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Abstract—We study the problem of online learning of optimal
offloading policies for image processing tasks, for minimizing
a cost that is weighted sum of transmit energy and object
recognition error rate. A mobile node generates image processing
tasks that involve object recognition. There exist three options: (i)
transmit the image to a remote server for processing with a deep-
learning (DL) model, (ii) process locally with a simpler model, (iii)
apply a lightweight, error-prone technique for object detection,
and if objects are detected, then send image to the server. The
proper offloading decision requires knowledge of the transmit
energy cost and object recognition error rate for each option.
However, these processes are non-stationary due to unpredictable
object occurrence, mobility and propagation dynamics, and they
depend on the object inference result which is unknown at
decision time. We cast the problem as an adversarial multi-
armed bandit, in which the EXP3 algorithm achieves sublinear
regret. For the constrained problem, we propose an algorithm
that extends EXP3 and achieves good regret in the objective and
constraint, thus asymptotically learning the optimal static ran-
domized offloading policy, while satisfying the error constraint.
Performance is validated via numerical experiments informed by
real-life object recognition measurements and models.

I. INTRODUCTION

Real-time image processing arises in services such as
video surveillance, augmented reality (AR), and unmanned-
air-vehicle (UAV) video processing for infrastructure monitor-
ing, agriculture, security or smart-city services. In these sce-
narios, a video stream is captured through a camera mounted
on a mobile phone, drone or other device [1]. The goal is to
process video frames and recognize one or more objects by
solving a classification problem. For example, when a drone
performs infrastructure (e.g railway) monitoring, certain obsta-
cles on rails need to be recognized [2]. In crowd surveillance,
individuals carrying weapons or moving suspiciously should
be identified. In AR applications, buildings, monuments or
other sites should be identified so that appropriate meta-data
are superimposed on the image.

The consumed energy at the node that captures the video
is critical and depends on the task offloading policy, among
other factors. A first option is to offload the image to a remote
edge or cloud server for processing through a sophisticated
deep-learning (DL) model, e.g. a deep Convolutional Neural
Network (CNN). Energy is consumed for image transmission,
depending on the instantaneous distance between the mobile
transmitter and the edge server receiver, and on channel

conditions. The latter dictate the required transmit rate, which
affects transmission duration and power, and thus energy.

A second option is to process the image locally through DL
models tailored to mobile devices such as Tiny-YOLO [3] or
Tensorflow Lite [4]. For example, Tiny-YOLO uses a shallow
convolutional structure that allows inference with affordable
computational burden and energy consumption, at the cost of
reduced inference accuracy. Finally, a third option is to run a
light-weight brute-force but error-prone technique for object
detection, and if objects of interest are detected with some
confidence, then the image is offloaded to the remote server for
processing. In this option, the image is transmitted remotely
only when needed, however errors may sometimes occur.

There exist two sources of uncertainty. The first one
concerns the transmit energy for image transmission. The
transmit energy random process may be hard or impossible to
characterize statistically. Unpredictable channel dynamics and
the surrounding environment may lead to non-stationarity. For
instance, for a flying drone that captures a video stream, a
video frame may need different amounts of transmit energy in
consecutive slots, due to arbitrary drone movements, rapidly
time-varying wireless propagation conditions, and different
receiving access points. The second type of uncertainty con-
cerns the presence or absence of objects of interest in an
image. Indeed, it is not possible to know at the time of
image offloading decision whether an object of interest will
be inferred to be present or absent in the image. Objects
of interest may appear in consecutive frames in an arbitrary
manner, and it is not reasonable to model object inference
(absence/presence) as a stationary binary random process.

If instantaneous values of transmit energy and object infer-
ence were available at decision time, the instantaneous energy
costs and error rates would be known for the three options
above, so that the best option could be chosen. Further, if
the processes of transmit energy and object inference could
be characterized statistically, for example through stationary
distributions, a dynamic policy based on Lyapunov stochastic
optimization would use their instantaneous realizations to find
an optimal online offloading policy [5]. However, these pro-
cesses may be non-stationary, and in fact the object inference
result is not even known at the time of the offloading decision.

