
Performance Evaluation of Federated Learning
over Wireless Mesh Networks with

Low-Capacity Devices

Felix Freitag1, Pedro Vilchez1, Lu Wei2, Chun-Hung Liu3, and Mennan Selimi4

1 Universitat Politècnica de Catalunya, BarcelonaTech, Spain
{felix.freitag, pedro.vilchez}@upc.edu
2 Texas Tech University, Lubbock, TX, USA

luwei@ttu.edu
3 Mississippi State University, Starkville, MS, USA

chliu@ece.msstate.edu
4 Max van der Stoel Institute, South East European University, North Macedonia

m.selimi@seeu.edu.mk

Abstract. Federated learning is a distributed learning technique in which
a machine learning model is trained collaboratively among several nodes.
While the privacy preservation of the training data is one of the impor-
tant promises of federated learning, there is also an opportunity to use
low capacity devices for machine learning model training by taking ad-
vantage of the fact that the training effort is divided among many nodes.
In this paper, we conduct experiments with a federated learning net-
work deployed on several low capacity devices connected to a wireless
mesh network. The measurements show the hardware capacity and link
bandwidth of the clients on the federated learning process. The results
suggest that for heterogeneous networks the federated learning clients
should be extended with more autonomous decision capacities according
to the network and local conditions.

Keywords: edge computing, federated learning

1 Introduction

Federated learning (FL) is a recent approach to train machine learning models
in which many client nodes participate in the model training [1]. Different to
the centralized training approach requiring all training data to be available at
a single location, in FL the client nodes train a machine learning model with
their local data. This circumvents the need for data to leave the node, which has
important advantages for the privacy preservation of the data.

Principally, the training of a neural network model with large datasets re-
quires the availability of important computational resources during the training
process. Federated learning, however, splits the training effort among several
nodes. In the FL scenario, the local dataset at each client is considered to be
shorter, since for instance the data may consist only of the information collected



2

at this node. The lower amount of training data at each node opens the possibility
to train models on low capacity devices, but it also introduces a new challenge to
train models at different clients with non-independent and identically distributed
data (non-IID), which adds complexity to the training process [2] [3].

In this paper, we aim to study the federated learning process on computing
devices consisting of mini-PCs or Single-Board-Computers (SBCs), such as those
found in home environments. Typically, in user environments these computing
devices run as home servers to manage several user-oriented services. Therefore,
these devices are not dedicated exclusively to a machine learning application.
A real scenario for this situation is the Guifi.net community network5, where
some users provide applications on such low-capacity nodes to other users [4].
From this scenario, an important research topic can be motivated: it is important
to understand how federated learning consumes computing resources, since in
non-dedicated home devices, i.e., those running multiple services, the resource
consumption of federated learning must not affect the Quality of Experience
(QoE) the user perceives from other applications running simultaneously in the
device.

In particular we analyze the resource usage of federated learning by means
of experimentation on real devices connected to a wireless mesh network. We
aim to understand better how the different phases of a federated learning round
(i.e., the model exchange and local model training) affect the CPU and memory
consumption of a low capacity device and the traffic in the network.

Therefore, the main contributions of the paper are:

1. We provide results on the computing resource usage of a federated learning
process measured on real distributed low-capacity devices connected to a
wireless mesh network.

2. The analysis of the results suggests the design of an adaptive client node
enabling a context-aware federated learning in wireless mesh networks.

2 Related work

In this section, we review selected works related to the application of federated
learning on low capacity devices and works which suggested mechanisms for the
configuration or adaptability of federated learning.

In [5], an adaptive federated learning approach is proposed. The focus is on
the global aggregation frequency parameter. Specifically, this work proposes a
control algorithm to determine in real time after how many local training epochs
at a node the model data is sent back to the aggregator node. This approach
is different to the typically used fixed global aggregation frequency approach.
The evaluation is performed by simulations and some experiments in real nodes
consisting of 3 Raspberry Pi and 2 laptop computers. We note that the global
aggregation frequency is determined by the aggregator node in a centralized

5 http://guifi.net/

http://guifi.net/


3

fashion, while an alternative could be to determine at each node the individually
most suitable number of training epochs.

In [6], a highly-efficient federated learning framework is presented. The het-
erogeneity of worker nodes given in the context of the IoT is addressed. Two
measures are suggested, which are relaxed worker synchronization for tolerat-
ing dropouts of sporadic workers, and similarity-based worker selection, which
aims to select a subset of the most efficient workers. By calculating the simi-
larity among the received local models, the server can decide to exclude certain
worker nodes for the next training round, e.g., those which may not contribute
sufficiently to the global model. The principal idea is to empower the FL server
to take smarter decisions on how to orchestrate the FL process over the worker
nodes. The proposed system is evaluated in Google Cloud Platform focusing on
the accuracy, but not on how the resource usage is affected.

