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Abstract— Ultra-reliable communication (URC) is a key
enabler for supporting immersive and mission-critical 5G appli-
cations. Meeting the strict reliability requirements of these appli-
cations is challenging due to the absence of accurate statistical
models tailored to URC systems. In this letter, the wireless
connectivity over dynamic channels is characterized via statistical
learning methods. In particular, model-based and data-driven
learning approaches are proposed to estimate the non-blocking
connectivity statistics over a set of training samples with no
knowledge on the dynamic channel statistics. Using principles
of survival analysis, the reliability of wireless connectivity is
measured in terms of the probability of channel blocking events.
Moreover, the maximum transmission duration for a given
reliable non-blocking connectivity is predicted in conjunction
with the confidence of the inferred transmission duration. Results
show that the accuracy of detecting channel blocking events
is higher using the model-based method for low to moderate
reliability targets requiring low sample complexity. In contrast,
the data-driven method yields a higher detection accuracy for
higher reliability targets at the cost of 100× sample complexity.

Index Terms— URC, channel blocking, survival analysis,
statistical learning, 5G.

I. INTRODUCTION

NEXT-GENERATION wireless services, such as mission
and safety critical applications, require Ultra-reliable

communication (URC) that provision certain level of com-
munication services with guaranteed high reliability [1], [2].
Realizing this in the absence of statistical models tailored
to tail-centric URC systems is known to be a daunting
task [3], [4].

Towards enabling URC, the majority of the existing lit-
erature relies on system-level simulations-based brute-force
approaches leveraging packet aggregation and spatial, fre-
quency, and temporal diversity techniques [4], [5] while
some assume perfect or simplified/approximated models of
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the system (i.e., stationary channel and traffic models) [6].
However, such approximations may fail to characterize the
tail statistic accurately, and thus, may inadequate to fulfill the
reliability targets of URC [7]. In this view, machine learning
(ML) techniques have been used in the context of URC includ-
ing low-latency aspects with a focus on channel modeling and
prediction [8]–[11]. These works are mostly data-driven and
assume the availability of large amounts of data. All prior
works focusing on channel modeling can be used to optimize
transmission parameters preventing communication outages
in terms of loss of received signal strength (RSS) due to
channel blockage. Here, a channel blocking event represents
a period during which the RSS remains below a predefined
target threshold and the channel transitions from non-blocking
to blocking events are analogous to the so-called survival
time [12]. Characterizing such channel transitions is useful
to determine highly reliable transmission intervals under the
absence of knowledge of channel statistics, which has not been
done in the existing literature.

The transitions between non-blocking and blocking can
be cast as lifetime events (birth-to-death) of the channels.
Analyzing the time to an event (e.g., a channel transition)
and rate of event occurrence are the prime focuses of survival
analysis [13]. The applications of survival analysis span a
multitude of disciplines including medicine (life expectancy
and mortality rate from a disease), engineering (reliability of
a design/component), economics (dynamics of earnings and
expenses), and finance (financial distress analysis) [14]–[16].
Therein, either model-based or model-free methods can be
adopted. Hence, we adopt the analogy behind survival analysis
to investigate non-blocking connectivity over wireless links.

The main contribution of this work is a novel characteriza-
tion of the statistics of non-blocking connectivity durations
under the absence of knowledge on the dynamic wireless
channel statistics. In this view, we consider a simplified
communication setting consists of a single transmitter (Tx)-
receiver (Rx) pair communicating over dynamic channels with
a fixed transmission power in order to characterize the trans-
mission duration guaranteeing a reliable non-blocking connec-
tivity. The underlying challenge with the above analysis lies
in assuming or acquiring the full knowledge of non-blocking
duration statistics, which is unfeasible. Hence, we address two
fundamental questions: i) how to accurately model the non-
blocking duration statistics without the knowledge of channel
statistics? and ii) how to characterize the confidence bounds
for reliable transmission durations inferred from the devised
non-blocking duration statistics? To this end, we consider an
exemplary scenario of a buyer named Buck who plans to
purchase radio resources for a URC system from a seller
named Seth. Here, Buck needs to evaluate the radio resources
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Fig. 1. An illustration of the channel blocking and non-blocking durations
for a given RSS threshold.

