
Jointly Learning Optimal Task Offloading and
Scheduling Policies for Mobile Edge Computing

Livia Elena Chatzieleftheriou1 and Iordanis Koutsopoulos2
1 IMDEA Networks Institute, Madrid, Spain

2 Department of Informatics, Athens University of Economics and Business, Athens, Greece

Abstract—This work contributes towards optimizing edge analytics
in Mobile Edge Computing (MEC) systems. We consider requests
for computing tasks that are generated from users and can be
satisfied either locally at their devices, or they can be offloaded to
an edge server in their proximity for remote execution. We study
a multi-user MEC system with limited energy autonomy for the
mobile devices and with limitations on the computing capability of
both mobile devices and at an edge server, where users can offload
part of their computation load. We define a utility over “resource
residuals”, that capture the difference between the resources assigned
through our decisions, and those needed in practice, and we aim at
the minimization of regret, i.e., of the difference between the utility
obtained by an optimal offline benchmark that knows the system
evolution in hindsight, and our online decision policy. We design an
algorithm that jointly learns policies for offloading computations and
scheduling them for execution at the shared MEC server. We prove
that our algorithm is asymptotically optimal, i.e., it has no regret
over the optimal static offline benchmark, and that its performance
is independent of the number of devices in the system. From our
numerical evaluation we conclude that our algorithm adapts to
unpredictable demand changes, it learns to identify resource-limited
devices, and it learns to share the server’s resources.

I. INTRODUCTION

Emerging technologies, such as Augmented Reality (AR) or In-
ternet of Things (IoT), rely on delay-intolerant and computational-
ly-intense operations, e.g., image recognition or data analytics.
The computing and energy autonomy of mobile devices is still
limited and these opera-tions are too complex to be executed
entirely on mobile devices [1]. In the Mobile Edge Computing
(MEC) paradigm, computing servers are introduced at the network
edge, providing to the users the opportunity to offload part of their
computation load for remote execution. These servers have limited
computation capacity that must be shared among the computing
tasks of different users [2].

To have good resource utilization, a careful allocation of the
limited computation and energy resources at the network edge is
needed. Thus, aiming at a better utilization of the existing limited
resources for a given computation demand, two questions arise:
(i) What portion of each user’s computation demand should be
offloaded for remote execution to the server? (ii) How should
the offloaded tasks be scheduled at the server’s shared computing
facility? There is evidence that the computational demand is highly
unpredictable [3], This could happen, e.g., due to changes in the
users’ needs, or due to changes in the user-to-server association. In
practice, this unpredictability complicates the accurate statistical

The work of Livia Elena Chatzieleftheriou was done while she was affiliated
with the Athens University of Economics and Business, Athens, Greece.

characterization of the arising computing load, and precludes
the use of approaches that operate under stationary regimes,
such as Lyapunov optimization. The simultaneous need of jointly
deciding both the portion of tasks that users will offload and their
scheduling at the server, without relying on accurate statistics for
the computation demand, makes the good utilisation of resources
very challenging.

We overcome these challenges by learning to jointly offload
and schedule computation tasks, without any assumption on the
rate with which computation task requests arise at each node. We
consider energy and computation limitations for mobile devices
and computing limitations at the edge server. Offloading reflects
the portion of tasks that users offload for remote execution,
and assign computation load to the server. Scheduling reflects
the portion of computing resources of the edge server that are
reserved for each user. Offloading and scheduling decisions should
assign computing load that is at most as high as the reserved
computing resources. We consider a similar quantity for the users’
energy resources. The residuals’ role is crucial: large residuals
allow the system to handle computation demand that may appear
unpredictably. We define a system utility over the above residuals.
To maximize the utility for known computation demand, we
study the offline Joint Computation Offloading and Scheduling
Problem (JCOSP). We then define its online instance (for unknown
demand), aiming at the regret minimization i.e., the difference
between the utility obtained by online decisions and that obtained
by an optimal static policy that knows computation demand
patterns in hindsight. We design a simple and fast online algorithm
that jointly learns which tasks to offload and how to schedule them
at the shared edge server, without making any assumption on the
computation demand pattern of arrival rate. We prove that it is
asymptotically optimal w.r.t. the benchmark, scalable, and able to
adapt to unpredictable changes in computation demand.

