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Abstract—This work studies a real-time environment monitor-
ing scenario in the industrial Internet of things, where wireless
sensors proactively collect environmental data and transmit it to
the controller. We adopt the notion of risk-sensitivity in financial
mathematics as the objective to jointly minimize the mean,
variance, and other higher-order statistics of the network energy
consumption subject to the constraints on the age of information
(AoI) threshold violation probability and the AoI exceedances
over a pre-defined threshold. We characterize the extreme AoI
staleness using results in extreme value theory and propose a
distributed power allocation approach by weaving in together
principles of Lyapunov optimization and federated learning (FL).
Simulation results demonstrate that the proposed FL-based
distributed solution is on par with the centralized baseline while
consuming 28.50% less system energy and outperforms the other
baselines.

Index Terms—5G and beyond, industrial IoT, smart factory,
federated learning (FL), age of information (AoI), extreme value
theory (EVT).

I. INTRODUCTION

Environment monitoring and control in smart factory sce-

narios are mission-critical applications in 5G and beyond,

where sensors, meters, and monitors generate and upload data

to a central controller with real-time ultra-low latency. In

particular, for real-time monitoring and control, the elapsed

time since the data was generated is a key factor for the control

performance. Such time duration is referred to as the age of

information (AoI). If the AoI of the controller’s available data

grows unexpectedly, the outcome of the real-time environmen-

tal monitoring and control will be poorly degraded [1]. The

impact of AoI-aware resource allocation has been investigated

in various communication systems [1]–[5]. In [1], a mean-

field game approach was proposed in a dense IoT monitoring

system. The work [2] considered a multi-sensor industrial

IoT (IIoT) scenario with finite blocklength transmission in

which the controller instructs all devices to sample and upload

environment data based on its AoI records. The objective

therein was to minimize the sensors’ power consumption.

Aiming at minimizing the average AoI and average peak AoI

using a Markov decision process. The work [3] investigated the

tradeoff between AoI and energy cost and proposed an action

policy for devices. In [4], the authors assumed that the devices

could not upload data while wirelessly harvesting energy from

the base station. As a result, the AoI exponentially increases

during the energy harvesting period. Finally, the authors in

Figure 1: Sensor-Controller system architecture.

[5] considered a remote monitoring problem trading off the

expected AoI and the AoI threshold violation probability.

While reducing the AoI in a centralized manner, the pro-

posed resource allocation approaches in [1]–[5] incurred not

only supernumerary power for statistical information exchang-

ing but also tremendous signaling overheads, which are not

negligible in ultra-low latency real-time monitoring, e.g., in-

dustrial automation. Under the ultra-low latency constraints,

delegating the transmission decisions to the sensors provides

a more realistic avenue, especially when the data-sampling

time is uncertain. Therefore, while accounting for the AoI

threshold violation and the threshold-exceeding events, our

work aims at proposing a decentralized and proactive power

allocation scheme by minimizing the sensors’ entropic risk

measure energy consumption [6]. We further leverage extreme

value theory at the sensor to characterize the AoI exceedances

over a threshold using the locally observed historical data.

However, the accuracy of characterization is limited by the

amount of the sensor’s data. To improve the accuracy under

limited data availability, we resort to federated learning (FL),

a collaborative and distributed model training framework [7],

[8], and propose an FL-based distributed power allocation

algorithm along with Lyapunov optimization. Numerical re-

sults show that the proposed approach is on par with the

centralized baseline while consuming less system energy for

data transmission and model training.

II. SYSTEM MODEL AND PROBLEM FORMULATION

http://arxiv.org/abs/2012.06860v2


As shown in Fig. 1, we consider an industrial IoT network

with a set K of K intelligent sensors that monitor distinct and

independent (but of the same type) environments and transmit

the sampled data to a controller. We assume that the sensors’

sampling operations are event-triggered by the environmental

changes without any available statistical information. After the

sensor samples the status data, the new data is immediately

transmitted to the controller if the previous data’s uploading

procedure has been completed. Otherwise, the (new) data is

queued in the buffer. Such a queueing time is called the

procrastinated time in this paper. Let us index the sequentially

sampled data of each sensor by i ∈ Z
+ and denote the pro-

crastinated time of the ith data of sensor k ∈ K as ηk(i) ≥ 0.