In this paper, we consider the scenario where a mobile
node generates image processing tasks for recognizing objects
of interest. We study the problem of learning the optimal



offloading policy for image processing tasks, in terms of
minimizing a cost that is a weighted sum of transmit energy
and object recognition error. The difficulty stems from the
unknown, arbitrary, non-stationary dynamics about object oc-
currence and about transmit energy. The dynamics are assumed
to be arbitrarily chosen by an adversary and are revealed to
the learner after the offloading decision. This setting is unique
to offloading of image processing tasks. We seek an online
learning algorithm that learns an offloading policy whose cost
is close to that of the optimal static offloading policy that has
knowledge of the entire dynamics path. The contributions of
our work to the literature are as follows:
• We cast the problem of learning a policy that minimizes

the weighted cost above, as an adversarial bandit, where
arms correspond to the options: (i) transmit the image
to a remote server for processing with a DL model,
(ii) process the image locally with a simpler DL model,
(iii) use a lightweight, error-prone technique for object
detection, and if objects are detected, then send the image
to the server. The EXP3 algorithm solves this problem.

• We propose an algorithm that extends EXP3 for the
learning problem of minimizing transmit energy, and a
constraint on total expected error rate. The algorithm
relies on Lagrangian gradient ascent and constraint vi-
olation to influence the probabilities of choosing among
the three options, and it achieves desirable regret.

In section II, we discuss related work. In section III, we
describe the model and state the problem and algorithm for
the combined-cost problem. In section IV, we consider the
constrained problem and present our algorithm. Section V
presents numerical results, and section VI concludes the paper.

II. RELATED WORK

Offloading. Computation offloading has been an active
topic in recent years, and Lyapunov optimization is one of the
mathematical tools to tackle it. In [6], each user may either
perform the computation locally or send the task remotely
through a channel and receive interference from other users.
This work does not include the image processing aspect,
which changes the setting. The authors in [7] study joint
dynamic offloading, transmit power, and CPU cycle control
in the presence of wireless channel and energy harvesting
dynamics, so as to minimize execution latency and task drop
cost. The work [8] studies offloading of computer vision tasks
and decides whether to initiate task pre-processing prior to task
offloading so as to save energy to the expense of accuracy. The
authors in [9] formulate the optimal computation offloading
problem as a Markov Decision Process so as to minimize a
convex combination of energy and latency.

Multi-armed bandits and the EXP3 algorithm. In online
learning with a discrete set of choices, the learner at each
round makes a choice out of available ones, and it receives
some feedback in response. When the learner gets to see the
resulting losses (costs) for all choices after making a certain
choice, the problem is called d-expert selection. At each time
t, we pick an expert and observe the costs of all experts. The

problem is to find an expert selection policy that has sublinear
regret over the time horizon, where the regret measures the
difference between the cumulative cost of our policy and that
of the policy that always selects the best action (expert) in
hindsight. The randomized Exponentially Weighted Average
(EWA) (or Exponentiated Gradient, EG) algorithm achieves
O(
√
T log d) regret [10]. EWA selects at time t an expert with

probability inversely proportional to an exponential function
of the cumulative loss of the expert up to time t − 1. Thus,
it penalizes experts according to observed losses by reducing
the probability of selection for experts with high losses.

In multi-armed bandits, there exists again a finite set of
decision options, the arms. At each round, the learner chooses
one arm, possibly through a randomized policy and gets to
see only the cost of that arm and not costs of other arms.
The cost may be stochastic and drawn from an unknown
probability distribution, or it may be arbitrarily chosen by an
adversary. The goal is to achieve sublinear regret with time,
for not pulling the best arm. For stochastic bandits, the Uni-
versal Confidence Bound (UCB) algorithm attains O(log T )
regret [11]. For non-stochastic (adversarial) bandits, the EXP3
algorithm achieves O(

√
T ) regret [12]. EXP3 is based on

EWA and selects at each time t an expert at with probability
ptat inversely proportional to an exponential function of the
cumulative loss of the expert up to t. However, there are two
differences in EXP3 compared to EWA. First, an unbiased
estimate of the loss vector is formed, via vector ˜̀t with
components equal to ˜̀t

j = `tj/p
t
j , if j = at, and 0 otherwise.

