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Abstract. This paper presents a novel training pipeline for Federated
Learning (FL), enriched in two aspects, with the goal of improving ac-
curacy. First, we exploit the generative ability of Generative Adversarial
Networks (GANs) to augment the clients’ local datasets with synthetic
data and second, we incorporate them into the FL training procedure
with the help of Ensemble Learning. Drawing inspiration from their
demonstrated potential in Deep Learning (DL), we adeptly modify these
techniques to address the privacy concerns and distributed nature inher-
ent in FL. Our proposed FL pipeline lead to a 3% and 2.5% improvement
in the accuracy of the global model on the MNIST and CIFAR-10 test
sets, respectively, compared to the baseline and modified versions of Fe-
dAvg. This paves the way for exploring the potential of our method in
achieving similar or larger improvement in other FL algorithms.
Keywords: Federated Learning · Generative Adversarial Networks · En-
semble Learning · Pre-training

1 Introduction
The proliferation of private and decentralized data has necessitated the adoption
of distributed Machine Learning (ML) paradigms, such as Federated Learning
(FL). FL enables clients to locally train models on their respective data and then
these local models are aggregated at a central server to create a global model,
synthesizing knowledge from all participating clients [1]. In real-world scenarios,
data owners often encounter data imbalance across their datasets, which poses
a challenge to the performance of the global model. Consequently, clients with
smaller datasets may have minimal contributions to the global model, potentially
resulting in inadequate performance for classes with limited data points.

A natural approach to address data imbalance between clients’ datasets or
in general data scarcity, is to exploit the recent advancements in GANs and
synthesize new data points for those clients with few examples. Synthetic data
through generative models can help balance the differences in the sizes of the
clients’ datasets, prevent overfitting on the majority classes and alleviate, to
some extent, the problem of data scarcity. However, while this approach can
improve the accuracy of a model, the inherent dissimilarity between synthetic
and real data raises concerns about the efficacy of naively incorporating synthetic
samples into the training procedure.

An additional drawback of current FL training frameworks is that they do not
effectively capitalize on the idle time of clients prior to commencing the training
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process. While pre-training the FL model on a large public dataset improves in
some cases the accuracy of the model, it incurs additional storage requirements
for clients, to host the dataset, and requires a labeled dataset, which may not be
readily available due to the different distribution of data in the source task. This
motivates further research in FL training frameworks that leverage pre-training
and data synthesis to harness clients’ idle time and computational capabilities,
ultimately enhancing the performance of the global model. This paper explores
such approaches, aiming to create favorable conditions for the initialization of
the FL training process and thereby enriching the overall FL framework.

Amidst growing interest in addressing the aforementioned challenges in FL,
numerous works have proposed novel algorithms and aggregation techniques.
However, the vast majority of these works remain reliant on the conventional
FL training pipeline, consisting of (i) client-level model training, (ii) models’
parameters transmission to the server, (iii) server-side parameters aggregation
to construct a new global model, and (iv) dissemination of the global model back
to clients for subsequent training rounds. In this paper, we introduce a new,
enriched framework for the FL training process, specifically designed to achieve
higher accuracy. Our approach diverges from conventional methods and intro-
duces novel mechanisms to optimize the FL pipeline at various stages. The main
contributions of this work can be summarized as follows:
– We exploit the idle time of clients to pre-train ML models from distributed

datasets in FL, through GANs. We then use the Generator to generate syn-
thetic data and the weights of the Discriminator as weight initialization for
the network used in the main FL procedure.

– We use Ensemble Learning to incorporate the synthetic data into the FL
training procedure. By initiating two distinct learning procedures optimized
for real and synthetic data, and by merging their acquired knowledge, we
enhance the accuracy performance of the global model.

– Our data experiments show an increase in test accuracy of up to 3% for the
MNIST and 2.5% for the CIFAR-10 dataset when compared to baseline or
modified variations of FedAvg.

