
Lay Importance on the Layer: Federated Learning
for Non-IID data with Layer-based Regularization

Eleftherios Charteros and Iordanis Koutsopoulos
Department of Informatics

Athens University of Economics and Business, Greece

Abstract—We propose Federated Learning with Layer-
Adaptive Proximation (FedLap), a new class of algorithms to
tackle non-IID data. The novelty is a new regularization term in
the local (client) loss function which generalizes that of FedProx
and captures divergence between global and local model weights
of each client, at the level of Deep Neural Network (DNN) layers.
Thus, the weights of different layers of the DNN are treated
differently in the regularization function. Divergence between
the global and local models is captured through a dissimilarity
metric and a distance metric, both applied to each DNN layer.
Since regularization is applied per layer and not to all weights
as in FedProx, during local updates, only the weights of those
layers that drift away from the global model change, while
the other weights are not affected. Compared to FedAvg and
FedProx, FedLap achieves 3-5% higher accuracy in the first 20
communication rounds, and up to 10% higher accuracy in cases
of unstable client participation. Thus, FedLap paves the way for
a novel layer-aware class of algorithms in distributed learning.

I. INTRODUCTION

In Federated Learning (FL), a local model is trained on each
device (client) with its local data, and then the local model
weights are sent to the server. There, the models are combined,
and the updated global model is sent back to the devices to
initialize a new training round on their local datasets. This
exchange is repeated until convergence to a global model. An
important challenge in FL model training is that of statistical
heterogeneity of client data, since datasets of different clients
are drawn from different probability distributions.

Given an abstract representation of a data point as (x, y),
where x denotes the feature (attribute) vector and y denotes a
label, there exist various scenarios for non-independent and
identically distributed (non-IID) data distributions Pi(x, y)
across different clients i. First, different clients i may have
different feature distributions Pi(x) and the same distributions
Pi(y |x). For example, each client may have photos of a
different race or different color of cats. Second, different
clients may have different label distributions Pi(y) but roughly
the same Pi(x | y). For example, a client may have 80% of
the photos in her dataset labeled as dogs and 20% as cats,
while another client may have different proportions; however
given y, Pi(x | y) is roughly the same. Or, some hospitals may
have labels from different diseases and/or different number of
patient records on them. Third, different clients i may have the
same distribution Pi(x) but different distributions Pi(y |x).
For example, different employees in the same working envi-
ronment context have different levels of satisfaction. Finally,
clients may have the same distribution Pi(y) and different

distributions Pi(x | y); e.g. the building style of the same type
of building may differ in different countries.

While Federated Averaging (FedAvg) succeeds with IID
data, it struggles with a large number of communication
rounds, slow convergence, and poor quality of the model
when it comes to Non-IID data [1]. An important improve-
ment over FedAvg is Federated Proximation (FedProx) [1],
which introduces an L2-regularization term in the client loss
functions, which prevents the local model weights from di-
verging from global ones. FedProx, now a widely adopted FL
algorithm, inherits the rationale of FedAvg and is lightweight
to implement on tiny devices. Further, it comes with no
additional communication overhead and computational burden
for the server. Some works propose additional mechanisms on
top of the basic FL algorithm, such as model compression,
client clustering, and client selection, which create additional
complexity. Other works assume that a dataset exists at the
server, and that it is partly shared with clients, which is
a strong assumption. In all works, an important overlooked
aspect is that of taking a deeper look into the Deep Neural
Network (DNN) model itself, and leveraging a fine-grained
view of its structure in model training.

In this work, we introduce a new class of methods for FL
training that explicitly take into account the DNN architecture
and its layers. We train a single global model in a supervised-
learning setting, out of non-IID client datasets. The key idea
is a novel regularization term in the client training loss func-
tions that consists of a summation of terms. Each such term
corresponds to one DNN layer and captures the divergence
between the global and local model weights of each client, at
the level of that DNN layer. The divergence between the global
and local models is captured through a dissimilarity metric
that emanates from cosine similarity, and through models’
Euclidean distance, both applied to each DNN layer.

The new term replaces the one of FedProx and it is a
generalization of it. As a result, the weights of different layers
are treated differently in the regularization function. Since
regularization is applied per layer and not universally to all
weights as in FedProx, we can selectively control and change
the weights of those layers that drift away from the global
model, without affecting the weights of other layers. We verify
the superior performance of FedLap over FedAvg and FedProx
in terms of accuracy and convergence speed, by experimenting
with the MNIST, FashionMNIST, and CIFAR-10 datasets in
various settings and cases of unstable client participation.