This is an unbiased estimate of the loss at time t, since for
each j, it is E[˜̀tj |pt] = ptj ·

`tj
ptj

+ (1 − ptj) · 0 = `tj . Second,
only the cumulative loss of the selected expert is updated each
time, based on the loss estimate above. Multiarmed bandits are
used in various settings, see e.g. [13] and references therein.

Online learning under constraints. A related thread is
regret minimization under constraints that need to be satisfied
in the long run and may be chosen by an adversary. If
constraint violation is sublinear in T , constraints are satisfied
as T →∞. The work [14] proposes a modification of Online
Gradient Descent that attains O(

√
T ) regret and O(T 3/4)

constraint violation, while the work [15] achieves a cumulative
regret plus constraint violation of O(T 2/3). The work [16]
achieves similar bounds for adversarial contextual bandits,
where the learner observes some context, it takes a decision
and then observes a loss conditioned on decision and context.

Our main differentiating point from the state of the art is
the adversarial bandit formulation for the offloading problem,
specialized to image processing tasks. The new twist emerges
because of the non-stationary dynamics of object occurrence
in the image, and of energy consumption, which are hitherto
not addressed, and they are unique to image processing tasks.

III. MODEL AND PROBLEM STATEMENT

A. Model

We assume that the mission of the learner is to recognize
at each image one or more objects (labels) from a set K =



phenomenon implies that there might exist a bottleneck to improve real-time performance of deep object 
detectors through channel pruning. 

Analysis of detection accuracy. As shown in Figure 1 and Table 1, the revised YOLOv3, i.e., 
YOLOv3-SPP3, achieves the best detection results but requires the most FLOPs at the meantime. In 
contrast, SlimYOLOv3-SPP3 models with even fewer trainable parameters than YOLOv3-tiny are able 
to obtain suboptimal detection results that are comparable with YOLOv3. Obviously, SlimYOLOv3-
SPP3 is much better than YOLOv3-tiny in detection accuracy. Such results imply that with equivalent 
trainable parameters a deeper and narrower YOLOv3 model might be more powerful and effective than 
a shallower and wider YOLOv3 model. Besides, comparing SlimYOLOv3-SPP3-50 and SlimYOLOv3-
SPP3-95 we can conclude that iterative pruning with a smaller pruning ratio are more prone to 
maintaining detection accuracy than aggressive pruning with a large pruning ratio. We produce visualized 
detection results of SlimYOLOv3-SPP3-95 and YOLOv3-SPP3 on a challenging frame captured by our 
drone as shown in Figure 8. Both of the two detectors are able to detect the majority of objects of interest 
precisely in this frame without significant difference. 
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Figure 8: Visualized detection results of SlimYOLOv3-SPP3-95 and YOLOv3-SPP3 on a challenging frame 
captured by our drone. 
 

Limitations. We have not made any modifications to both the training and inference of YOLOv3 
expect for integrating SPP modules. However, VisDrone2018-Det is a very challenging dataset with high 
category imbalance. The category imbalance problem is not managed in purpose in our experiments. 
Category with a larger number of object instances dominates the optimization of detectors. Consequently, 
mAP score of this dominant category (i.e., car) is obviously higher than that of the categories (e.g., 
bicycle) with smaller number of instances as highlighted in Table 2 and Table 3. This issue occurs in both 
baseline models and pruned models, further leading to a significant decline in overall performance. 
Approaches for solving the category imbalance problem are left for future work to improve detection 
accuracy of both baseline models and pruned models. 
 
Table 2. Detection performance of YOLOv3-SPP3 (832×832) for each category on validation set of VisDrone2018-Det dataset. 