2 Related Work
FL algorithms: FedAvg [1] was chronologically the first algorithm to train a
global model in the FL setting, by averaging the weights of the clients’ models at
the server. Its simplicity and effectiveness has made it the standard algorithm of
choice, to both implement in applications and compare against in benchmarks.
In [2], the authors prove that the learning performance of FedAvg suffers when
the data are heterogeneous or non independently and identically distributed
(non-i.i.d). To alleviate this issue, the authors in [3] add a proximal term to each
local objective, to prevent the local parameters from diverging from the global
model while in [4], the authors use the difference between the update direction
of the server and the clients’ models to correct the local updates of clients. This
class of methods improved the performance over FedAvg, however they adhere
to a given FL pipeline, while our approach presents a new one.
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Pre-training in FL: In the literature of FL, neural networks are mostly initial-
ized with random weights or pre-trained on public datasets [5]. In [6], the authors
pre-train a global model on massive public image datasets at the server side and
then transfer the knowledge to each client where it is combined with the local
model. To the best of our knowledge, the only work that directly addresses the
issue of pre-training in FL is the one in [7]. The authors use models pre-trained
on public datasets to explore their contribution in classification performance
and suggest the usage of fractals as synthetic data for pre-training when no
pre-trained models are available. We avoid pre-training on public datasets, as
they usually drastically differ in terms of statistical heterogeneity and thus, pro-
vide marginal improvements in accuracy performance. Instead, we pre-train the
clients’ models on their training dataset through a GAN, to exploit the benefits
of pre-training.
GANs and data synthesis in FL: In [8], the authors provide the first solu-
tion to training GANs in the FL setting, by equipping both the server and the
clients with a GAN of the same architecture and averaging the parameters of
both the Generator and the Discriminator at the server. While aggregating the
Generators provides better results, it also raises privacy concerns, as the Gener-
ators are able to produce data that resemble the original ones of the clients. In
another line of works, they exchange (synthetic) data produced by clients [10],
Generators [11] or even both [9] in order to improve the learning performance
of FL. These works violate privacy restrictions imposed by real-world scenarios.
In contrast, in our framework, we train the GANs on local data, and we do not
exchange the Generator’s model parameters or synthetic data with the server.
As a result, no information about the datasets is leaked to the server. Finally,
we use generated data that share statistics with the local datasets to augment
the clients’ datasets, as opposed to sharing data across clients.
Ensemble Learning in FL: Ensemble Learning methods combine several base
models to create a single more accurate model [15]. In the context of FL there
are several cases where Ensemble Learning has been used but none of them ad-
dresses data imbalances between clients or incorporates synthetic data into the
FL training procedure. In [12], the authors construct and train decision trees on
samples of training data and then create a global random forest for inference.
In [13], the authors use Ensemble Learning for a set of models pre-trained on
public data and their goal is to find a set of weights to appropriately combine
them for both standard and agnostic empirical risk minimization. Finally, the
authors in [14] show that using Ensemble Learning to integrate multiple models
trained on multiple datasets in the FL procedure achieves better generalization
performance compared to single model approaches. To the best of our knowl-
edge, our work is the first that uses Ensemble Learning in order to incorporate
the synthetic data in the FL training procedure.

3 Pre-training with GANs in FL
We propose a new framework for FL training, that consists of three stages. The
architecture, comprising a server functioning as a model aggregator and two
clients is illustrated in Fig. 1. A GAN with identical architecture is deployed and
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Fig. 1: The architecture of our framework for two clients. At each round t, En-
semble Learning is employed by clients to merge the obtained weights from two
identical networks trained on synthetic and real data respectively, into Wt. Sub-
sequently, the server aggregates these weights and returns the resulting global
model W g

t+1 back to clients.

trained on the local datasets. Subsequently, the trained Generator is employed
by clients to generate a new training dataset consisting solely of synthetic data.
Additionally, two identical classification networks (e.g., CNNs) are trained on
the real and synthetic datasets, respectively. The traditional FL pipeline is then
utilized for the exchange of model parameters between the clients and the server.

3.1 Our proposed approach

Stage 1 - Local GAN training at each client: The incorporation of GANs in
our proposed framework is supported by two fundamental assumptions. Firstly,
if the lower layers of the Discriminator are considered as feature extractors,
then their pre-training as part of a GAN facilitates the learning of general and
transferable information about the dataset. Secondly, because GAN training is
unsupervised, it grants us a trained Generator, which we utilize to augment the
local clients’ dataset with synthetic data. In our proposed framework, each client
hosts locally a GAN with the same architecture. The initial training phase occurs
offline i.e., before the clients connect to the server. The clients train locally their
GAN on their local training dataset for a predetermined number of epochs until
the Generator yields satisfactory results. The quality of these results depends on
factors such as the client computational capabilities, the difficulty of the dataset
and available offline time. Due to these considerations, the naive integration
of any amount or quality of synthetic data into the training datasets will not
consistently ensure improved results.

After the completion of GAN training, we obtain two outputs: a trained Gen-
erator and a trained Discriminator, as depicted in Fig. 2. The Discriminator’s
objective is to learn common and low-level features present in the local dataset.
Thus, by removing the output layer of the trained Discriminator, we transform
the remaining network into a feature extractor. We then incorporate a dense
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Fig. 2: The trained Generator is used for generating synthetic data and in the
trained Discriminator a dense layer + SoftMax is added to create a multi-class
classification network.

layer + SoftMax to devise a classification network for the third stage of our ap-
proach. Finally, we exploit the trained Generator to generate synthetic data and
enhance the training datasets of clients, thereby mitigating any data imbalances
or scarcities among clients.
Stage 2 - Ensemble Learning: Additionally, we exploit Ensemble Learning
to integrate synthetic data into the training procedure. Each client trains two
distinct models: one on real data and another on synthetic data. A convex combi-
nation of these models results in a final model that effectively captures features
from both real and synthetic data. This strategy circumvents sole reliance on
potentially scarce or biased real data while also mitigating the risks associated
with synthetic data, which may not effectively capture the complexities of real
datasets.