Then to send the ith data with size N , sensor k allocates

transmission power pk(i) over its dedicated bandwidth B with

the transmission time

tk(i) =
N

B log2
(

1 + hk(i)pk(i)
N0B

)
, (1)

in which hk(i) is the channel gain, including path loss

and channel fading, between sensor k and the controller,

and N0 is the power spectral density of the additive white

Gaussian noise. Further, assume that the controller issues

control commands to the actuator right after receiving the

status data. Hence, we focus on the AoI of the time instant

at which the status data is fully received at the controller.

In this regard, we express the concerned AoI of the ith data

as ak(i) = ηk(i) + tk(i) which incorporates the elapsed

procrastinated and transmission time. The data sampling and

transmitting instances are schematically illustrated in Fig. 2.

Therein, τk(i) denotes the sampling time instant of the ith
data, and the procrastinated time is shown as the overlapping

period. From Fig. 2, we can straightforwardly find ηk(i) =
[τk(i − 1) + ak(i − 1)− τk(i)]

+ with [x]+ = max{x, 0} and

rewrite the AoI in a recursive manner as

ak(i) = [τk(i− 1) + ak(i − 1)− τk(i)]
+ + tk(i). (2)

Since the information ages in consecutive transmissions are

entangled as per (2), we should proactively account for the

impacts of the allocated power on future AoI.

Note that the factory environment varies continuously, in

which the stale information can degrade the control system

performance. As a remedy, we impose a set of constraints

on the AoI in terms of the weighted expectation, AoI outage

probability, and AoI exceedance. We firstly introduce a stal-

eness function from [9] as fk(i) = [ak(i)]
(1−β)

1−β
for the AoI

staleness with a predetermined value β ≤ 0 and then consider

a long-term time-averaged constraint for every sensor k, i.e.,

lim
I→∞

1

I

I
∑

i=1

E[fk(i)] ≤ f0, ∀k ∈ K, (3)

where f0 is a pre-defined threshold. Additionally, we impose

a probabilistic constraint on the AoI for each sensor k as

lim
I→∞

1

I

I
∑

i=1

Pr{fk(i) > f0} ≤ ǫ, ∀k ∈ K, (4)

in which ǫ ≪ 1 is the tolerable threshold violation prob-

Figure 2: The AoI instances with data sampling and trans-
mission. Since only ηk(i + 2) > 0, we have ak(i) = tk(i),
ak(i+ 1) = tk(i+ 1), and ak(i+ 2) = ηk(i+ 2) + tk(i+ 2).

ability. Although a very low occurrence probability of the

AoI exceedance is ensured in (4), the uploaded data with

an extremely large age can hinder the control performance.

To mitigate this effect, a constraint on the AoI exceedances

qk(i) = fk(i)− f0 > 0 is imposed as follows:

lim
I→∞

1

I

I
∑

i=1

E[qk(i)] ≤ e0, ∀k ∈ K. (5)

Here, we define the set of AoI exceedance of sensor k as

Qk , {qk(i)|1{qk(i)>0}, ∀i}, and e0 is a pre-defined threshold.