Class Images Instances Precision Recall F1-score mAP 
pedestrian 548 8,840 46.6 38.0 46.8 33.2 
people 548 5,120 41.8 35.7 38.5 20.3 
bicycle 548 1,290 24.7 16.9 20.0 6.9 
car 548 1,4100 68.8 78.2 73.2 70.1 
van 548 1,980 43.7 39.4 41.4 27.4 
truck 548 750 35.6 30.1 32.6 19.8 
tricycle 548 1,040 35.5 25.7 29.9 12.8 
awning-tricycle 548 532 23.4 14.5 17.9 6.6 
bus 548 251 65.7 46.6 54.5 36.8 
motor 548 4,890 49.0 46.1 47.5 30.4 
overall 548 3,8800 43.5 38.0 40.2 26.4 

 
Table 3. Detection performance of SlimYOLOv3-SPP3-95 (832×832) for each category on validation set of VisDrone2018-Det 
dataset. 

Class Images Instances Precision Recall F1-score mAP 
pedestrian 548 8,840 33.0 41.9 36.9 25.8 
people 548 5,120 31.4 32.4 31.9 17.0 
bicycle 548 1,290 14.4 10.3 12.0 2.7 
car 548 1,4100 60.3 75.0 66.9 67.0 
van 548 1,980 43.8 37.0 40.1 27.1 
truck 548 750 26.8 27.6 27.2 16.4 
tricycle 548 1,040 26.9 15.8 19.9 6.8 
awning-tricycle 548 532 33.0 7.0 11.5 3.0 
bus 548 251 55.9 28.3 37.6 22.8 
motor 548 4,890 35.6 41.1 38.1 23.0 
overall 548 3,8800 36.1 31.6 32.2 21.2 
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Approaches for solving the category imbalance problem are left for future work to improve detection 
accuracy of both baseline models and pruned models. 
 
Table 2. Detection performance of YOLOv3-SPP3 (832×832) for each category on validation set of VisDrone2018-Det dataset. 

Class Images Instances Precision Recall F1-score mAP 
pedestrian 548 8,840 46.6 38.0 46.8 33.2 
people 548 5,120 41.8 35.7 38.5 20.3 
bicycle 548 1,290 24.7 16.9 20.0 6.9 
car 548 1,4100 68.8 78.2 73.2 70.1 
van 548 1,980 43.7 39.4 41.4 27.4 
truck 548 750 35.6 30.1 32.6 19.8 
tricycle 548 1,040 35.5 25.7 29.9 12.8 
awning-tricycle 548 532 23.4 14.5 17.9 6.6 
bus 548 251 65.7 46.6 54.5 36.8 
motor 548 4,890 49.0 46.1 47.5 30.4 
overall 548 3,8800 43.5 38.0 40.2 26.4 

 
Table 3. Detection performance of SlimYOLOv3-SPP3-95 (832×832) for each category on validation set of VisDrone2018-Det 
dataset. 

Class Images Instances Precision Recall F1-score mAP 
pedestrian 548 8,840 33.0 41.9 36.9 25.8 
people 548 5,120 31.4 32.4 31.9 17.0 
bicycle 548 1,290 14.4 10.3 12.0 2.7 
car 548 1,4100 60.3 75.0 66.9 67.0 
van 548 1,980 43.8 37.0 40.1 27.1 
truck 548 750 26.8 27.6 27.2 16.4 
tricycle 548 1,040 26.9 15.8 19.9 6.8 
awning-tricycle 548 532 33.0 7.0 11.5 3.0 
bus 548 251 55.9 28.3 37.6 22.8 
motor 548 4,890 35.6 41.1 38.1 23.0 
overall 548 3,8800 36.1 31.6 32.2 21.2 

Object 
detection

Object(s) 
detected

Object(s) not 
detected

Challenges: (1) Arbitrary object 
inference (presence/absence) process; 
object infererence unknown at 
offloading decision time; (2) Non-
stationary transmit energy process

Figure 1. The three offloading options in our setting.

{1, . . . ,K} of K labels, where a label refers to a distinct type
of object. Time is slotted. At each time slot t, a node generates
a video frame for processing, and each frame constitutes an
image processing task. For each task at time t, the node should
choose among the following options shown in Fig. 1.

Option 1: Remote processing (REM). The first option is
to offload the task to a remote edge server by transmitting
the image through the wireless channel to the access point
(AP) that hosts the server. Given an instantaneous transmitter-
receiver link gain Gt at time t, which depends on wireless
propagation, the surrounding environment, and the distance
to the AP receiver, a minimum amount of transmit power,
Pt is needed for successful image reception. Assuming noise-
limited channel, the transmit rate is rt = log(1+G̃tPt), where
G̃t = Gt/σ

2, and σ2 is the noise variance. If the size of the
video frame is S bits, transmit energy is ERt = Etrt = Pt · Srt .