in terms of the transmission periods guaranteeing low blocking
probabilities under different connectivity durations and the
statistics of transmission periods to enable URC. For this
purpose, Seth wishes to reliably evaluate the connectivity
failure statistics, i.e., via survival analysis, using a set of
non-blocking connected duration samples M over dynamic
channels. However, Seth must address key questions related
to the training data set M: i) does it contain sufficient
samples? ii) how confident am I with the reliability measures
obtained using M? and iii) is it beneficial to improve the
prediction confidence by investing in additional sampling?
Towards addressing these questions, we first cast the problem
of finding the maximum transmission duration yielding a
predefined low blockage probability as an optimization prob-
lem. Therein, we adopt a tractable parametric representation
for the probabilistic model of channel failures. To estimate
the parameters, a minimization of a loss function that cap-
tures the gap between the true-yet-unknown channel failure
probability and the parametric representation is formulated.
To minimize the aforementioned loss function, we adopt two
approaches: a model-based approach that assumes a known
prior probabilistic model following Weibull survival analysis,
and a data-driven approach that uses function regression
via neural networks (NNs). For both techniques, wireless
connectivity is analyzed in terms of the conditional failure
statistics, namely the statistics of the time to fail under given
connectivity durations, and their confidence bounds followed
by an evaluation based on simulations.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a one-way communication system in which a Tx
sends data to a Rx over a correlated flat fading channel.
Due to channel and mobility dynamics, the RSS at the Rx
fluctuates over time. For a given target RSS R0, we define
the non-blocking connectivity probability (also called survival
probability) as Pr(Rt ≥ R0) where Rt represents the RSS over
the duration [0, t]. In URC, the goal is to identify a predictive
period τ > 0 that guarantees a low conditional blocking
probability after observing a non-blocking connectivity over
a duration of t , i.e., Pr(Rτ+t < R0|Rt ≥ R0) ≤ ε given an
outage probability ε, as illustrated in Fig. 1.

In this considered system, neither the channel dynamics
nor the statistics of non-blocking connectivity are known
a priori. Our objective is to obtain a reliable measure of
the cumulative density function (CDF) of the blocking events
(or the complementary cumulative density function (CCDF)
of the connected durations), i.e., F(t) = Pr(Rt ≤ R0).
Once F(t) is characterized, the conditional failure probability

at an observation period t will be:

Zt (τ ) = Pr(Rτ+t < R0|Rt ≥ R0) = F(t+τ )−F(t)
1−F(t) . (1)

Then, determining the transmission duration followed by the
observation period of t for a given target reliability 1 − ε,
is formulated as follows:

max τ, subject to Zt (τ ) ≤ ε. (2)

For a known and analytically tractable F(·), the solution of
(2) is given by τ � = F−1

(
ε + (1− ε)F(t)

)− t . However, F(·)
is unknown due to the absence of channel statistics and the
lack of accurate modeling of time-varying system parameters
(e.g., network geometry, mobility, scattering coefficients, etc.),
and thus, needs to be estimated.

III. ESTIMATING F(·)
To estimate the non-blocking duration distribution, a para-

metric representation of the CDF Fθ (·) with parameter vector
θ can be adopted. Here, θ is calculated using a set M of M
connected duration samples. For this purpose, a loss function
L(·) that captures the gap between the estimated and actual
CDFs needs to be minimized over the sample set M as
follows:

minθ LM(Fθ , F). (3)

Towards solving (3), we consider two approaches: i) model-
based approach: assuming a known prior probabilistic model
to derive the distribution parameters θ corresponding to the
prior distribution using (3) and ii) data-driven approach: using
NN-based function regression over M where θ is the NN
model to be learned from the data.

A. Model-Based Approach

The events of non-blocking durations can be interpreted
as the lifetimes of connected periods that are terminated
by the drop of RSS below a target threshold, which then
is followed by blocking events. In this view, the statistical
tools of survival analysis are suitable for characterizing the
non-blocking connectivity durations. In particular, Weibull
distribution is the most widely used lifetime data model due
to its relation to various families of distributions (uniform,
exponential, Rayleigh, generalized extreme value, etc.) [13].
Accordingly, the non-blocking connectivity durations can be
modeled by a Weibull distribution,