II. RELATED WORK

There exist several works that tackle non-IID data in FL
[2], as evidenced by surveys [3]. In [4], FedAvg is shown
to converge with rate O(1/T), where T is the number of
global iterations, for non-IID data, strongly convex local loss
functions, and uniform client sampling without replacement.

When clients have non-IID data, the global model is the
aggregate of local models whose local optima are far away
from each other’s. Thus, model averaging makes the global
model move away from the true global optimum. This is the
model drift problem. In order to mitigate it, FedProx [1] adds a
convex regularization term in the local loss function, namely
the `2-norm of the difference between the local and global
models. The Model Contrastive Learning (MOON) approach
[5] employs the representation of a model, namely the feature
vector that emerges before the output layer. It enhances the loss
in the regularization function with a term so that the agreement
between the representation learned by the current local model
and that learned by the global model is maximized.

A number of works use client clustering. In [6], clients
are clustered into groups based on their data distribution.
An affinity propagation method is employed, with cosine
similarity as distance metric between models of different
clients, so that a different model is built for each cluster of
clients. In another work [7], clients are clustered based on the
similarity of their local models and the global model. Clusters
are trained separately and in parallel.

Another line of works use client selection to mitigate the
effects of non-IID data. The work [8] uses a probabilistic node
selection scheme to improve convergence speed of FedAvg for
non-IID data. The inner product between the local gradient of
each client and the global gradient is used to tune the selection
probability for the training process at each round, and thus
clients whose gradients are more aligned with the global one
are selected to participate with higher probability. The work
[9] uses reinforcement learning to learn the subset of clients
to participate in each round, having as state the global and
local models and as reward the test accuracy.

Other works focus on improvements at the model aggre-
gation stage, either directly, or indirectly through presence
of some datasets at the server. In FedNova [10], clients
run different numbers of local iterations, because they are
heterogeneous in their computational power or because their
datasets have different sizes. A normalization of the local
gradient of each client ensures that the global model is not
biased because of clients that run more iterations. The work
[11] uses the inverse Euclidean distance between local and
global models as aggregation weights at the server to produce
the global model out of local ones. The work [12] assumes a
dataset at the server that is partially shared with clients to aid
in the training process so as to minimize a weighted sum of
local-global model divergence and data communication cost.

Relevant but different from the approaches above that learn
a single global model, the works on personalization aim to
learn multiple personalized models [13]. One approach is to

train a DNN whose parameters consist of a common part,
i.e. the first layers of a DNN (also called global or shared
parameters) for all clients, and a client-specific part, i.e. the
last very few layers of the model (also called personalized
parameters). In FedPer [14], each client updates the global and
personalized parameters through joint gradient descent steps
and sends back to the server only the locally updated global
parameters. Then, the server updates the global parameters
through averaging. In [15], the trained model again includes a
set of common weights for all clients, and a set of personalized
weights that are specific to each client. An exact and unbiased
Stochastic Gradient Descent (SGD) step is performed over the
full set of weights in a distributed manner, i.e. the updates of
personalized weights are performed by the clients, and those of
the common ones by the server. Finally, Adaptive Personalized
Federated Learning (APFL) [16] learns a mix of local and
global parameters for the personalized model of each client so
as to both personalize as well as generalize on unseen data.

Our approach belongs in the class of works on client model
drift reduction, and it differs from existing works since it
uses layer-wise regularization to capture global/local model
dissimilarities on a layer basis.

III. MODEL AND NOTATION

A. Federated Learning Model

We consider a supervised-learning scenario in a Federated
Learning (FL) setting with a central server and N client
nodes. Each client k has a local dataset Dk, k = 1, . . . , N
with Dk data points, denoted as Dk = {(xk,j , yk,j)} for
j = 1, . . . , Dk. Let the data points of each dataset Dk be
drawn from probability distribution Pk(x, y).

