
tion A1 is satisfied and that resource allocation decisions
are made according to Algorithm 1 with βε = (1 −
M (G+ε)2

ε2σ). Then the dynamic regret is bounded as:

RegTd ≤ εMCT + RV (x1:T
∗)

α
+ R2

2α + α
(G+ ε)2

ε2
T,

where V (x1:T
∗) = 1

2
∑T
t=1
∥∥xt∗ − xt−1

∗
∥∥ is the accumulated

variation of the per-slot minimizers in the definition of
dynamic regret (1). In addition the outage fit and the fit
are bounded by:

OutageFitT ≤MT 1/2

βε

√
2ασFT + R2

2 σ + α2σ
(G+ ε)2

ε2
T

FitT ≤εM T 1/2

βε

√
2ασFT + R2

2 σ + α2σ
(G+ ε)2

ε2
T

Furthermore, if we choose α = O(T−3/4), ε = O(T−1/4)
and σ = O(T 1/2), then by applying Algorithm 1 we obtain:

RegTd = O(max{T 3/4, T 3/4V (x1:T
∗)}) RegTs = O(T 3/4)

OutageFitT = O(T 7/8) FitT = O(T 5/8)

An online primal-dual algorithm with [gt(xt)]+ in the
Lagrangian (therefore no guarantees on service outages)
would have regret and constraint fit (2) in the order or
O(
√
T) and O(T 3/4), respectively. Therefore, introducing

the outage fit constraint makes the regret of our proposed
algorithm scale worse with T , while the fit scales better.
This is natural since the constraint here is more severe
than (2). In addition, note that in order to obtain a sub-
linear regret, ε must be set as a function of T . For long
horizons T this would mean that ε would be small, so, in
practice, Assumption 1 would be satisfied.

V. Numerical experiments

In this section we test the performances of the proposed
algorithm based on a real dataset published as Open Data
by Telecom Italia in 2014 [15]: The area of Milan was
composed of a grid overlay of 10000 squares. For each
square, the dataset contains mobile users’ activities such
as Internet data connectivity from November 1st, 2013 to
January 1st, 2014 [16]. The dataset was created with a
temporal aggregation of time slots of ten minutes. We take
2 squares as two locations. We generate from this dataset
the demand in each location at each time slot, as shown
in Fig. 4(a). We suppose that there are 2 BSs and 2 ESs.
The delay of the transmission path from BS b to the cloud
(dtb,c) is chosen randomly between 1 and 5 (dtn,c is chosen
similarly). The parameters that capture interference and
noise (αtl,b and αtb,n) are chosen randomly between 1 and
10 at each time slot. We fix bw = 2. The optimal decisions
are obtained using CVXPY [17]. We compare Algorithm
1 with three algorithms from the literature: the algorithm
proposed by Yuan and Lamperski [9] extended for time
varying constraints, the algorithm proposed by Yu et al.
[18] and the saddle-point method proposed by Chen and
Giannakis [19] modified to use full gradient knowledge
instead of bandit feedback.

Figs. 2(a) and 2(b) show the dynamic and the static
regret divided by T . The static regret is sub-linear since
limT→∞

RegT
s

T = 0 as shown in Fig. 2(b). For this setting,
the dynamic regret is linear as we have limT→∞

RegT
d

T ≈
1.1, this is because the dynamic regret is proportional to
the accumulated variation V(x∗1:T) presented in Fig. 4(b),
and since V(x∗1:T) is linear then the dynamic regret is
also linear. The difference between the static and dynamic
regret is shown in Fig. 2(c). That difference is equal to
the cost function of the static benchmark minus the cost
function of the dynamic benchmark. After T = 85, the
difference becomes more important as we have a peak in
demand at T = 85 so the static benchmark will generate
a very high cost function after that point. Figure 3 shows
the fit and the outage fit. We can observe that Algorithm 1
outperforms the other algorithms in terms of fit and outage
fit, as well as that both metrics are sub-linear except for
the time interval [85− 90] for the fit and [40− 90] for the
outage fit. This can be explained as follows: when taking
the action xt at time slot t, the algorithm does not know
neither dtl nor the cost and constrains functions; and has
to estimate the optimal decision xt∗ based on the history
d1..dt−1, f1..f t−1 and g1..gt−1. This may not be helpful
when the demands and those functions deviate from the
past at constant speed at least. Therefore an online algo-
rithm cannot track well the benchmark sequence.

Compared to the baselines, Algorithm 1 may slightly
increase the regret but it greatly ameliorates constraint
violations. Specifically, we can see from Fig. 3(b) that the
outage fit is almost half while the regret remains very
close. The numerical results illustrate that the proposed

0 20 40 60 80 100 120 140 160 180 200

0

50

1

Time T

R
eg

T d
/
T

This work

Yuan and Lamperski [9]

Yu et al. [21]

Chen and Giannakis [22]

(a) Dynamic regret

0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

1

Time T

R
eg

T s
/
T

This work

Yuan and Lamperski [9]

Yu et al. [21]

Chen and Giannakis [22]

(b) Static regret

0 20 40 60 80 100 120 140 160 180 200

0

0.5

1

Time T

(R
eg

d T
−
R
eg

s T
)/
T

(c) Comparison between static and dy-
namic regret of Algorithm 1

Figure 2: Simulation results for the regret of different algorithms.