Fθ (t) = 1 − e−(t/σ )ξ , (4)

where θ = (σ, ξ) is parameterized by the scale (σ ) and
shape (ξ ) parameters. To find the most likely parameter
values that fit (4) to M, we use maximum likelihood esti-
mation (MLE). In this regard, we define the loss function
LM(θ) = − ∑

m log fθ (tm) where fθ (t) = ξ
σ

( t
σ

)ξ−1
e−(t/σ )ξ

is the Weibull probability distribution function (PDF). Due
to the non-convex nature of the objective function, the esti-
mated parameters θ̂ can be found using numerical methods
(e.g., stochastic gradient decent). Using θ̂ , the failure proba-
bility in (1) becomes:

Zt (τ, θ̂) = 1 − exp
(
(t/σ̂ )ξ̂ − ((t + τ )/σ̂ )ξ̂

)
. (5)
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Then, the solution for (2) will be:

τ � = σ̂
(
(t/σ̂ )ξ̂ − ln(1 − ε)

)1/ξ̂ − t . (6)

Note that the reliable transmission duration τ � hinges on the
training data set M. Therefore, it is important to provide
the margins of confidence for the derived values. To evaluate
the confidence bounds, we adopt the likelihood ratio bounds
method [17] given as:

2
(
LM(θ) − LM(θ̂)

) ≥ χ2
γ,M , (7)

where χ2
γ,M are the Chi-squared statistics with probability

γ and degree-of-freedom M , and θ is the unknown true
parameter, respectively. For example, γ = 0.95 yields 95%
confidence interval of the parameter estimation. Since we
are interested in evaluating the confidence for τ � rather than
θ = (σ, ξ), we first find σ = ξ

√
(tξ − (t + τ )ξ )/ ln(1 − ε)

using (6) and, then, (7) can be modified as follows:

LM(
ξ

√
(tξ − (t + τ )ξ )/ ln(1 − ε), ξ) − LM(θ̂) = χ2

γ,M

2
. (8)

Note that a closed-form expression cannot be derived for
(8) which calls for numerical solutions (e.g., trust-region
algorithm [18]). Since both τ and ξ are unknown in (8), for
some δ > 0, several priors for ξ from [ξ̂−δ, ξ̂+δ] are selected
first. By solving (8) for each of the above choices, a set of
solutions {τ } is obtained, from which the confidence bounds
of τ � are calculated. In addition to τ �, its mean and variance
can be analytically derived using (5).

Proposition 1: The N th moment of the non-blocking con-
nectivity duration t + τ under the observation duration t is:

E [(t + τ )N ] = σ N e(t/σ )ξ 

(
(t/σ)ξ ; 1 + N/ξ

)
, (9)

where 
(α, β) = ∫ ∞
α xβ−1e−x dx is the upper incomplete

gamma function.
Proof: See Appendix A.

Using the above result, the mean and variance of the remain-
ing connectivity durations at time t can be obtained from
E [t + τ ] − t and E [(t + τ )2] − E

2[t + τ ], respectively.

B. Data-Driven Approach

The main drawback of the model-based approach is its
susceptibility to model drift whereby the statistics of the
actual observations may differ from the Weibull model. Hence,
estimating Fθ (·) by using the empirical distribution of samples
M is preferable. Next, a data-driven approach based on a
NN-based regression is presented.

First, a subset of data samples Mt = {tm |tm ≥ t, tm ∈ M}
is collected for a given observation period t . Then, the empir-
ical distribution of the non-blocking duration samples in Mt
is numerically evaluated so that a set of labeled training data
tuples {(tm, sm)} are generated. Here, sm is the CDF value of
tm calculated using the empirical distribution, which yields
the corresponding failure distribution. The loss function is
the mean square error (MSE) between the true and estimated
failure probabilistic values, i.e., LMt (θ) = 1

Mt

∑
m

(
sm −

Zt (tm, θ )
)2 where Zt (·, θ) is modeled using a multilayer

perceptron (MLP) with model parameters θ . To solve (3), MLP

uses (tm , t2
m, . . . , tn

m) up to an order of n (to avoid under-fitting)
as the input, sm as the output, and the MSE loss LMt (θ) as the
empirical loss function. By training the MLP in a supervised
manner, Zt (·, θ) is derived. Finally, τ � that satisfies Zt = ε is
obtained. Note that the accuracy of Zt (·, θ ) relies on i) both
quality and quantity of Mt , ii) the model complexity of θ ,
and iii) choice of the input size n.