In Section II we discuss related work. In Sections III and IV
we present our setting and our optimization problems. In Sections
V and VI we design and evaluate our algorithm, both analytically
and numerically. In Section VII we conclude the paper.

Our contributions to the literature are as follows:
• We formulate the Joint Computation Offloading and task

Scheduling Problem (JCOSP), under computation, energy
and bandwidth limitations at the network edge. Our objective
utility function promotes prudent resource allocation through
maximizing a utility derived from residuals, to accommodate
computation demand that may appear unpredictably.

• We identify and exploit inherent properties of the JCOSP,

e.g., concavity w.r.t. decisions. We design OJOSO, a simple
algorithm that learns to adapt the scheduling and offloading
policies to unpredictable demand changes, without making
assumptions on the pattern of arrival rate of the computation
demand. We prove its no-regret property and its scalability.

• We evaluate OJOSO over datasets explicitly generated to obs-
truct its decisions, highlighting its optimal behaviour: OJOSO
learns to identify computationally- and energy-limited de-
vices, to optimally share the server’s resources among users,
and learns the optimal amount of computations to execute
locally at the devices and remotely at the edge server.

II. RELATED WORK

Jointly deciding scheduling and computation offloading. In
[4], a linear optimization problem for energy consumption mini-
mization under delay constraints, deadlines and task-dependency
is formulated and solved optimally with standard optimization
techniques. The work [5] aims at minimizing a sum of energy
and latency under transmission power constraints for one user. For
their non-convex mixed-integer optimization problem, the authors
propose a two-level alternation method based on Lagrangian dual
decomposition. In [6] energy consumption minimization under
computation latency constraints is studied, additionally decid-
ing the devices’ transmission power and processing speed. The
problem is optimally solved by convexification. Despite giving
interesting results, these works look at static instances of the
joint problem. Our work accounts for the time evolution of the
system and considers an adversarial approach to mitigate the lack
of information about the amount of computation demand when
deciding, which is common in scenarios with a massive number
of devices requesting computation, like AR.

Online Convex Optimization (OCO) in MEC. In [7] a
periodic benchmark for online learning is introduced and a no-
regret algorithm for online user association is presented. In [8]
computation offloading for IoT under communication, power and
computation constraints is studied. We aim at maximizing a utility
derived from residual computation and energy resources in MEC.

III. MODEL

We describe our model components and define the “residual
resources”, which are fundamental components of our analysis.

A. Model components and decision variables

We consider a set U of user devices and one MEC server M ,
that operate at fu and fM CPU-cycles/sec, respectively.

Time-dynamics. We consider a time horizon T that is parti-
tioned into T discrete slots, i.e., t = 1, . . . , T . Within each slot t
all values and decisions are assumed fixed, while they may change
from one slot to the other. In practice, the duration s of slots may
be in the order of secs, so that it captures the sensitivity of most
apps, e.g., AR, and it is sufficient for computations to be executed.

Tasks. The users’ activity generates computing tasks over some
input data, e.g., the Microsoft “Seeing AI” app performs object
recognition over users’ photos. Tasks are finite sets of computati-
ons over the input, all of which are needed for obtaining a mea-
ningful result, e.g., to correctly identify the content of the photo.

Tasks are characterized by their computational load l (in CPU-
cycles/task) and the size d of the input (in bits/task). The number
λu(t) of tasks generated by user u during slot t is arbitrary [3].
Let vector λ(t) = {λu(t)}u∈U . Tasks must be executed within the
slot they were generated and, without loss of generality (w.l.o.g.),
tasks are generated at the beginning of the corresponding slot.