In [7], a federated learning framework for the IoT is proposed. The specific
application is to detect anomalies in the network traffic of IoT devices. The
scenario is motivated by cybersecurity requirements, in which the communication
overhead of a centralized over-the-cloud approach is unfeasible. For the anomaly
detection, a deep autoencoder model is trained in a federated learning fashion
on each node. The evaluation is performed on real devices, namely Raspberry Pi
model 4 and NVIDIA Jetson Nano. While the evaluation focuses on the accuracy
of the detection, it was also stated that only a small fraction of the 4GB memory
of the Raspberry Pi was used.

The work of Y. Gao et al [8] performs an empirical evaluation of two different
state-of-art machine learning techniques, namely split neural networks (SplitNN)
and federated learning. For an end-to-end evaluation, a variety of datasets, differ-
ent model architectures, multiple clients and various performance metrics were
considered. The learning performance was assessed for two types of distributed
data, imbalanced and non-IID data. Model training was done on Raspberry Pi
devices, where the CPU consumption, memory usage, communication overhead
and training time was measured. From the experiments, the authors conclude
that FL overall perform better in comparison with SplitNN, because of the lower
communication overhead.

From the reviewed related works, it can be seen that there are several ap-
proaches proposed for reducing the computational resource consumption of fed-
erated learning, ranging from changes of the machine leaning model training up
to off-loading of specific services to other platforms. However, there is still a
lack of results on the performance of FL in real environments. Our work aims to
provide practical results by running federated machine learning on low-capacity
devices, providing crucial insight on how to design the federated learning process
for different end user environments.



4

3 Federated learning implementation

3.1 Federated learning model

We use a federated learning architecture consisting of a server as global aggre-
gator and distributed client nodes that train locally an instance of the global
model. Figure 1 shows the federated learning components and illustrates the
principal idea: The aim is to train a global ML model hosted by the federated
learning server. Training data is available locally at the client nodes. For a new
training round, the server sends the current version of the global model to the
client nodes. They train this model for a predetermined number of epochs with
their local data. After the training, the updated model parameters are sent back
to the server. The server then generates a new global model by averaging the
model parameters received from the different clients nodes. The training phase
may have several rounds initiated by the server.

Fig. 1: Federated learning components with interaction between the server and
clients.

3.2 Implementation

The federated learning network we use for the experimentation is implemented
in Python language. The system is composed of two major components, i.e., the
code for the client and the server. In our implementation, the server sends both
the model parameters and the hyperparameters, which relate to the control of
how the training is performed on the clients. These hyperparameters assigned
are the learning rate, number of local training epochs, and batch size. This data
is sent between server and clients in JSON format over http POST messages,
where both the server and the client implement a REST API. The server does
not make a distinction between different client nodes, i.e., all clients receive the



5

same value of the hyperparameters. For both the federated learning server and
the client, we create Docker images in order to instantiate them with Docker
containers on the different devices. The source code of the federated learning
network is available on Github6. Additional information on the code design can
be found in [9].

4 Experimental evaluation of the federated learning
network

4.1 Experimental environment and testbed

We deploy the previously introduced federated learning network on a testbed
of low-capacity computing nodes connected to a wireless mesh network called
GuifiSants7. GuifiSants is part of the Guifi.net community network. The Guifi.net
communication network is an infrastructure of more then 30, 000 interconnected
heterogeneous network devices (wired and wireless), belonging to the thousands
of community network members [10].

Within the Guifi.net communication infrastructure, edge computing services
started around 2015 [4]. These edge devices located at the premises of the com-
munity network member typically host the owner’s specific application services
but also host some community-oriented service for helping manage the network,
such as contributing to network monitoring [11]. In order to have a low energy
consumption, these edge devices are often mini-PCs.

(a) Minix mini-PC. (b) PC Engines APU2.

Fig. 2: Computing nodes of the testbed used for federated learning experiments.

6 https://github.com/eyp/federated-learning-network
7 Live monitor of GuifiSants. http://dsg.ac.upc.edu/qmpsu/index.php

https://github.com/eyp/federated-learning-network
 http://dsg.ac.upc.edu/qmpsu/index.php


6

In order to build a testbed for the federated learning experimentation, we
have connected several Minix mini-PCs8 (Figure 2a) and PC Engines APU29

(Figure 2b), both type of devices with Debian 10 Buster installed, to the GuifiSants
wireless mesh network. As such, they form a testbed which is part of the pro-
duction network and allow to experiment under real-world conditions (Figure
3).