The N th raw moment of the remaining non-blocking con-
nectivity for an observation duration t will be:

E [τ N |t] = ∫ ∞
0 τ N−1

(
1 − Zt (τ, θ )

)
dτ. (10)

First, the conditional probabilities are calculated from the
trained NN model over a sequence of τ = δk remaining
connectivity durations with k ∈ N and small δ > 0.
Then, approximating the integrations in (10) to numerical
summations, the first and second moments of the remaining
connectivity durations can be obtained.

IV. SIMULATION RESULTS AND ANALYSIS

Here, we evaluate the characterization of non-blocking sta-
tistics obtained via the proposed model-based and data-driven
methods. For our simulations, we consider a time correlated
Rayleigh flat fading channel model defined in [19]. While we
define a slotted time-based transmission with a slot duration of
τ0 = 1 ms, for improved measurement accuracy, we consider
a sampling frequency of 4 kHz. For training, up to 10, 000
non-blocking connectivity duration samples are collected and
for testing, additional 30, 000 samples are used. Here, an RSS
threshold of R0 = −8 dB is used for a unit transmit power.
For the data-driven approach, we use an MLP with two fully
connected hidden layers with sizes of ten and six and rectified
linear unit (ReLU) activations. The output layer of the MLP
is a single node with a symmetric saturated linear transfer
function.

Fig. 2 compares the conditional failure probability regres-
sion performance of both the model-based and the data-driven
approaches over the simulated data referred to as “simula-
tion scenario” for different sample complexities, i.e., various
choices of training sample sizes M ∈ {100, 1000, 10 000}.
From Fig. 2a, we observe that the model-based design is
almost invariant over the choices of sample complexities due
to the accurate fit over probabilities above 10−2. As the
probability decreases, the simulation results will deviate from
the trend of higher probabilities. However, the model-based
method, which relies on the prior Weibull model, fails to
capture this deviation. In contrast, the data-driven regression
is susceptible to the lack of training samples as illustrated
in Fig. 2b. Moreover, it can learn the trends using data samples
and thus, the data-driven approach learns the low-probability
behavior of the simulation scenario as well. In addition, Fig. 2b
shows that increasing the order n from one to ten slightly
improves the regression. This improvement is due to the fact
that we consider the input as a tenth order polynomial of the
connectivity duration instead of order one.

Fig. 3 compares the detection of channel blocking events
based on the predicted duration τ � from model-based and data-
driven methods in terms of F-score: F1 =

∑
TP∑

TP+(
∑

FP+∑
FN)/2

based on the events of true positive (TP), false positive (FP),
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Fig. 2. Comparison of the conditional failure probability estimation at
t = 0.3 s for different sample complexities M ∈ {100, 1000, 10000}.

Fig. 3. Detection of blocked events based on the predicted duration τ� at
t = 0.3 s.

and false negative (FN) [20]. We first empirically partition
the test connectivity durations dataset M′ into two groups
for a given reliability target (1 − ε): the positive group M+

ε
consisting of the smallest ε fraction of non-blocking durations
and the rest composes the negative group M−

ε . With this
partitioning, for any test sample m ∈ M′ there are three
observation categories: i) TP: if m < τ� and m ∈ M+

ε , ii) FP:
if m < τ� but m ∈ M−

ε , and iii) FN: if m ≥ τ � with m ∈ M+
ε .

In addition, for the purpose of comparison, a Gaussian process
regression (GPR)-based channel estimation method proposed
in [21] is adopted to predict consecutive non-blocking dura-
tions, which is referred to as the “GPR” baseline. Fig. 3 shows
that as the sample complexity increases, the uncertainty of
the estimated τ � decreases and blocked events are accurately
detected, achieving higher F1. For large ε, the estimated
τ � from the model-based approach can accurately detect the
channel blocking events (i.e., the lower tail) yielding high F1.

Fig. 4. Confidence limits of predictive transmission durations obtained using
the model-based approach for observed durations t ∈ {10, 1000}ms.