Computation offloading. Tasks can be executed either entirely
locally at the users’ devices, or they can be entirely offloaded to
the server for remote execution (transmitting the input data there).
In the envisioned B5G/6G networks, the transmission rates for
the user-to-server communication are on the order of Gbps [2].
Existing commercial cloud-based AR applications offload images
of average size of d = 73.56KB [1], resulting in transmission
delays < 10−3 secs. Moreover, B5G/6G networks are dense,
i.e., propagation delays are negligible compared to transmission
delays. Also, it takes on average longer than 2 seconds to finish
object recognition on a mobile CPU [9]. We thus consider only
execution delays, since transmission and propagation delays are
negligible compared to them. We assume offloading decisions
taken by a central agent, who dictates the offloading policy to
devices. Let xu(t) ∈ [0, 1] be the portion of tasks that user u
should offload during slot t; thus u offloads λu(t)xu(t) tasks
during t. The remaining portion (1−xu(t)) of tasks are executed
locally. Let x = {xu(t)}u∈U be the offloading policy.

Energy consumption. We consider the energy that the users’
devices spend for: (a) locally executing tasks, and (b) transmitting
data to the server. The energy consumption for locally executing k
CPU-cycles equals cu1kf

2
u Watt-hours (Wh) [10], where cu1 > 0

a hardware-related constant. Data transmission consumes energy
proportional to the amount of data transmitted. The total energy
ϵu
(
λu(t), xu(t)

)
consumed by u during t (in Wh) depends on

the number λu(t) of generated tasks and her offloading policy
xu(t). It is the sum of the energy spent for transmission and
for computation. For cu2 a transmission-related constant, the total
energy consumption ϵu

(
λu(t), xu(t)

)
for user u equals:

ϵu
(
λu(t), xu(t)

)
= cu1f

2
ulλu(t)

(
1− xu(t)

)
+ cu2dλu(t)xu(t).

(1)

The users’ batteries devices may spend a total amount of energy
during the entire time horizon T , leading to “budget” constraints
that bound the energy consumption

∑T
t=1 ϵu

(
λu(t), xu(t)

)
over

T . However, online scenarios under budget constraints cannot be
solved asymptotically optimally [11]. We consider a strict energy
consumption constraints, allowing our system to use a maximum
amount of eu Wh/slot in each device. This captures a strict bound
on the average energy spent per slot assuming a steady state.
Observe that strict energy constraints are more conservative than
average ones, i.e., when the strict constraint is satisfied, we ensure
that the average budget constraint is satisfied as well.

Scheduling. It captures the portion of the computation capacity
to allocate at each of the offloaded tasks. At each slot t, the server
decides the scheduling policy y(t) = {yu(t)}u∈U , where yu(t)
reflects the portion of the server’s total computing capacity fM
that is allocated to the tasks that user u offloaded. We assume
that the server applies the Generalized Processor Sharing (GPS)
scheduler [12], due to its simplicity and guaranteed rates. Given

yu, the GPS scheduler guarantees to each user u the execution of
yufM CPU-cycles/sec. Without loss of generality, let∑

u∈U
yu(t) = 1, yu ∈ [0, 1],∀t = 1, . . . , T.

B. Residual resources and system utility
Residual resources. Scheduling reserves computing resources

at the server for executing each user’s offloaded tasks. Offloading
assigns a portion of each user’s computation load for remote
execution, and determines her energy consumption. These deci-
sions are taken and applied at the same slot. With a high margin
between the needed and the allocated resources, we can better
accommodate computation demand that may arise unpredictably.