Without loss of generality, we assume that a global DNN
model is trained for a classification problem with M classes.
We denote by Wg the vector of parameters of the global
model. Model learning emerges from the minimization of a
training loss function over all client datasets:

L(Wg) =
1∑N

i=1Di

N∑
i=1

Di∑
j=1

`(xi,j , yi,j ;W
g) . (1)

This global loss function can be equivalently written as:

L(Wg) =

N∑
i=1

βi`i(W
g) , (2)

where scalar βi = Di/(
∑N

j=1Dj) is the data proportionality
of client i, and `i(Wg) is the client-specific loss over dataset
Di. The form of each data item-individual loss `(yi,j ,xi,j ;W)
depends on whether the task is a regression or a classification
one. In multi-class classification, an input feature vector x is
assigned a class label y ∈ {1, . . . ,M}, and the subsets of
classes across different clients can be mutually exclusive or
partially overlap. We consider the cross-entropy loss function,

`(yi,j ,xi,j ;W
g)=−

M∑
m=1

1(yi,j = m) log Pr(ŷi,j=m |xi,j ;W
g)

(3)

where 1(A) is the indicator function of event A, ŷi,j is the
output prediction of model Wg for input xi,j , and the class
probability is modeled by the Softmax function, i.e.

Pr(ŷi,j = m |xi,j ;W
g) =

eam∑M
k=1 e

ak

(4)

where a = (a1, . . . , aM) is the output of the last layer of the
DNN, before Softmax takes effect.

B. DNN model and weight similarity

The DNN model consists of L layers and an output layer.
Let n` denote the number of neurons of layer `, for ` =
1, . . . , L. The last (L + 1)-th layer consists of M units, one
for each class, i.e. nL+1 = M , and their values make up
vector a defined above. Let Wg = (Wg

1, . . . ,W
g
L) denote

the ensemble of DNN weights of the global model for all
layers, where Wg

` is the (n`×n`+1) matrix of weights of the
global model between layers ` and (`+ 1).

Let vector wg
`,j denote the j-th row of Wg

` , for j =
1, . . . , n`. This is the vector of dimension n`+1 of the weights
between neuron j of layer ` and all neurons of layer ` + 1.
This vector is written in terms of its components as wg

`,j =
(wg

`,j(1), w
g
`,j(2), . . . , w

g
`,j(n`+1)). We refer to wg

`,j as the
layer statistics of neuron j of layer ` for the global model.

Similarly, let Wk = (Wk
1 , . . . ,W

k
L) denote the ensem-

ble of DNN weights of the local model of client k, for
k = 1, . . . , N , where Wk

` is the (n` × n`+1) matrix of
weights of the local model of client k between layers `
and ` + 1. Let wk

`,j denote the j-th row of this matrix, for
j = 1, . . . , n`. This is written in terms of its components as
wk

`,j = (wk
`,j(1), w

k
`,j(2), . . . , w

k
`,j(n`+1)).

The similarity between the local model of client k and the
global model for the layer statistics of neuron j of layer ` is
the cosine similarity of vectors wg

`,j and wk
`,j ,

sk`,j = cos(wk
`,j , w

g
`,j) =

〈wg
`,j , w

k
`,j〉

‖wg
`,j‖ ‖wk

`,j‖
(5)

where

‖wg
`,j‖ =

√√√√n`+1∑
i=1

wg 2
`,j (i) and ‖wk

`,j‖ =

√√√√n`+1∑
i=1

wk 2
`,j (i) (6)

are the `2-norms of vectors wg
`,j and wk

`,j respectively, and

〈wg
`,j ,w

k
`,j〉 =

n`+1∑
i=1

wg
`,j(i)w

k
`,j(i)

is their inner product. The dissimilarity between the local
model of client k and the global model, for the layer statistics
of neuron j of layer ` is

λk`,j = 1− sk`, (7)

where λk`,j ∈ [0, 2]. The corresponding vector of dissimilarities
for all neurons of layer ` is λk

` = (λk`,1, λ
k
`,2, . . . , λ

k
`,n`

).

The squared Euclidean distance between the local model of
client k and the global model for the layer statistics of neuron
j of layer ` is

dk`,j = ‖wk
`,j −wg

`,j‖
2
=

n`+1∑
i=1

(wk
`,j(i)− w

g
`,j(i))

2
. (8)

The vector of squared Euclidean distances of layer statistics
for all neuron of layer ` is dk

` = (dk`,1, d
k
`,2, . . . , d

k
`,n`

).

IV. THE PROPOSED FEDLAP ALGORITHM

A. FedLap algorithm

The key idea in our Federated Learning with Layer-Adaptive
Proximation (FedLap) algorithm (Algorithm 1) is a new
regularization term that generalizes the one in FedProx by
capturing divergence between the global model (GM) and
local model (LM) weights at the DNN layer level. Divergence
is captured through a dissimilarity metric and a distance
metric between the GM and LMs for each DNN layer. Thus,
the weights of different layers are treated differently in the
regularization term of the local loss function of a client.