Finally, taking into account the sensors’ limited-energy, we

aim at minimizing not only the sensors’ average energy

consumption but also the variance for data uploading to reduce

superabundant energy between each sensor. To this end, we

invoke the entropic risk measure 1
ρ
ln(EX [exp(ρX)]), which

incorporates the mean, variance, and higher-order statistics

of X [6], in our global objective, and formulate the studied

optimization problem as follows:

minimize
pk(i)

1

ρ
ln

(

lim
I→∞

1

I

I
∑

i=1

1

K

∑

k∈K

exp(ρEk(i))

)

(6a)

subject to 0 ≤ pk(i) ≤ pmax, ∀i ∈ Z
+, k ∈ K, (6b)

(3), (4), and (5),

where Ek(i) = pk(i)tk(i) denotes sensor k’s energy consump-

tion for transmitting its ith data, ρ > 0 reflects the weights of

the variance and higher-order statistics in risk minimization,

and pmax is the sensor’s data transmission power budget.

Moreover, in the objective (6a), we take the average over time

and sensors instead of expectation in the entropic risk measure.

In the next section, we will utilize Lyapunov optimization

techniques [10] to solve problem (6) since the objective (6a)

and constraints (3), (4), and (5) are long-term time-averaged

functions.

III. FL-BASED DISTRIBUTED POWER ALLOCATION

A. Lyapunov Optimization Framework

In order to ensure the time-averaged constraints by Lya-

punov optimization, we first introduce the virtual queues

Γk(i+ 1) = [Γk(i) + fk(i)− f0]
+, (7)

Υk(i+ 1) = [Υk(i) + [qk(i)− e0]1{qk(i)>0}]
+, (8)

for constraints (3) and (5), respectively. Additionally, by apply-

ing Pr{fk(i) > f0} = E[1{qk(i)>0}] and scaling both sides of



(4) as lim
I→∞

1
I

∑I
i=1 fk(i)E[1{qk(i)>0}] ≤ lim

I→∞

1
I

∑I
i=1 fk(i)ǫ,

the virtual queue

Λk(i+ 1) = [Λk(i) + (1{qk(i)>0} − ǫ)fk(i)]
+ (9)

is considered for the constraint (4). Due to the fact that

minimizing lim
I→∞

1
IK

∑I
i=1

∑

k∈K exp(ρEk(i)) is equivalent

to minimizing (6a), we consider the conditional Lyapunov

drift-plus-penalty

1

K

∑

k∈K

E

[1

2
Φk(i+ 1)Φk(i+ 1)T −

1

2
Φk(i)Φk(i)

T

+ V exp(ρEk(i))
]

, (10)

where Φk(i) = [Γk(i),Υk(i),Λk(i), ∀k ∈ K] is the combined

queue vector for notational simplicity, and (·)T represents the

transpose of a vector. Subsequently, by applying ([Q+y]+)2 ≤
Q2 + 2Qy + y2, we can derive the inequality

(10) ≤
1

K

∑

k∈K

E
[

∆0 + Fk(i) + V exp(ρEk(i))
]

, (11)

in which Fk(i) = θ1k(i)[fk(i)]
2 + θ2k(i)fk(i) with θ1k(i) =

1
2 (1+ǫ2)+(1−ǫ)1{qk(i)>0} and θ2k(i) = Γk(i)−f0−ǫΛk(i)+
[Λk(i)+Υk(i)−f0−e0]1{qk(i)>0}. Additionally, ∆0 = 1

2 [f
2
0−

Γk(i)+ [(f0 + e0)
2 −Λk(i)(f0 + e0)]1{qk(i)>0} is a constant.

Note that the solution of (6) can be obtained by minimizing

the derived upper bound on the conditional Lyapunov drift-

plus-penalty function [10], i.e., (11), in each transmission i by

optimizing over the transmit power pk(i). Furthermore, V ≥ 0
is the tradeoff parameter between the lengths of the virtual

queues and the optimality of the energy consumption in (6).

B. Distributed Power Allocation with Federated Learning for

AoI Exceedances

Obtaining the optimal solution of minimizing the upper

bound (11) requires the global information about Φk(i), ∀k.