Let DMu(t) (in CPU-cycles/slot) be the difference between the
computing resources that were reserved by scheduling decisions
at the server for user u, and those assigned by offloading decisions
from u to the server. Let Duc(t) (in CPU-cycles/slot) be the dif-
ference between the computation resources sfu that are available
at device u, and the assigned computation load due to offloading
decision for u. Let Due(t) (in Wh/slot) be the difference between
the energy resources eu that are available at u, and the assigned
energy consumption due to the offloading decision for u.

All residuals, i.e., energy and computation, are based on of-
floading and scheduling decisions taken during the same time slot.
They are essential for online scenarios, where the computation
demand is not known in advance. Indeed, the allocated resources
may substantially vary from those needed, since they are decided
under lack of information about the actual needs. Positive residuals
imply resource under-utilization, while negative residuals mean
resource over-utilization, and must be avoided. We formally have:

DMu

(
λu(t), xu(t), yu(t)

)
:= sfMyu(t)− lλu(t)xu(t), (2a)

Duc

(
λu(t), xu(t)

)
:= sfu − lλu(t)

(
1− xu(t)

)
, (2b)

Due

(
λu(t), xu(t)

)
:= eu − ϵu

(
λu(t), xu(t)

)
, (2c)

where s is the slot duration and fM is the clock frequency (in
CPU-cycles per second) at M .

Utility function desiderata. We aim at better accommodating
computation load that may appear unexpectedly. This implies
leaving as many computation resource residuals DMu(·), Duc(·),
and energy resource residuals Due(·) as possible, through an
appropriate combination of offloading and server scheduling poli-
cies. Utility functions g(·) need to satisfy the following properties:

Assumption 1. The utility g(D) takes as input the resid-
uals D ∈ {DMu(·), Duc(·), Due(·)}. The utility g(D) is
monotone increasing, concave, and Lipschitz-continuous
w.r.t. the residual amount of resource, D.

Monotonicity promotes using resources only when necessary.
Additional resource units are more important when residuals are
lower, to avoid them becoming negative, i.e., overload resources.
Due to its diminishing returns, concavity promotes a “proactive”
and robust allocation that will be possibly able to accommodate
sudden or unexpected request load increase. Lipshitz-continuity
implies that a small change of unutilized resources implies a
bounded change in utility. Moreover, we additionally assume:

Assumption 2. The utility g(D) is g(D) > 0 iff D > 0,
g(D) = 0 iff D = 0, and g(D) < 0 iff D < 0.

Although Assumption 2 is not essential, it adds an intuitive
perspective to the utility: Assuming negative utilities for negative
residuals penalizes resource overloads.

Utility function formulation. Let the utility function over
each residual resource D ∈ {DMu(·), Duc(·), Due(·)} be defined
as follows:

g(D) :=

{
log(D + 1), D > 0

−|D|, D ≤ 0
. (3)

This function satisfies the properties of Assumptions 1 and 2, it is
logarithmic for positive residuals and negative linear for negative
ones, which implies a high penalization when the allocation results
in insufficient reserved resources compared to those needed.

For notation simplicity, let
guc(t) := g

(
Duc

(
λu(t), xu(t)

))
,

gMu(t) := g
(
Duc

(
λu(t), xu(t), yu(t)

))
,

gue(t) := g
(
Due

(
λu(t), xu(t)

))
,

where g(·) as in (3) is the same across users and resources, and
indices in gue(t), gMu(t) and guc(t) denote the user and resource
whose residuals are considered.

System utility function. For each user u ∈ U and resource
type r ∈ {c,M, e}, i.e., local and remote computation capacity
and energy, let wur be an input weight over the resources’ residual
amount, that captures the importance of each user’s devices w.r.t.
resources. For example, a user whose device has limited energy
autonomy may choose higher weight wue for energy compared to
weights wuc or wMu that she chooses for computing resources
- local or remote. In this case, a higher weight wue for energy
resources, which is this user’s most limited resource, stimulates
a higher utility for energy residuals compared the utility obtained
for computation residuals. In practice weights can be requested
directly by users through an app they use. Without loss of
generality, we assume that

wuc + wMu + wue = 1,

i.e., each user’s u resource weights are normalized.
Then, the system’s utility function G

(
λ(t),x(t),y(t)

)
is a

weighted sum over the users’ utilities for each residual resource:

G
(
λ(t),x(t),y(t)

)
:=

∑
u∈U

∑
r∈{c,M,e}

wur · gur(t). (4)

The system utility function G(·) has the properties of Assumptions
1 and 2, since it is the sum of functions that have them.