0 20 40 60 80 100 120 140 160 180 200

0

0.2

0.4

0.6

Time T

F
it
T
/T

This work

Yuan and Lamperski [9]

Yu et al. [21]

Chen and Giannakis [22]

(a) Cumulative constraint fit.

0 20 40 60 80 100 120 140 160 180 200

0.5

1

1.5

2

Time T

O
u
ta
ge
F
it
T
/T

This work [9] [21] [22]

(b) Cumulative number of out-
ages.

Figure 3: Simulation results on constraint violations:

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

Time T

D
em

an
d
s

dt1 dt2

(a) Demands for each location.

0 20 40 60 80 100 120 140 160 180 200

0.5

1

1.5

2

Time T

V
(x

1
:T ∗
)/
T

(b) Variation of the benchmark
used for the dynamic regret.

Figure 4: Data traces and optimal solution.

algorithm can indeed significantly reduce the number of
constraint violations and, consequently, service outages
while having only a small impact on the cost.

VI. Conclusion

In this paper we have formulated the edge resource
reservation problem as a constrained convex optimization
problem with time-varying cost and constraint functions.
We have introduced a new metric, called outage fit, in
order to prevent service outages due to allocating insuf-
ficient resources and proposed an online algorithm for
which we analytically show that it guarantees to learn a
to take resource allocation decisions that cause no service
outages and also have sublinear regret. Numerical results
based on real data traces illustrate the improvement that
results from our algorithm in terms of service outages and
constraint satisfaction. As a future work, we will focus
on bandit convex optimization where the information
available are only the values of the cost and constraints
functions for the resource allocation that was selected.

References
[1] N. Zhang et al., “Dynamic spectrum access in multi-channel

cognitive radio networks,” IEEE Journal on Selected Areas in
Communications, vol. 32, no. 11, pp. 2053–2064, 2014.

[2] H. Ji et al., “Ultra-reliable and low-latency communications in
5g downlink: Physical layer aspects,” IEEE Wireless Commu-
nications, vol. 25, 2018.

[3] Y. C. Hu et al., “Mobile edge computing—a key technology
towards 5g,” ETSI white paper, vol. 11, no. 11, pp. 1–16, 2015.

[4] S. Shalev-Shwartz, “Online learning and online convex optimiza-
tion,” Foundations and trends in Machine Learning, vol. 4, no. 2,
pp. 107–194, 2011.

[5] M. Zinkevich, “Online convex programming and generalized
infinitesimal gradient ascent,” in (ICML-03), 2003, pp. 928–936.

[6] A. Jadbabaie et al., “Online optimization: Competing with
dynamic comparators,” in Artificial Intelligence and Statistics.
PMLR, 2015, pp. 398–406.

[7] E. C. Hall and R. M. Willett, “Online convex optimization in
dynamic environments,” IEEE Journal of Selected Topics in
Signal Processing, vol. 9, no. 4, pp. 647–662, 2015.

[8] M. J. Neely and H. Yu, “Online convex optimization with time-
varying constraints,” arXiv preprint arXiv:1702.04783, 2017.

[9] J. Yuan and A. Lamperski, “Online convex optimization for
cumulative constraints,” in NIPS, 2018.

[10] T. Chen, Q. Ling, and G. B. Giannakis, “An online convex op-
timization approach to proactive network resource allocation,”
IEEE Transactions on Signal Processing, 2017.

[11] T. Chen et al., “Heterogeneous online learning for “thing-
adaptive” fog computing in iot,” IEEE Internet of Things
Journal, vol. 5, no. 6, pp. 4328–4341, 2018.

[12] N. Liakopoulos, G. Paschos, and T. Spyropoulos, “No regret in
cloud resources reservation with violation guarantees,” in IEEE
INFOCOM, 2019.

[13] B. Donassolo et al., “Online reconfiguration of iot applications in
the fog: The information-coordination trade-off,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 33, no. 5, pp.
1156–1172, 2022.

[14] R. Deng et al., “Optimal workload allocation in fog-cloud com-
puting toward balanced delay and power consumption,” IEEE
Internet of Things Journal, 2016.

[15] G. Barlacchi et al., “A multi-source dataset of urban life in the
city of milan and the province of trentino,” Scientific data, vol. 2,
no. 1, pp. 1–15, 2015.

[16] T. Italia, “Telecommunications - SMS, Call, Internet -
MI,” 2015. [Online]. Available: https://doi.org/10.7910/DVN/
EGZHFV

[17] S. Diamond and S. Boyd, “Cvxpy: A python-embedded model-
ing language for convex optimization,” The Journal of Machine
Learning Research, vol. 17, no. 1, pp. 2909–2913, 2016.

[18] H. Yu, M. J. Neely, and X. Wei, “Online convex optimization
with stochastic constraints,” in NIPS, 2017.

[19] T. Chen and G. B. Giannakis, “Bandit convex optimization
for scalable and dynamic iot management,” IEEE Internet of
Things Journal, vol. 6, no. 1, pp. 1276–1286, Feb. 2019.