Let pRk , q
R
k denote the known values of false positive and

false negative rates for object k, for k = 1, . . . ,K, as a result
of a sophisticated deep-learning (DL) inference model at the
server. These are the misclassification probabilities for label k,
and they are assumed to be known if the DL inference model
is applied on a test dataset.

Define the binary parameter bk,t ∈ {1, 0} that denotes
whether label k is found to occur in the image at time t or
not, based on the DL model. The probability of error at time
t for label k at the remote server is defined as:

βRk,t = (1− bk,t)qRk + bk,tp
R
k . (1)

We stress that bk,t shows the observed inference outcome of
the DL model, and not the ground truth i.e. whether object
k truly exists in the image, which cannot be assumed to be
known. Based on the observed value of bk,t, and the known
values of pRk , q

R
k , one can compute the probability of error as

above. However, the challenge is that the value of bk,t cannot
be observed at the time of the offloading decision, as explained

in the sequel. The overall average probability of error at time
t at the remote server is βRt = 1

K

∑K
k=1 β

R
k,t.

Option 2: Local Processing (LOC). The second option is
to process the image locally at the mobile node with a local,
computationally “light” version of a Machine Learning (ML)
model and framework, such as Tiny-YOLO or Tensorflow
Lite. Clearly, the lower computational burden of such a model
comes with lower accuracy.

Let pLk , q
L
k denote the known values of false positive and

false negative rates for object k for the local ML model. The
energy consumed for local model execution is known and
fixed, ELt = EL. Similarly to REM, the probability of of
error at time t for label k at the remote server is

βLk,t = (1− bk,t)qLk + bk,tp
L
k , (2)

while the average probability of error at time t over all labels
with the local ML model is βLt = 1

K

∑K
k=1 β

L
k,t.

Option 3: Conditional offloading (C-OFF). The third alter-
native lies in between REM and LOC. The mobile node may
use a lightweight, fast-track technique to check whether ob-
jects exist. If it infers existence of labels of interest, the image
is offloaded to the server for further processing, otherwise it
is discarded.

There exist various techniques that use on-device processing
and video frame filtering so that only frames with detected
objects are transmitted. For example, pixel-based techniques
are discussed in [17], through which blurry frames are dropped
before image offloading. The work [18] proposes a system that
performs a coarse visual pre-processing at very low power for
each frame in order to detect an object. Further, in [19], the
authors propose image preprocessing that performs early frame
discard based on deep neural networks for object detection.

We assume that the lightweight object detection technique
consumes energy E0 < EL, thus it is more energy-efficient
than the LOC option. Option 3 saves energy since only images
with detected objects are offloaded to the remote server. Let
pCk , q

C
k denote the known false positive and false negative

rates for label (object) k for the lightweight object detection
algorithm. The probability of error for label k at time t is

βCk,t = bk,t(1− pCk )βRk,t + bk,tp
C
k + (1− bk,t)qCk , (3)

where the first term refers to the case when an object of interest
is correctly inferred to be present by the object detection
algorithm, and thus the frame is sent to the remote server and
is processed with the DL model there. The overall average
probability of error is βCt = 1

K

∑K
k=1 β

C
k,t.

The consumed energy at time t for the C-OFF option is

ECt = E0 +min
{
1,

K∑
k=1

bk,t
}
Etrt , (4)

where the second term means that the image is offloaded if at
least one object of interest is inferred to be present in it.

In terms of error, we assume that the ML algorithm in REM
is more sophisticated than that in LOC. Further, C-OFF is
more error-prone than LOC. Thus, pCk > pLk > pRk and qCk >



qLk > qRk , and thus βCk,t > βLk,t > βRk,t for k = 1, . . . ,K, so
that REM is overall the most accurate option, while C-OFF is
the less accurate one for bk,t ∈ {0, 1}.