In FedProx, the loss function of client k is

hFedProx
k (Wk) = `k(W

k) +
µ

2
‖Wk −Wg‖2, (9)

where `k(·) is the training loss for client k, and Wg is the
current GM sent to clients. Each client k runs local iterations
to find LM weights Wk to minimize hFedProx

k (Wk).
In FedLap, we replace the fixed proximal term µ with the

layer-aware vector of dissimilarities λk
` , and we replace the

weight regularization term ‖Wk−Wg‖2 with the layer-aware
squared Euclidean distance vector dk

` . For each client k with
LM weights Wk and GM weights Wg received from the
server, the local iterations try to minimize the local loss,

hFedLap
k (Wk) = `k(W

k) +
1

2

L∑
`=1

〈λk
` , d

k
` 〉 , (10)

where 〈x , y〉 is the inner product of vectors x and y. When a
client is selected by the server for a local training iteration, it
receives the current GM and trains an LM on its own training
data. Each client computes dissimilarity and distance of its
current LM from the current GM for each layer. Then, it
forms its loss function by incorporating the new regularization
term. After some iterations on its local training data towards
minimizing its loss function, the client derives a new LM and
sends it to the server. The server aggregates all client LMs
to issue the next version of GM to distribute to clients. The
process above continues until convergence.

B. Discussion

1) Dissimilarity and distance metrics: Dissimilarity λk
` and

distance dk
` between the LM of client k and the GM vary

during the server-client weight exchange process, as they
depend on instantaneous GMs and LMs. By bringing LM-
GM dissimilarity into the regularization term, we focus on
those layers for which the LM weights are not similar to

Algorithm 1 FedLap algorithm. T is the number of global
epochs; C is the fraction of participating clients in each
training round; N is the total number of clients; E is the
number of local epochs at each training round; B is the local
minibatch size; L is the number of layers of local and global
models; η is the learning rate.

1: function FEDLAPSERVER
2: initialize Wg

3: for each global round t = 1, 2, · · · , T
4: m← max{C ·N, 1}

(number of clients participating in this round)
5: St ← random set of m clients
6: Send Wg to clients
7: for each client k ∈ St in parallel do
8: Wk

t+1 ← CLIENTUPDATE(k, Wg)
(server receives local weights from client k)

9: end for
10: Wg

t+1 ←
1

|St|
∑

k∈St

Wk
t+1

(Model aggregation at the server, combining LMs)
11: Wg ←Wg

t+1

end for
end function

12:
13: function CLIENTUPDATE(k,w) (runs on client k)
14: Receive Wg; w←Wg

15: for each local epoch i from 1 to E
16: Compute vectors dk

` , λk
` , for layers ` = 1, . . . , L

17: for each batch b ∈ Dk of size B
18: w← w − η∇hFedLap

k (w)

(where hFedLap
k (·) is given by (10))

19: end for
end for

20: Wk
t+1 ← w

21: Send Wk
t+1 back to server

end function

those of the GM, or that they were increased most during
the update, so as to bring them closer to the GM weights,
without changing the weights of layers that were not updated.
On the other hand, distance metrics adjust the magnitude of
the regularization term. The inner product 〈λk

` , d
k
` 〉 helps to

carefully regularize the model.
2) Evolving algorithm behavior during training: The im-

pact of regularization changes in the course of training. As
training progresses, FedLap gradually becomes similar to
FedAvg. This is because, as the GM converges, the layer-
wise similarity between the LMs and the GM increases and
approaches 1. Thus, λk

` approach zero; hence the effect of
regularization is weakened, and ultimately no regularization is
applied, as in FedAvg. Furthermore, since the GM converges
and fits all client data, LMs make ever smaller weight updates
since they already fit their data to the GM. Thus, dk

` approach
zero as well. Therefore, at the first iteration rounds, the fast
convergence of FedLap is exploited, while at the final stages

of training we revert to FedAvg to leverage the positive effects
of weight averaging to reach an optimum.

While FedProx applies regularization from the first step of
local training, in FedLap the adaptation of the regularization
term allows LMs to explore different directions from the GM
before regularization takes effect. Thus, LMs make larger steps
at the first rounds and then slow down so that the weights are
close to those of the GM.This is because a client k updates its
LM with global weights and when they start local training, the
λk
` ’s are zero. As clients’ local updates progress, regularization

takes effect due to increasing dissimilarity and distance.