IV. JOINT COMPUTATION OFFLOADING AND SCHEDULING

We now present and analyse our optimization problems.

A. Optimization problem and optimum solution for known demand

We define the Joint Computation Offloading and Scheduling
Problem (JCOSP) under known computation demand λ, as:

Problem 1 (Offline JCOSP - max System Utility).
max
x,y

G(λ,x,y) (5)

s.t. xu ∈ [0, 1],∀u ∈ U (6)∑
u∈U

yu = 1 (7)

Problem 1 aims at maximizing the utility derived from residual
computation and energy resources. Eqs. (6) and (7) capture the
possible values of offloading and scheduling variables. Negative
utilities for negative residuals capture overloading costs. We
indirectly incorporate energy- and computing- related constraints
in our formulation by penalizing resource overloads.

Structural properties of the problem and its solution. Since
G(·) is the sum of functions that follow Assump. 1 and 2, it holds:

Proposition 1. For all u ∈ U , the system utility function
G(·) is concave w.r.t. both xu and yu.

Since G(·) is concave w.r.t. both sets of decision variables,
function −G(·) is convex. Thus Problem 1 is structurally equiv-
alent to a convex minimization problem under upper and lower
bounds and simplex constraints on the decisions, and it can be
solved using standard convex optimization techniques [13]. The
computational complexity for optimally solving the offline JCOSP
is minimal, since convex optimization is a computationally easy
operation.

Although in practice the computation demand is not known
when the decisions are taken, studying the offline problem gives
some useful insights about the main structural properties that will
characterize the online problem.

B. Optimization problem for unknown demand

Adversarial optimization. The computation demand in real
systems is highly unpredictable [3], and real-life applications
(e.g., AR) necessitate the assumption of non-stationary process
of arriving computation requests. We thus decide both offloading
and scheduling policies for slot t by the end of slot t−1, assuming
that the computation demand may change arbitrarily.

Regret. The performance of an online algorithm Alg is charac-
terized by regret: the difference over the entire horizon T , between
the performance of Alg, and that of the “static” offline benchmark
[14]. The static policy knows the evolution of demand λ(t) over
time in hindsight, but it is limited to take only one decision over
the entire horizon. In this work, the regret measures the difference
in the system utility G(·) when following an online scheme instead
of the static one, where the static policy decides one offloading
and one scheduling policy, x∗ and y∗, not necessarily unique, s.t.:

(x∗,y∗) = argmax
x,y

∑T

t=1
G
(
λ(t),x,y

)
, (8)

while satisfying (6) and (7). Let an online algorithm take decisions
x(t) and y(t) for slot t. Its regret equals:

Reg(T) :=
∑T

t=1

(
G
(
λ(t),x∗,y∗)−G

(
λ(t),x(t),y(t)

))
. (9)

Problem formulation and structural properties. The typical
goal in online settings is to find a sequence of policies that
minimize regret over T . For x∗ and y∗ as defined above, we
aim at finding a sequence of offloading and scheduling policies,
x(t) and y(t), to solve the optimization problem:

Problem 2 (Online JCOSP - min System Regret).

min
x(t),y(t)

T∑
t=1

(
G
(
λ(t),x∗,y∗)−G

(
λ(t),x(t),y(t)

))
. (10)

s.t. xu(t) ∈ [0, 1],∀u ∈ U , t = 1, . . . , T, (11)∑
u∈U

yu(t) = 1, t = 1, . . . , T. (12)