As ε decreases, the model-based method based on the Weibull
distribution bias deviates from the actual data distribution
even if the increasing training sample size M increases. From
this result, we observe that the accuracy of channel blocking
detection degrades by factors of 2× to 3× as shown in Fig. 3.
In contrast, the data-driven approach characterizes the lower
tail better than the model-based method when a sufficiently
large number of training data is available. For a small M ,
the detection accuracy of the data-driven method approaches
to zero with decreasing ε, because of the lack of training data
in the positive set M+

ε of the size of εM . Hence, increasing
M = 100 to 1000 and then to 10 000 improves the blocked
event detection accuracy from F1 = 0 to 0.32 and 0.49 at
ε = 10−2 and from F1 = 0 to 0.82 at ε = 10−3, respectively,
highlighting the importance of the sample complexity in data-
driven methods. The GPR baseline outperforms both proposed
methods with M ∈ {100, 1000} only for small reliability
targets ε ≥ 0.05. Due to the uncertainty in GPR, higher
prediction errors can be observed for tighter reliability targets,
resulting in a low F1.

Fig. 4 illustrates the impact of sample complexity on the
confidence bounds of the predicted transmission durations at
t ∈ {0.01, 1} s derived using the model-based approach. Here,
a 95% confidence interval (i.e., γ = 0.95) is used. From
Fig. 4, we can see that MLE with few samples yields large
uncertainty in τ � while the uncertainty decays as M increases
due to the monotonic decreasing nature of χ2

γ,M with M .
This underscores the tradeoff between the model parameter
uncertainty and the cost of data collection.

The impact of the transmit power is investigated in Fig. 5.
Since R0 = −8 dB is used with a unit transmit power,
a 2× and 4× increase in transmit power are captured with R0
of −11 dB and −14 dB, respectively. The effects of increasing
transmit power on the predicted connectivity durations derived
from the model-based approach are presented in Fig. 5a.
Clearly, the non-blocking connectivity can be significantly
enhanced via increased transmission power.

For a given observation duration t , the mean and variance
of the remaining non-blocking connectivity durations over
the simulated data as well as the estimations based on both
the model-based and the data-driven methods are shown
in Figs. 5b and 5c, respectively. Note that the simulation sce-
nario exhibits different trends at low and high t values and
the number of training data samples reduces with increasing
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Fig. 5. Impact of transmit power on the predicted duration (τ�) ensuring (1 − ε) reliability (left), expected time to fail (middle), and its variance (right).

both t and R0. Since the model-based approach is highly
biased to the Weibull model, the accuracy of its mean and
variance estimations is high only in the regimes where the
majority of the training data lies, and degrades with increasing
t and R0 as illustrated in Figs. 5b and 5c. In contrast, due
to having lower bias, the data-driven approach generalizes
throughout all t and R0, but with a price of significant accuracy
losses in the mean and variance estimations.

V. CONCLUSION

In this letter, we have analyzed the non-blocking connec-
tivity of URC systems through the lens of model-based and
data-driven methods in order to estimate connectivity statistics
using a set of non-blocking connectivity duration training sam-
ples. Therein, we have measured the reliability of the connec-
tivity by using statistical tools from survival analysis. We have
also validated our analysis based on simulations. The results
show that the Weibull model-based method can be accurately
estimated with low sample complexity and characterizes well
the tail events without the knowledge on the channel statistics.
In contrast, the data-driven design aligns well with the highly
probable events under large sizes of training data highlighting
the bias-variance tradeoff between the aforementioned two
approaches. Finally, this work provides insights about the
choice of transmit power in terms of channel blocking statis-
tics. Future work will investigate hybrid approaches combining
both data-driven and model-driven techniques.

APPENDIX A
PROOF OF PROPOSITION 1

Let T = t + τ . By differentiating (5), the conditional
PDF is found as ft (T ) = ξ

σ ξ T ξ−1e−(T/σ )ξ e(t/σ )ξ for all
T ≥ t . Then, the N th moment is given by E [T N ] =∫ ∞

t
ξ
σ ξ T N+ξ−1e−(T/σ )ξ e(t/σ )ξ dT . Using the change of vari-

ables with z = (T/σ)ξ and dT = σ z1/ξ−1dz,

E [T N ] =
∫ ∞

(t/σ )ξ
σ N zN/ξ e−ze(t/σ )ξ dz,

= σ N e(t/σ )ξ 

(
(t/σ)ξ ; 1 + N/ξ

)
,

where 
(α, β) = ∫ ∞
α xβ−1e−x dx is the upper incomplete

gamma function.
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