Fig. 3: Testbed infrastructure and approximate bandwidth between the locations.

4.2 Experimentation

The objective of the experimentation is to measure the resource consumption of
federated learning devices interconnected over the wireless mesh network.

For the experiment, the federated learning task to be executed is to train a 6-
layer Convolutional Neural Network (CNN) model of around 420, 000 parameters
with the Chest_X_ray dataset10. Since the testbed nodes are of a low computing
capacity, the clients are configured to train 1 epoch in each round and the number
8 Minix NEO Z83-4 with Intel Atom x5-Z8350 processor and 4GB DDR3 RAM. https:
//minix.com.hk/products/neo-z83-4-pro

9 PC Engines APU2 with AMD Embedded G series GX-412TC processor and 4 GB
DDR3 RAM. https://pcengines.ch/apu2e4.htm

10 Chest X-Ray Images. https://www.kaggle.com/paultimothymooney/
chest-xray-pneumonia

https://minix.com.hk/products/neo-z83-4-pro
https://minix.com.hk/products/neo-z83-4-pro
https://pcengines.ch/apu2e4.htm
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia


7

of images for training and testing are reduced to 200 and 100, respectively. Three
rounds are trained in both experiments.

Experiment 1: Federated learning clients on different hardware.
The objective of this experiment is to observe the behaviour and resource con-
sumption of FL clients when run on different hardware. For this experiment we
run one client in a device of the APU2 cluster e104, and the other client in a
device of the Minix cluster e104 (see Figure 3). The server is deployed on an-
other device in the PC Engines APU2 cluster e104. Figure 4 shows the results.
Comparing the times in Figure 4d to 4f, when the model is exchanged with the
server, it can be seen that the client in the Minix device replies quicker to the
server with the trained model than the client in the APU2.

Experiment 2: Federated learning clients with different link band-
width. In this experiment we aim to observe the effect of different link bandwidth
available at the clients. We chose one device from each of the 5 locations of the
testbed. The FL server is installed in one of the APU2 devices from its cluster
e104. The FL clients are installed on Minix Pisuerga device, Minix Bellvitge de-
vice, a device from the Minix cluster e208, and one from the Minix cluster e104,
in total 4 clients, all on Minix devices.

Figure 5 shows the measured resource consumption. With regards to the
CPU and memory consumption of the clients (Figures 5c, e), the three training
rounds done by each client can be clearly observed by the peaks in the CPU con-
sumption. For the training, almost the complete CPU capacity (the four cores)
are used. The memory consumption is moderate, as being below 1 GB and tak-
ing into account that the devices have 4 GB RAM available. It can be observed
that the FL client Minix Pisuerga (Figure 5c) started with a higher memory con-
sumption compared to the other client (Figure 5e). This is due to the fact that
the Minix Pisuerga client participated already previously in a federated learning
round with the server, while the other clients joined the federated learning net-
work later. The traffic produced during the federated learning rounds is shown
in Figures 5d, f. It reflects the available bandwidth between the locations. For
instance, in the low bandwidth link to the Minix Pisuerga client, the traffic pro-
duced by sending the ML model between the client and server is lower and takes
longer, while in the faster link of the client in the Minix cluster e208 the traffic
due to the model exchange has higher peaks.

Figure 5a, b shows the resource consumption of the FL server. The CPU
consumption in the server is clearly lower than in the clients, where the server
uses approximately 1 core (Figure 5a). The peaks of the CPU consumption seem
to correspond to the communication phases with the clients, in which the model
exchange takes place. The memory consumption of the server with around 0.5
GB is low and lower than the approx. 1 GB memory used by the FL clients. The
traffic shown in Figure 5b represents the model exchanges with the four clients
during the three training rounds. The peaks correspond to the communication
with the high capacity links. It can be observed how the low capacity link (in
the testbed, the link to the Minix Pisuerga client) delays the finalization of the
federated learning rounds.



8

(a) FL server in APU2: CPU and memory
consumption.

(b) FL server in APU2: bandwidth con-
sumption.

(c) FL client in Minix mini-PC: CPU and
memory consumption.

(d) FL client in Minix mini-PC: bandwidth
consumption

(e) FL client in APU2: CPU and memory
consumption.

(f) FL client in APU2: bandwidth con-
sumption

Fig. 4: Federated learning clients in different hardware. Minix device in c) and
d), APU2 in e) and f). Resource consumption in three training rounds.