This optimization problem aims at the minimization of the
system regret, while the constraints capture the simplices where
the decisions are constrained to belong. As in the offline case,
our formulation indirectly incorporates the limitations in the
available energy and computation resource by considering neg-
ative utilities, i.e., interpreted as costs, when resource overloads
occur. Structurally, the second summand of our objective function,
−G

(
λ(t),x(t),y(t)

)
is convex, because it is the multiplication

of G(·), which from Proposition 1 is concave, with −1. The
objective function is a convex function in our decisions, because
only the second summand depends on them, and it is convex.
Observe that the two terms in (10) cannot be separated, which
would imply solving Prob. 1 independently for each slot, because
G
(
λ(t),x∗,y∗) depends on the arbitrary changing demand λ(t)

during all the slots t of the horizon T .

V. OUR OPTIMAL ONLINE ALGORITHM

We present our methodology to go from state-of-the-art to our
online learning algorithm, and we finally prove our algorithm’s
no-regret against the static benchmark, and its scalability.

“No regret”: asymptotically optimal online decisions. The
performance of online algorithms is evaluated asymptotically over
the horizon T , through their regret. If an algorithm’s regret scales
sublinearly with the horizon T [14], i.e., if Reg(T) = o(T),
or, equivalently, limT→+∞

Reg(T)
T = 0, the algorithm has “no

regret” against the benchmark. This means that it learns to perform
asymptotically as well as the benchmark as T → +∞.

Challenges. In this work, the design of efficient algorithms is
obstructed because: (a) Decisions are taken online and without
any assumption on λ(t). (b) Offloading and scheduling decisions
are interrelated with each other, which could result in the impact
of offloading decisions being neutralized by scheduling decisions,
and vice versa. To design our efficient online algorithm, we will
thus rely only on the convexity of the utility function.

Online Mirror Descent (OMD). We build on this class of
online schemes, that has no regret against the static benchmark
[14]. We present its generic form in Algorithm 1. The main idea
in OMD is to produce a new solution by updating an existing one.
The update consists of two stages: (i) perform a step against the
gradient, and (ii) project this point back to the feasible space, in
order to ensure that the problem’s constraints are satisfied.

In more detail, OMD takes as input a regularization function
R(·) that “stabilizes” the online solutions a(t) and must be
strongly-convex w.r.t. a norm [15]. OMD uses an auxiliary variable
b(t) of dimensions equal to those of the solution a(t), which
initializes as in (14) and updates as in (15), taking a step against
the gradient of the objective. Observe that the initialization of
both the decision vector a(1) and the auxiliary vector b(1) is

Algorithm 1 Online Mirror Descent (OMD) [14]

Input: Regularization function R(·), stepsize η, feasible set A.
Output: Decision a(t), ∀t = 1...T

1: Initialize auxiliary variable b(1) :

∇R
(
b(1)

)
= 0 (14)

2: Initialize solution: a(1) = argmina∈A
{
BR

(
a,b(1)

)}
3: for t = 1, 2, ..., T do
4: Evaluate decision a(t) on the objective G

(
a(t)

)
5: Update auxiliary vector b(t) so that:

∇R
(
b(t+ 1)

)
= ∇R

(
b(t)

)
− η∇G

(
a(t)

)
(15)

6: Project to obtain feasible decision a(t+ 1):
a(t+ 1) = argmin

a∈A

{
BR

(
a,b(t+ 1)

)}
(16)

7: end for

not related to the solution of the offline instance of the problem,
but it only depends on the regularization function R(·). In each
slot t, OMD evaluates the online decisions a(t) by observing
its utilities G(a(t)). It then updates b(t) and projects it to the
feasible space to obtain a solution a(t + 1). The projection in
(16) minimizes b(t)’s Bregman divergence BR(a,b) w.r.t. the
regularization function, where BR(a,b) is defined as:

BR(a,b) := R(a)−R(b)− ⟨∇R(b),a− b⟩ . (13)
A carefully chosen regularization R(·) can eliminate the projection
of step 6 in Alg. 1. Eliminating step 6, while keeping the remain-
ing steps same, decreases the solution’s computational complexity.