In terms of energy consumption, depending on channel
conditions, ERt may be higher or lower than EL, and ECt
may be higher or lower than EL.

B. Problem statement and the EXP3 algorithm

The learner needs to choose among the following options:
(i) offloading the image to a remote server, which is the most
accurate option but may also be the most energy-consuming
one, depending on channel conditions; (ii) local computation,
which has moderate accuracy and may be more energy-
efficient than the first option; (iii) conditional offloading,
which could be the most energy-efficient but is also the most
error-prone option. The tradeoff is that C-OFF saves transmit
energy by discarding frames in which no objects are inferred
as present; however it does so at the expense of possible errors.

The relative ordering of the three options in terms of energy
cost depends on instantaneous values of energy consumption
{Etrt } and object presence/absence inference {bk,t}, for k =
1, . . . ,K. Each of these options comes with an error cost as
well. The main challenge is that the process {bk,t} is non-
stationary, and it is not possible to know bk,t (i.e. whether an
object will be inferred to be present or absent) at the time
of the offloading decision, since this refers to the inference
result of the DL model in the image. Further, the transmit
energy process Etrt may be non-stationary as well, due to non-
stationarity of the wireless channel gain and node mobility, and
Etrt may also be unknown at decision time.

Since processes {Etrt } and {bk,t}, k = 1, . . . ,K are non-
stationary, we cast the problem of selecting the appropriate
offloading policy at each time t as an adversarial bandit.

Define the real-valued variables xt(1), xt(2), xt(3) that de-
note the probability that the controller chooses REM, LOC or
C-OFF respectively at time t, with 0 ≤ xt(1), xt(2), xt(3) ≤
1. Let xt = (xt(1), xt(2), xt(3)). At each time slot t, it is∑3
i=1 xt(i) = 1.
For each time t, we define the energy cost parameters

ct(i) =


ERt if i = 1,

ELt if i = 2,

ECt if i = 3 .

(5)

and let ct = (ct(1), ct(2), ct(3)). We normalize ct(i) in [0, 1]
for i = 1, 2, 3. Further, we define the error cost parameters

βt(i) =


βRt if i = 1,

βLt if i = 2,

βCt if i = 3 ,

(6)

and let βt = (βt(1), βt(2), βt(3)). The expected consumed
energy at time slot t is

Et(xt) = cTt xt , (7)

while the expected probability of error at time t is

Bt(xt) = β
T
t xt . (8)

We define the weighted sum of energy and error costs as

F (xt) = Et(xt) + ωBt(xt) = γ
T
t xt , (9)

where ω > 0 is a fixed weight factor, and γt = βt + ωct.
Given a time horizon T , an online offloading policy

(x1, . . . ,xT ) decides at each slot t the probability distribution
xt with which to select each option (REM, LOC or C-OFF).

Let x∗ be the optimal offline static policy i.e., the one which
minimizes the total weighted cost by having full knowledge
of processes {ct} and {βt} for all t = 1, . . . , T . Namely,

x∗ = argmin
x∈X

T∑
t=1

γTt x , (10)

where X = {x :
∑3
i=1 x(i) = 1∀ t}. The learning problem

is:

min
x1,...,xT

1

T
RegT (x1, . . . ,xT ) = min

x1,...,xT

1

T

T∑
t=1

(Ft(xt)−γTt x∗) .

(11)
At each time t, the energy {ct(i)} and error rate {βt(i)}

for a specific offloading action i ∈ {R,L,C} are revealed
to the learner as the result of instantaneous realizations of
the energy process {Etrt } and the object presence/absence
inference process {bk,t} for objects k ∈ K, after the action is
selected. The problem can be mapped to an adversarial bandit
with three arms, R (REM), L (LOC) or C (C-OFF). The EXP3
algorithm solves the problem with the cumulative cost of arm
i = 1, 2, 3 given by γ̂t(i) = ĉt(i) + ωβ̂t(i), and it achieves a
regret upper bound of O(

√
6T log 3).