9

(a) FL server in APU2 cluster e104: CPU
and memory consumption.

(b) FL server in APU2 cluster e104: band-
width consumption.

(c) FL client Minix Pisuerga: CPU and
memory consumption.

(d) FL client Minix Pisuerga: bandwidth
consumption.

(e) FL client in Minix cluster e208: CPU
and memory consumption.

(f) FL client in Minix cluster e208: band-
width consumption

Fig. 5: Federated learning clients with different link bandwidth. Low bandwidth
client in c) and d), high bandwidth client in e) and f). Resource consumption in
three training rounds.



10

5 Conclusions

This paper presented a federated learning deployment using low capacity devices
in a wireless mesh network. The resource consumption of the clients and server
in terms of CPU, memory, and bandwidth consumption were measured. During
the model training at the clients a high CPU consumption that uses the four
cores of the processor was observed, which could be a problem if other applica-
tions run simultaneously on the device for which certain service levels must be
guaranteed to end users. The experiments furthermore showed how a low band-
width link of clients delay the model exchange and thus the finalization of a of
federated learning round, leading to an overall slower model training. Therefore,
for improved performance in such environments with heterogeneous bandwidth
and hardware of the clients, the obtained results suggest to design federated
learning clients that can dynamically adapt the training parameters to enable a
context-aware federated learning.

Acknowledgment

This project has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No 871582 — NGIat-
lantic.eu and was partially supported by the Spanish Government under con-
tracts PID2019-106774RB-C21, PCI2019-111851-2 (LeadingEdge CHIST-ERA),
PCI2019-111850-2 (DiPET CHIST-ERA). The work of C.-H. Liu was supported
in part by the U.S. National Science Foundation (NSF) under Award CNS-
2006453 and in part by Mississippi State University under Grant ORED 253551-
060702. The work of L. Wei is supported in part by the U.S. National Science
Foundation (#2006612 and #2150486).

References

1. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: Concept and
applications. ACM Trans. Intell. Syst. Technol. 10(2) (January 2019)

2. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated Learning: Challenges,
Methods, and Future Directions. IEEE Signal Processing Magazine 37(3) (May
2020) 50–60

3. Ibraimi, L., Selimi, M., Freitag, F.: Bepoch: Improving federated learning perfor-
mance in resource-constrained computing devices. In: IEEE Global Communica-
tions Conference (GLOBECOM). (2021)

4. Baig, R., Freitag, F., Navarro, L.: Cloudy in guifi.net: Establishing and sustaining
a community cloud as open commons. Future Generation Computer Systems 87
(2018) 868–887

5. Wang, S., Tuor, T., Salonidis, T., Leung, K.K., Makaya, C., He, T., Chan, K.:
Adaptive federated learning in resource constrained edge computing systems. IEEE
Journal on Selected Areas in Communications 37(6) (2019) 1205–1221

6. Xu, H., Li, J., Xiong, H., Lu, H.: Fedmax: Enabling a highly-efficient federated
learning framework. In: 2020 IEEE 13th International Conference on Cloud Com-
puting (CLOUD). (2020) 426–434



11

7. Zhang, T., He, C., Ma, T., Ma, M., Avestimehr, S.: Federated learning for internet
of things: A federated learning framework for on-device anomaly data detection
(2021)

8. Gao, Y., Kim, M., Abuadbba, S., Kim, Y., Thapa, C., Kim, K., Camtep, S.A.,
Kim, H., Nepal, S.: End-to-end evaluation of federated learning and split learning
for internet of things. In: 2020 International Symposium on Reliable Distributed
Systems (SRDS). (2020) 91–100

9. Parareda, E.Y.: Federated learning network: Training distributed machine learning
models with the federated learning paradigm. (2021)

10. Baig, R., Roca, R., Freitag, F., Navarro, L.: Guifi.net, a crowdsourced network
infrastructure held in common. Comput. Netw. 90(C) (October 2015) 150–165

11. Centelles, R., Selimi, M., Freitag, F., Navarro, L.: Redemon: Resilient decentralized
monitoring system for edge infrastructures. In: 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing (CCGRID), Los Alamitos,
CA, USA, IEEE Computer Society (May 2020) 91–100


	Performance Evaluation of Federated Learning over Wireless Mesh Networks with Low-Capacity Devices
	Introduction
	Related work
	Federated learning implementation
	Federated learning model
	Implementation

	Experimental evaluation of the federated learning network
	Experimental environment and testbed
	Experimentation

	Conclusions