Regularization. A common regularization function for simplex
feasible spaces is the negative entropy

r(a) =

n∑
j=1

aj log aj , ∀a ∈ Rn. (17)

From (11) and (12), both the computation offloading decisions
xu regarding each user u and the server’s scheduling decisions y,
form simplices. We will adapt r(·), and thus OMD, to our setting
in order to jointly regularize scheduling and offloading decisions.
We define our modified entropic function R(x,y) as follows:

R(x,y) :=r(y) +
∑
u∈U

r(xu), (18)

where xu(t) :=
(
xu(t), 1− xu(t)

)
and r(·) is defined in (17).

Proposition 2. R(x,y) is
(
|U|+ 1

)
-strongly convex.

Sketch of proof. r(·) in (17) is 1-strongly convex w.r.t. the 1-norm
[15], i.e., r(a1) ≥ r(a2)+ ⟨∇r(a1),a2 − a1⟩+ 1

2∥a1−a2∥1. We
sum one such inequality for y and one for each xu. Eq. (18) holds
due to interchangeability of the sum and the dot-product.

OJOSO: Optimal Joint Online Scheduling & Offloading
algorithm. Let bx = {(bxu1, bxu2)}u and by = {byu}u be the
auxiliary vectors of dimension |U| × 2 and |U| × 1 for offloading
and scheduling decisions, respectively. Vectors bx and by are the
adaptation of the auxiliary vector b of OMD. Applying (14) over
R(·) in (18) to initialize the auxiliary matrices we get

bxu1(1) = bxu2(1) = 1/2 and byu(1) = 1/|U|,∀u ∈ U ,

Algorithm 2 Optimal Joint Online Scheduling and Offloading

Input: Regularization function R(·), stepsize η, system utility G(·).
Output: Offloading policy x(t), scheduling policy y(t), ∀t = 1...T

1: Initialize offloading and scheduling decisions by equally distributing
the users computation demand for remote and local execution, and
equally splitting the server’s computation capacity among users:

xu(1) =
1

2
, and yu(1) =

1

|U| , ∀u ∈ U . (23)

2: for t = 2, ..., T do
3: Apply x(t) and y(t) and observe utility G

(
λ(t),x(t),y(t)

)
4: For ∇G(t)|z , z ∈ {xu, (1− xu), yu} as in (19),

Update offloading by incorporating gradient feedback and renor-
malizing decisions per user:

xu(t+ 1) =
xu(t)e

−η∇G(t)|xu

A
,where (24)

A = xu(t)e
−η∇G(t)|xu +

(
1− xu(t)

)
e∇G(t)|(1−xu)

Update Scheduling by incorporating gradient feedback and renor-
malizing over all users:

yu(t+ 1) =
yu(t)e

−η∇G(t)|yu∑
u∈U

yu(t)e−η∇G(t)|yu

(25)
5: end for

which belong in the feasible space. Thus, without projection, we
get the initialization of line 1 in Algorithm 2. The initialization of
both bxu1(1) and byu(1) for u ∈ U does not rely on knowledge of
computation demand at slot t. In fact, this initialization depends
only on our modified regularization function R(·) of (18).