Concretely, let us consider a client i with two types of training data: a real
dataset, denoted as DReal

i , and a synthetic dataset, denoted as DSyn
i with sizes

|DReal
i | and |DSyn

i | respectively. Two models, denoted as M1 and M2 are trained
on the real and synthetic data, respectively. The local ensemble prediction for a
new input x is given by the weighted sum of the two models:

Ensemble(x) = wReal ∗M1(x) + wSyn ∗M2(x)

where

wReal =
|DReal

i |
|DReal

i |+ |DSyn
i |

and wSyn =
|DSyn

i |
|DReal

i |+ |DSyn
i |

Stage 3 - Main FL process: In the final stage of the framework, after clients
connect to the server, they receive the initial model weights comprising a dense
layer + SoftMax. Subsequently, each client creates two identical models, wherein
the lower layers are initialized using the weights from the pre-trained Discrim-
inator’s lower layers, and the last layer is initialized with the weights received
from the server. In each iteration, the clients update their two models using
stochastic gradient descent (SGD). Next, they combine the weights using a con-
vex combination and transmit the resulting model to the server. The server, in
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turn, aggregates the weights received from the clients to form a global model and
returns it to the clients. Finally, the clients utilize it in the next iteration for
both their models. This iterative process continues until convergence is attained.

3.2 Discussion
Our proposed pipeline incurs no additional communication cost compared to
standard FL pipelines since users exchange only one model per round. While it
is computationally intensive, it delivers improved accuracy for the global model. It
does require larger memory, considering the GAN and two parallel models’ load-
ing requirements. Additionally, the framework has higher storage space demands
compared to plain FL, as each client must store synthetic data (12.298KB), the
Generator model (4.083KB), and the second classification network (2.536KB).
Therefore, our approach is best suited for applications where clients’ computa-
tional and memory limitations are not a concern, and accuracy enhancement
is paramount. A typical instance of such a scenario is one where each client
corresponds to a different hospital with its own patient records.

4 Experiments and performance evaluation
4.1 Experimental setup
Dataset: We evaluate our framework on the default test partition of MNIST
and CIFAR-10 datasets. For pre-processing, images were normalized and then
organized into batches containing 32 images. During data allocation, the data is
sorted by class (labels), and each client is assigned only one class of data points,
ensuring no overlaps (i.e., non-i.i.d distribution). Additionally, clients possess a
validation set comprising data points separated from their training dataset.
Data Imbalance and training hyperparameters: To create a scenario with
data imbalance, two clients possess only 10% of the data available to the other
eight clients locally. In our experimental setup, we train the GAN at the clients
with the smaller datasets for 100 epochs, for both the MNIST and CIFAR-10
datasets. Upon completion of training, we use the Generator to produce and
store synthetic images that correspond to 10% of the whole training dataset. As
a local optimizer for the classification task, we utilize the SGD optimizer with a
learning rate of 0.001 and momentum of 0.9.
Baselines: As a first baseline to compare against, we use the conventional FL
framework that is based on the FedAvg pipeline (Vanilla FedAvg). Specifically,
the clients train their local models on one dataset consisting of both the syn-
thetic and the real data, and we evaluate the global model that results from the
aggregation at the server on the test set. We further consider a modified version
of the plain FL training procedure to compare against, referred to as FedAvg
with stratified sampling. In this approach, each client, except for two clients with
limited examples, randomly selects an equal-size subset of data points from their
dataset at each round for training [15]. As a result, all models’ parameters are
equally weighted at the server, ensuring equal contributions from all clients. This
baseline is introduced to validate that even if the global model results from mod-
els trained on an equal amount of data (thus equally weighting each model), it
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Fig. 3: Test accuracy (left) and loss (right) of the global model on the MNIST
dataset, when two clients have imbalanced datasets.

would still require more rounds to achieve a certain accuracy compared to our
proposed framework that leverages synthetic data through Ensemble Learning.
4.2 Experiment results
We conducted our experiments for 500 communication rounds. As depicted in
Fig. 3, our proposed framework (FedAvg with Ensemble Learning) demonstrates
a notable improvement of 3% in test accuracy for MNIST dataset. Specifically,
our framework achieves a test accuracy of 84.28%, surpassing the second-best
approach (Vanilla FedAvg) with an accuracy of 81.06% and FedAvg with stratified
sampling with an accuracy of 77.11%. Additionally, our framework exhibits a
11% reduction in test loss (a value of 0.72) when compared to the plain FedAvg
approach (a value of 0.82). Stratified sampling struggled to attain favorable
accuracy and loss due to having less data available for training. Finally, there
is also an improvement of 2.5% for the CIFAR dataset in test accuracy when
averaged across the communication rounds.

5 Conclusions and Future Work
We introduced a novel training pipeline for FL, which utilized GANs for pre-
training in FL to address data imbalance and Ensemble Learning to incorporate
the synthetic data into the FL training procedure more effectively. Experimen-
tal results demonstrated an improvement of 3% in test accuracy for MNIST and
2.5% for CIFAR-10 datasets. As a future work, there are hyperparameters that
require tuning, such as the number of local epochs a GAN should be trained
for. In addition, since our approach is computationally intensive, further opti-
mization for a more efficient training procedure is required. More possibilities
for combining the information of the two datasets i.e., real and synthetic, could
also be explored. Finally, another direction would also be to extend our frame-
work towards personalization so that each client could dynamically adjust at
each round the weights of the two models to cater for its local objective.
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