However, centrally allocating power (i.e., the centralized

model-training (CENT) scheme in Section IV) consumes

tremendous power overheads on queue state information ex-

changes. To improve power efficiency, we propose a decen-

tralized FL-Based scheme, wherein each sensor k ∈ K locally

allocates its transmit power for each transmission i ∈ Z
+ by

minimizing the individual upper bound of (11),

minimize
pk(i)

V exp(ρEk(i)) + Fk(i) subject to (6b). (12)

In (12), we can straightforwardly prove the convexity of Fk(i),
but exp(ρEk(i)) is non-convex with respect to pk(i). In order

to tractably solve the non-convex problem (12), we adopt the

notion of the convex-concave procedure (CCP) [11] by which

we iteratively convexify the non-convex part exp(ρEk(i))
by the first-order Taylor series expansion with respect to a

reference point p̂k as

exp(ρEk(p̂k))
[

tk(p̂k)
(

1− p̂khktk(p̂k)
N(p̂khk+N0B) ln 2

)

(pk − p̂k) + 1
]

and solve the convexified problem. Specifically, given the

reference point p̂rk in the rth iteration, we focus on

minimize
p̂
r+1
k

V J(p̂rk)p̂
r+1
k + Fk(p̂

r+1
k ) (13a)

subject to 0 ≤ p̂r+1
k ≤ pmax, (13b)

in which J(p̂rk) = exp(ρEk(p̂
r
k))tk(p̂

r
k)
[

1−
p̂r
khktk(p̂

r
k)

N(p̂r
k
hk+N0B) ln 2

]

.

The optimal solution to (13) is subsequently used as the refer-

ence point p̂r+1
k in the next iteration. The initial reference point

p̂0k is randomly selected from (0, pmax]. When |p̂rk−p̂r−1
k | → 0

after a number of iterations, sensor k uses the transmit power

p∗k(i) = p̂rk to upload the ith data and then updates (2) and all

virtual queues (7), (8), and (9).

However, since the AoI exceedance happens rarely, the

deviation of virtual queue (8) between each sensor becomes

severe with local statistics only. To address this issue, we

invoke results from extreme value theory and the principles

of FL. Let us rewrite the virtual queue Υk(i) in (8) as

Υk(i + 1) =

i
∑

j=1

[qk(j)− e0]
+
1{qk(j)>0}

≥
[

∑i
j=1[qk(j)− e0]1{qk(j)>0}

]+

(a)
=

[∑
i
j=1 qk(j)1{qk(j)>0}
∑

i
j=1 1{qk(j)>0}

− e0

]+
∑i

j=1 1{qk(j)>0}

in which the first term in (a) represents the empirical average,

which may have large variance due to limited historical data

of the excess AoI. Nevertheless, if the mean of the AoI

exceedance is available, we can estimate the steady-state

average length of the virtual queue (8).

Theorem 1 (Pickands–Balkema–de Haan theorem [12]).

Given a random variable A with the cumulative distribution

function FA(a) and a threshold a0, as a0 → F−1
A (1), the

excess value Q = A − a0 > 0 can be approximately

characterized by a generalized Pareto distribution (GPD) with

the scale σ > 0 and shape ξ ∈ R parameters. The mean of

the GPD is σ
1−ξ

.

Leveraging the results in Theorem 1, we characterize the

statistics of qk(j) as a GPD whose parameters σ and ξ (i.e., the

mean) can be estimated using maximum likelihood estimation.

Given a sufficient amount of historical data, the GPD model

(i.e., scale and shape parameters) of the excess AoI can be

trained. However, owing to the sparsity of the excess AoI

data at the sensor, it is time-consuming for each sensor to

train the GPD model independently. To overcome this hurdle,

we utilize the FL framework in which all sensors periodically

update their locally-trained model to the controller. Then the

controller aggregates the updated local models and feeds back

the aggregated model to the sensors. Our FL-based model

training is detailed as follows.