IV. CONSTRAINED PROBLEM

Consider now the problem of minimizing the energy cost,
subject to a constraint on long-term average error rate:

1

T

T∑
t=1

Bt(xt) ≤ θ (12)

where θ ∈ (0, 1) is a pre-specified threshold.
Let x∗ be the optimal offline static policy i.e., the one which

minimizes the total energy cost by having full knowledge of
processes {ct} and {βt} for all t = 1, . . . , T . Namely,

x∗ = argmin
x∈Y

T∑
t=1

cTt x , (13)

where Y = {x : βTt x ≤ θ, ∀ t, and
∑3
i=1 xt(i) = 1}.

Formally, the learning problem to solve is:

min
x1,...,xT

1

T
RegT (x1, . . . ,xT ) = min

x1,...,xT

1

T

T∑
t=1

(Et(xt)− cTt x
∗)

(14)
subject to (12).We are interested in a policy x1, . . . ,xT so that

Reg∗T = min
x1,...,xT

RegT (x1, . . . ,xT ) = o(T ) , (15)

so that limT→∞
1
T Reg∗T = 0.



We seek a no-regret policy for which the difference (on
average) from the optimal static policy that knows in advance
the energy cost sequence {ct}t=1,...,T and error cost sequence
{βt}t=1,...,T goes to zero as T →∞. The policy should fulfill
constraint (12) on average and

∑3
i=1 xt(i) = 1 at each t.

A remark is in place here. The optimal static policy is com-
puted over Y , which requires that the constraint is satisfied at
each slot, rather than over set Y ′ = {x :

∑T
t=1Bt(x) ≤ Tθ},

which would require that the constraint is satisfied on average.
According to [16, Proposition 2.1], if the learner competes
against the optimal policy computed over set Y ′, the regret
grows at least linearly. Hence, we assume that the learner
competes against an optimal policy computed over Y .

The amount of average constraint violation is

1

T
ViolT (x1, . . . ,xT ) =

1

T

T∑
t=1

(Bt(xt)− Tθ) . (16)

We would also like to have,

Viol∗T = min
x1,...,xT

ViolT (x1, . . . ,xT ) = o(T ) , (17)

so that limT→∞
1
T Viol∗T = 0.

A. Proposed algorithm

We propose an algorithm to address the constrained prob-
lem. First, note that a constrained optimization problem of the
form

min
x

T∑
t=1

ft(x) subject to:
T∑
t=1

gt(x) ≤ 0 , (18)

is equivalent to the convex-concave optimization problem:

min
x

max
λ>0

(
T∑
t=1

ft(x) + λgt(x)

)
, (19)

where λ is the Lagrange multiplier associated with the con-
straint. For each t, define the regularized Lagrangian [14],[15]:

Lt(x, λ) = Et(x) + λ(Bt(x)− θ))−
ηδ

2
λ2 , (20)

where η > 0 is the learning rate, and δ > 0 is a constant
whose role will be detailed shortly. Regularization prevents
large values of the Lagrange multiplier.

We propose the Constrained-EXP3 (ConEXP3) algorithm
which we refer to as Algorithm 1. ConEXP3 extends EXP3
to a constrained problem. The main difference from EXP3
is the Lagrange multiplier update in Step 11, that is, the dual
update of gradient ascent with respect to dual variable λ on the
sequence of functions {Lt(xt, λ)}. A large value of Lagrange
multiplier, and large values of energy cost and error rate esti-
mates for action i will result in reduced probability of selection
of i in the next round. Steps 8-9 stand for the EWA descent
update with respect to primal variables x on the sequence of
Lagrangian functions {Lt(x, λt)}. The policy update in Step 8
resembles that in EXP3, but the Lagrange multiplier λt (which
captures the amount of penalty for violating the constraint) and
the error rate estimate are factored in the update as well. The

Algorithm 1 Algorithm ConEXP3.
1: input: Parameter η > 0, the learning rate of the algorithm.

Parameter δ > 0.
2: output: A sequence of vectors x1, . . . ,xT .
3: Initialization: y1 = 1, x1 = y1

‖y1‖1
= 1

31.
4: for t = 1, . . . , T
5: Draw an arm at ∈ {1, 2, 3} according to prob. distr. xt.