V. DATA EXPERIMENTS

A. Experiment setup and hyperparameters

For the MNIST, FashionMNIST, and CIFAR10 datasets and
100 clients, we keep 10,000 images for testing and the rest for
training and validation. For MNIST and FashionMNIST, we
use a two-layer neural network with ReLu activation for the
hidden layer, and a Softmax activation for the output layer.
For CIFAR10, we use the architecture from the Tensorflow
Tutorial which consists of 3 convolutional layers, followed by
2 fully connected layers, all with ReLu activation functions
and Softmax at the output layer.

To model non-IID data, we sort data by the class label, we
divide it into 200 chunks of size 300, 300, and 200 respectively
for MNIST, FashionMNIST, and CIFAR10, and we give 2
chunks to each client so that most clients have 2 of the 10
classes. For each round, we pick a random 10% of clients.
We use the SGD optimizer as local solver, with a learning
rate 0.01 and momentum 0.9. All experiments were conducted
with PyTorch version 1.6.0 and NVIDIA CUDA version 10.2.
For a fair comparison among FedLap, FedProx and FedAvg,
we introduce an importance parameter q ∈ [0, 1] in the
regularization in (10). For q = 0 and q = 1, FedLap becomes
FedAvg and FedProx. We found that the best accuracy is
obtained when the batch size B and number of epochs E are
10, while q does not affect convergence, thus we set q = 0.5.

B. Comparison of FedLap vs. FedProx and FedAvg

For the MNIST dataset (Fig. 1a), FedLap starts from a
higher accuracy than FedAvg and FedProx, and ultimately
it performs similarly to FedAvg and better than FedProx.
The performance difference is not large compared to FedAvg,
but it can be observed that FedLap follows a smoother
learning curve than FedAvg which shows more spikes. For
the FashionMNIST dataset (Fig. 1b), the performance gain of
FedLap becomes clear, as it converges to higher accuracy than
FedProx and FedAvg, while for the CIFAR10 dataset (Fig. 1c),
which is harder than MNIST and FashionMNIST, the positive
effect of adaptive regularization becomes more visible. FedLap
manages to achieve a larger accuracy level much faster, before
converging and slowly transforming to FedAvg.

C. Performance comparison for unstable client participation

Next, we study the performance benefit of FedLap when
the clients’ participation in FL training is unstable, because

(a) MNIST (b) FashionMNIST (c) CIFAR10

Figure 1: Test dataset accuracy for FedLap, FedProx and FedAvg.

either (i) clients lack computational power and cannot perform
all local updates by the time the server asks them to return
their LMs, or (ii) they have unstable connection and cannot
communicate with the server, or (iii) their connection is slow
and the server cannot afford to wait for their updates. In
FedProx, it was proposed to take into account those LMs and
allow unstable clients to send whatever LMs they have learned
until the moment when the server asks them. We simulate
this behavior by randomly selecting clients (stragglers) from
those that participate in the training round. Stragglers perform
a random number of local updates in [1, E] and send back to
the server the LMs they learned up to that time.

For the MNIST dataset (Fig. 2), FedLap achieves high
accuracy much faster than FedAvg and FedProx for unstable
client connection. For 50% and 90% of stragglers, FedLap
achieves 80% accuracy in less than 20 rounds. Similar trends
can be observed in Figs. 3 and Fig. 4 for FashionMNIST and
CIFAR10. FedLap achieves 50% accuracy with both 50% and
90% stragglers in around 50 communication rounds.

The main takeaways from our experiments are as follows:

• FedLap achieves higher accuracy and reaches this value
in fewer communication rounds compared to FedAvg and
FedProx, especially in more difficult datasets.

• FedLap significantly outperforms FedAvg and FedProx in
terms of accuracy and convergence speed in the presence
of unstable client participation.

• FedLap convergence speed and accuracy improves when
the number of local computations is increased.

• FedLap approximates FedAvg when the GM converges.
• FedLap performance is not negatively affected by uncer-

Figure 2: Test dataset accuracy for FedLap, FedProx and
FedAvg on MNIST with 50% (top) and 90% (bottom) of
clients selected as stragglers.

tain client participation.