Assume that the local-model updating time interval is M ,

and each interval is indexed by m ∈ Z
+. In every updating

time interval, each sensor trains its model locally. In order

to have sufficient independent data for local training, we set

W observation time windows within which the sensor selects

the largest excess AoI as a training sample. The observation

time windows are indexed by w ∈ Z
+, and the window size

is O with M/O = W ∈ Z
+, which should be sufficiently

large to minimize the correlation between the selected data

while being sufficiently small to prevent filtering out the data



overmuch. Moreover, the selected extreme data at sensor k
in the wth time window of the mth time interval is denoted

by q̂m,w
k = maxτk(i)∈T m,w{qk(i)|1{qk(i)>0}}, where T m,w ∈

[M(m−1)+O(w−1),M(m−1)+Ow]. The selected data set

within the mth time interval is denoted by Qm
k = {q̂m,w

k }Ww=1.

After collecting the samples Qm
k , we train the sensor k’s GPD

model θmk = {σm
k , ξmk } via tilted empirical risk minimization

(TERM) [13], i.e.,

minimize
θm
k

L̃(θmk |t,Qm
k )

≡ minimize
θm
k

1

t
ln

(

1

|Qm
k |

∑

Qm
k

G(θmk |Qm
k )−t

)

. (14)

Here, G(σ, ξ|q) = 1
σ

(

1 + ξq
σ

)−( 1
ξ
+1)

is the GPD’s likelihood

function while t is the tilted factor used to leverage the

effects of the outliers in model training. In this regard, by

setting t < 0 in (14), we can account for the outliers and

other extreme events. Subsequently, based on the global model

θm−1 = {σm−1, ξm−1} received in the (m − 1)th interval,

each sensor k updates the local model parameters as per

θmk = θm−1 − δθ∇θm
k
L̃(θmk |t,Qm

k ), (15)

with the initial value θ0 and sends θmk to the controller. In

(15), δθ is the step size. The gradient of L̃(θmk |t,Qm
k ) with

respect to θmk is given by

∇θm
k
L̃(θmk |t,Qm

k ) =

−
∑

Qm
k
∇θm

k
G(θmk |Qm

k )×G(θmk |Qm
k )−t−1

∑

Qm
k
G(θmk |Qm

k )−t
, (16)

and

∂G(θ|Q)
∂σ

=Q−σ
σ3

(

1 + ξQ
σ

)−2− 1
ξ

,

∂G(θ|Q)
∂ξ

=
(1+ ξQ

σ
)
−1− 1

ξ

σξ

(

−(ξ+1)Q
σ+ξQ

+
ln(1+ ξQ

σ
)

ξ

)

.

Here, the notations m and k are neglected for simplicity. The

controller then calculates the global model of the mth updating

time interval as

θm =

∑K
k=1 (|Q

m
k |θmk )

∑K
k=1 |Q

m
k |

. (17)

Finally, after receiving the global feedback model θm, each

sensor k replaces the virtual queue value with

Υk(̂i + 1) =

[

σm

1− ξm
− e0

]+

EK





î
∑

j=1

1{qk(j)>0}



 , (18)

in which î = argmin
∀i

{τk(i) − Mm ≥ 0}, and proceeds

with the next local-model training θm+1
k . The proposed FL-

based distributed power allocation is outlined in Algorithm

1. Therein, each sensor k ∈ K iteratively optimizes the

transmission power pk(ik) for each local-sampled data ik
based on the time instance τk(ik) and the FL updated virtual

queue states A(ik),Γk(ik),Λk(ik),Υk(ik).

IV. NUMERICAL RESULTS

We simulate a factory environment with K = 50 sensors

with 50Hz data-sampling frequency in Poisson. The con-

sidered path loss model is 32.45 + 31.9 log 20 + 20 log 3.5

Algorithm 1 FL-Based Distributed Power Allocation Mechanism

Input: τk(ik) ∀k ∈ K, transmission parameters in (1), β, θ0, δθ,M,O.
Output: p∗

k
(ik), A(ik),Γk(ik),Λk(ik),Υk(ik) ∀ik , ∀k ∈ K.