Pull arm at.
6: Observe bk,t, k ∈ K, and Etrt , and thus find energy cost

ct(at). Estimate energy cost gradient ∇xt
Et(xt)) as the

vector with components,

ĉt(i) =

{
ct(at)
xt(at)

if i = at,

0 else.
(21)

7: Compute incurred error rate βt(at). Estimate error
rate gradient ∇xt

Bt(xt)) as the vector with components,

β̂t(i) =

{
βt(at)
xt(at)

if i = at,

0 else.
(22)

8: if at = i, then

yt+1(i) = yt(i) exp
[
−η
(
ĉt(i) + λtβ̂t(i)

)]
, (23)

9: else if at 6= i, then yt+1(i) = yt(i).
10: Project xt+1 = yt+1

||yt+1|| .
11: Update Lagrange multiplier λt+1 according to:

λt+1 = max
{
0, λt + η[β̂t(at)xt(at)− θ − δηλt]

}
(24)

12: end for

policy yt+1(i) is discounted by exp [−η
(
ĉt(i) + λtβ̂t(i)

)
]

here, while in EXP3, it is discounted by exp [−ηγ̂t(i)], where
γ̂t(i) = γt(at)/xt(at) if i = at, and 0 else, and γt is defined
in subsection III.B.

In the algorithm above, the `1 norm of vector x =
(x1, . . . , xd) is ‖x‖1 =

∑d
i=1 |xi|, while 1 is the vector

of ones. In the sequel, we show numerically that ConEXP3
performs well in regret and constraint violation.

V. NUMERICAL EVALUATION

We consider the scenario of a flying drone that captures
video and has a classification problem with K = 1 object.
The DL model for REM is in the VGG family of DL models
with typical accuracy values between 92−94% [20], hence we
take error rates pR = 0.06 and qR = 0.08. The DL model for
LOC is AlexNet, with a typical accuracy between 80 − 82%
[21], hence we take pL = 0.18 and qL = 0.2.

For C-OFF, we consider a method similar in flavor to the
Early Discard “weak” object detector proposed in [19]. We
take a conservative view and set pC = qC = 0.35.

The transmitter moves so that instantaneous distance to an
edge server varies continuously between 40−600 meters, and
transmit rate is between 48 and 1 Mbps. Transmit power is
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Figure 2. (Left): Cumulative average cost for ConEXP3 and EXP3.
(Right):Average amount of constraint violation for ConEXP3 and EXP3.
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Figure 3. (Left): ConEXP3 Expected regret as a function of T . (Right):
ConEXP3 Expected amount of constraint violation as a function of T .

based on the technical specs of a Raspberry RPi3B+ device,
with maximum value 0.138 Watt. We have measured the
energy consumption per inference instance for AlexNet on
RPi3B+, and set EL = 3 Joules. We also set E0 = 0.4×EL.

The non-stationary processes {bt} and {Etrt } are taken to
be

bt = ut · | sin t| and Etrt = Pt
S

rt
ut| cos(3t)| , (25)

where ut is uniformly distributed in [0, 1], S is the size of the
image, and Pt, rt are the transmit power and rate at time t.
Process {bt} models a generic pedestrian appearance process.
Energy costs are normalized in [0, 1]. Results are the average
of 100 experiments.

In Fig. 2, we plot the average cumulative cost and average
amount of constraint violation versus T , for θ = 0.1 and
θ = 0.2. ConEXP3 asymptotically achieves zero violation as
opposed to the EXP3 algorithm which does not cater for error
constraints. In Fig. 3, we plot the average regret Reg∗T and the
average amount of constraint violation, Viol∗T as functions of
T for θ = 0.1 and for θ = 0.2. Both the regret and the amount
of constraint violation increase sub-linearly with T , and both
of these quantities are better off for θ = 0.2.

VI. CONCLUSION

We studied the problem of learning the optimal offloading
policy for image processing tasks in terms of a weighted sum
of energy cost and object inference error rate. We mapped
the problem to an adversarial bandit. For the constrained
version of the problem, we proposed the ConEXP3 algorithm.
ConEXP3 achieves satisfactory regret in the presence of error
constraints, which is better than the one of the EXP3 algorithm

that is constraint-agnostic. The model could be enhanced in
other aspects such as delayed feedback.
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