VI. CONCLUSION

The main novelty of FedLap is the introduction of a
layer-wise regularization term in the local loss function of

Figure 3: Test dataset accuracy for FedLap, FedProx and
FedAvg on FashionMNIST with 50% (top) and 90% (bottom)
of clients selected as stragglers.

clients. FedLap achieves much faster convergence and higher
test accuracy compared to FedAvg and FedProx. There exist
various directions that warrant future investigation. At the
experimental front, it makes sense to experiment with other
similarity metrics or transformed versions of them and other
distance metrics. At the algorithm front, model similarity and
distance and layer-wise regularization could be adapted to
create a personalized model for each client that gradually
integrates the GM in the model, without forgetting previous
knowledge if clients do not participate in a training round.

ACKNOWLEDGMENT

This work was supported by the CHIST-ERA grant CHIST-
ERA-18-SDCDN-004 (project LeadingEdge, grant number
T11EPA4-00056) through the General Secretariat for Research
and Innovation (GSRI). It was also supported by the Hel-
lenic Foundation for Research and Innovation (H.F.R.I.) under
Project Number HFRI-FM17-352, Project Title “Wireless Mo-
bile Delay-Tolerant Network Analysis and Experimentation”,
Project acronym LEMONADE.

REFERENCES

[1] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, V. Smith, “Feder-
ated Optimization in Heterogeneous Networks”, ArXiv Abs/1812.06127,
2018.

[2] H. Zhu, J. Xu, S. Liu, and Y. Jin, “Federated learning on non-IID data:
A survey”, Elsevier Neurocomputing, vol.465, pp.371-390, Nov. 2021.

[3] X. Ma, J. Zhu, Z. Lin, S. Chen, and Y. Qin, “A state-of-the-art survey
on solving non-IID data in Federated Learning”, Elsevier Future Gener.
Computing Syst., vol. 135, pp.244-258, Oct. 2022.

[4] X. Li, K. Huang, W. Yang, S. Wang and Z. Zhang, “On the Convergence
of FedAvg on Non-IID Data”, in Proc. Int. Conf. on Learning Represen-
tation (ICLR), 2020.

Figure 4: Test dataset accuracy for FedLap, FedProx and
FedAvg on CIFAR10 with 50% (top) and 90% (bottom) of
clients selected as stragglers.

[5] Q. Li, B. He and D. Song, “Model-Contrastive Federated Learning,” in
Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

[6] P. Tian, W. Liao, W. Yu and E. Blasch, “WSCC: A Weight Similarity
Based Client Clustering Approach for Non-IID Federated Learning,” in
IEEE Internet of Things Journal, vol.9, no.15, pp. 20243-20256, Oct.
2022.

[7] C. Briggs, Z. Fan and P. Andras, “Federated learning with hierarchical
clustering of local updates to improve training on non-IID data,” in Proc.
Int. Joint Conf. on Neural Networks (IJCNN), 2020.

[8] H. Wu and P. Wang, “Node Selection Toward Faster Convergence for
Federated Learning on Non-IID Data,” IEEE Trans. on Network Science
and Engineering, Feb.2022.

[9] H. Wang, Z. Kaplan, D. Niu and B. Li, “Optimizing Federated Learning
on Non-IID Data with Reinforcement Learning,” in Proc. IEEE INFO-
COM, 2020.

[10] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the ob-
jective inconsistency problem in heterogeneous federated optimization”
in Proc. Advances in Neural Information Processing Systems (NeurIPS)
2020.

[11] Y. Yeganeh, A. Farshad, N. Navab, and S. Albarqouni, “ Inverse Distance
Aggregation for Federated Learning with Non-IID Data”, In Domain
Adaptation and Representation Transfer, and Distr. Collab. Learning
(DART DCL), 2020, Lecture Notes in Computer Science(), vol 12444.
Springer.

[12] Z. Zhao et al., “Federated Learning With Non-IID Data in Wireless
Networks,” IEEE Trans. on Wireless Communications, vol. 21, no. 3, pp.
1927-1942, March 2022.

[13] Y. Mansour, M. Mohri, J. Ro, A. T. Suresh, “Three Approaches
for Personalization with Applications to Federated Learning”, ArXiv
Abs/2002.10619, 2020.

[14] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, S. Choudhary, “Federated
Learning with Personalization Layers, ArXiv Abs/1912.00818, 2019.

[15] S. Nikoloutsopoulos, I. Koutsopoulos and M.K. Titsias, “Personalized
Federated Learning with Exact Stochastic Gradient Descent”, ArXiV
Abs/2202.09848, 2022.

[16] Y. Deng, M. M. Kamani, M. Mahdavi, “Adaptive Personalized Federated
Learning”, ArXiv Abs/2003.13461, 2020.