Initialize: create ik for data indicator, ik = 1, ∀k,
ak(0) = 0, ηk(1) = 0, τk(ik |ik = 0, 1) = 0, ∀k,
{Ak(1), Γk(1),Λk(1),Υk(1)} = 0.

1: for m = 1, 2, ... do // for global model updating interval

2: for k = 1, ..., |K| do

3: w = 1,Qm
k

= {}, // check each observation window

4: if τk(ik) ≤ Mm && w ≤ W then

5: while τk(ik) ≤ M(m− 1) + Ow do
6: update ηk(ik), θ

1

k
(ik), θ

2

k
(ik), θ

3

k
(ik),

7: form uk(ik) by (11) and solve p∗
k
(ik) by CCP.

8: count t∗
k
(ik) by (1), E∗

k
(ik), ak(ik), fk(ik), qk(ik),

9: update state A(ik),Γk(ik),Λk(ik),Υk(ik),
10: ik = ik + 1,
11: end while

12: Count q̂
m,w
k

, update Qm
k

= {Qm
k
, q̂

m,w
k

},
13: w = w + 1,
14: elseQm

k
= {},

15: end if

16: train θm
k

with (15), (16) by Qm
k

and update them to Controller,
17: end for

18: Controller updates θm with θm
k

by (17), and broadcasts to IDs,
19: ∀k,Υk(ik) is replaced with θm by (18).
20: end for

(dB) given 3.5GHz carrier frequency and a 20-meter sensor-

controller distance [14]. The wireless channel experiences

Rayleigh fading with unit variance. The remaining simulation

parameters are N = 3000 bytes, B = 180 kHz, N0 =
−174 dBm, pmax = 23 dBm, β = −2, f0 = 5 × 10−4,

e0 = 10−4, ǫ = 2 × 10−3, M = 30ms, O = 10ms,

θ0 = [0.0002, 0.02], δθ = [10−9, 10−3], and t = −0.1.

For performance comparison, we consider four baselines: i)

Centralized model-training (CENT) scheme which trains the

extreme staleness GPD model at the central controller with

all sensors’ AoI exceedance data; ii) Local model-training

(LOCAL) scheme in which the sensors only train the GPD

model individually without any information exchange; iii)

Non-model-training (NonT) scheme which directly solves

problem (12) without renewing the virtual queue Υk(i) in (8)

via the training result of GPD model; iv) Excess staleness-

agnostic (ESA) scheme which does not take extreme staleness

into consideration, i.e., neglecting constraints (4) and (5) in

problem (6). In addition to the performance of the objec-

tive (6a), we further investigate the expected system energy

consumption E[Esys] = E[Ek] + E[Etrain
comp.] + E[Etrain

tx ],
including the sensor’s monitored data-updating energy Ek,

the computation energy in GPD-model training Etrain
comp. =

10−27f2
cpuNtrlreq, and the energy consumption in model-

uploading Etrain
tx = pmaxNtr/

(

B log2
(

1 + hkpmax

N0B

))

. Here,

fcpu = 2 × 1011 cycle/s and fcpu = 109 cycle/s are the

controller’s and sensor’s computation capabilities for model

training [6]. Ntr = 30 bytes is the single-data size in GPD-

model training, and lreq = 87.8 cycle/bit is the required

computation frequency.

The impact of the tradeoff parameter V in the Lyapunov op-

timization on energy consumption is shown in Fig. 3. We first

examine the performance of the objective (6a) in Fig. 3a as a

function of V . Note that the objective is a decreasing function

of V since the importance of energy reduction increases with
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Figure 3: Energy consumption versus V with ρ = 2.

increasing V . Although CENT outperforms the other schemes

across various V values due to the GPD model training, the

performance of our proposed scheme is close to CENT with

0.48%− 11.26% increments in the objective. Compared with

LOCAL and NonT, the proposed FL scheme decreases the

objective cost up to 5.45% and 5.56%, respectively, showing

the benefit of FL model training. In addition, LOCAL outper-

forms NonT, manifesting the advantage of model training even

without any information exchange. Being agnostic to extreme

staleness, ESA may incur a high instantaneous AoI, resulting

in larger energy consumption. In this regard, ESA has a higher

objective cost (up to 44.75% increase) than the cost of the

proposed scheme.

In Fig. 3b, we further verify the advantages of our proposed

approach in terms of the expected system energy consumption.

In CENT, all sensors have to deliver every observed extreme

staleness data to the controller, consuming high energy for

information exchange. Note that as V increases, all schemes

tend to save more power in environmental data transmission

based on the Lyapunov optimization framework but increases

the occurrence chance of extreme staleness. In this situation,

the CENT sensors have to consume more energy to upload

more model-training data to the controller. Therefore, the
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Figure 4: Energy consumption versus ρ with V = 10−5.

expected system energy of CENT grows gradually with V
in Fig. 3b. In the proposed FL-based approach, since the

sensors train the GPD models locally and only upload the

model parameters to the controller, the energy consumption

is significantly reduced. In this regard, our approach can

save up to 64.11% in system energy compared to CENT.

In contrast with NonT and LOCAL, our approach spends

extra energy on FL model training and information exchange.

Nevertheless, our energy-saving benefit with respect of E[Ek]
compensates this expenditure. The proposed scheme can save

up to 5.82% and 6.21% in system energy then LOCAL and

NonT. The objective performance and expected system energy

consumption by varying ρ are shown in Fig. 4. As per (12), all

the schemes put more focus on energy deduction as ρ grows.

The capability of extreme staleness control is manifested in

Fig. 5. Given a specific amount of expected status-updating

energy E[Ek], the proposed approach, CENT, and LOCAL

benefited from the GPD-model training showcase the lowest

excess staleness values. In contrast, ESA, which is agnostic to

the extreme AoI, has much higher excess staleness. However,

if we further consider the energy consumption in model

training, our proposed approach (compared with CENT and

LOCAL) consumes less energy while achieving the same
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extreme staleness performance.

Finally, we discuss the performance of GPD-model train-

ing in terms of the complementary cumulative distribution

function (CCDF) of extreme staleness in Fig. 6. As shown,

the predicted extreme staleness mean σ/(1 − ξ) is always

higher than the empirical one. The reason is that the predicted

extreme staleness mean values in both schemes are leveraged

to suppress the extreme staleness further. The more precise the

estimation is, the more accurate the decision. The centralized

approach, i.e., CENT, estimates the GPD model closer to the

empirical one, saving more energy to control the extreme

staleness. In this regard, the proposed FL scheme and CENT,

respectively, yield 2.33 × 10−5 and 1.08 × 10−5 in terms

of estimation-statistic mean surplus (ESMS) value between

the trained model and empirical curve. On the other hand,

the localized approach, i.e., LOCAL, has the highest ESMS

8.36× 10−5 due to the lack of global estimation. Such results

reflect on the least objective performance in Fig. 3a and

4a. However, the mean extreme staleness from the proposed

scheme is 3.54% higher than CENT, underscoring that increas-

ing transmission energy based on inaccurate predictions cannot

effectively suppress extreme values.

V. CONCLUSIONS

We studied an industrial IoT network in which the sensors

autonomously and proactively allocate transmit power for

uploading monitored status data. To avoid stale data delivery

hindering the monitoring performance, we have formulated an

entropic risk-minimizing problem for energy consumption sub-

ject to data staleness constraints. By applying extreme value

theory results, we trained an GPD model to obviate extreme

staleness regimes and have further proposed a distributed

FL-based scheme to improve the power efficiency versus its

centralized counterpart. Numerical results have shown that the

proposed FL scheme is on par with the centralized model-

training scheme while consuming significantly less system

energy. Future work will extend the current framework towards

a system that can jointly optimize the data transmission power

and sampling rate rather than obey a default number.
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