To update bx(t) and by(t), we apply (15) with R(·) as in (18).
For notation simplicity, let

∇G(t)|z :=
∂G

(
λ(t),x(t),y(t)

)
∂z

. (19)

Then, after algebraic manipulations, the elements bxu1(t), b
x
u2(t)

and byu(t), of the auxiliary vectors bx(t) and by(t), respectively,
are updated following the rule:

b(t+ 1) = b(t) exp {−η∇G(t)|b}, (20)
where b(·) any of the bxu1(·), bxu2(·) and byu(·). We project to the
feasible space by combining (13), (18) and (20). To obtain the
updates in (24) and (25), we differentiate and get the minimizers

x(t+ 1) = bx(t+ 1), (21)
y(t+ 1) = by(t+ 1). (22)

We ensure feasibility by normalizing (21) and (22), and we
conclude to the updates in (24) and (25).

In the Appendix we prove that for OJOSO’s regret it holds:

Theorem 1 (OJOSO’s No-regret property). For a con-
vex objective function G(·), which is Lipschitz-continuous
with constant L, a stepsize η and a time horizon T ,
OJOSO’s regret is bounded by:

Reg(T) ≤ log |U|+ |U|
η

+
ηL2T

2(|U|+ 1)
, (26)

Additionally, for stepsize η =
√

2(log |U|+|U|)(|U|+1)
L2T , we

get:

Reg(T) ≤ L
√
T

√
2 (log |U|+ |U|)

(|U|+ 1)
≤ 2L

√
T . (27)

Regret scaling properties. From (27), OJOSO’s regret scales
sublinearly to the horizon T , i.e., it performs on average as well
as the static benchmark. OJOSO inherits the

√
T dependence on

T from OMD, from where it stems. OMD’s regret is logarithmic
on the dimension of the problem (Corol. 2.16 in [15]), which in
our case equals |U + 1|, i.e., the users’ devices and the server.
However, our modified regularization in (18) leads to a regret that
is independent of the number |U| of users in the system. OJOSO
is thus scalable, and it learns good joint offloading and scheduling
policies regardless of the number of devices in the system.

OJOSO in action. OJOSO is executed at the edge server, in
computing resources reserved by the agent that takes decisions,
e.g., the provider of the application which generates the computing
tasks of the users. The sequence of steps and exchanges between
the edge server and the users are:

Initialization, before the beginning of slot t = 1: (i) The users
inform the agent about the available resources at their devices:
They send their processing speed fu and energy availability eu to
the agent. (ii) The agent initializes the offloading and scheduling
decisions, x(1) and y(1), for the first slot, as in (23). (iii) The
agent sends x(1) to the users.

For each slot t = 1, . . . , T : (i) Computation demand λ(t) is
revealed and decisions x(t) and y(t) that were computed at the
previous slot by the agent are applied by both users and the server:
Users send a packet to the agent, containing the number λ(t)
of computing tasks that they generated. They apply over λ(t)
the offloading decision x(t), that the agent sent them during slot
(t−1), i.e., user u offloads λu(t)xu(t) tasks for remote execution
at the server. The server schedules the offloaded tasks based on the
scheduling policy y(t). (ii) Decisions x(t) and y(t) are evaluated:
The agent computes the objective gradient ∇G

(
λ(t),x(t),y(t)

)
by substituting the values of λ(t), x(t) and y(t) to its formula.
(iii) Decisions x(t) and y(t) are updated by the agent to obtain
x(t+ 1) and y(t+ 1): The agent uses formulas (24) and (25) to
update decisions and sends to users offloading decisions x(t+1).

Computational complexity and memory overhead. OJOSO
is an extremely fast and lightweight algorithm. In fact, both its
initialization step and all the actions within all time slots are
straightforward and have a fixed cost O(1) each. Indeed, they only
need to either send a packet or to perform a predefined assignment.
Moreover, there is no memory overhead: Once the value of λ(t)
is used during t, it is not useful anymore, and can be discarded.

VI. NUMERICAL EVALUATION

Setup. We consider a horizon of T = 1000 slots and tasks
with normalized computation load and input data, i.e., l = d = 1.
We generate computation demand λu(t) in the normalized interval
[0, 100] through three processes: (a) Uniformly random: λu(t) ∼
U [1, 100], (b) Sinusoid adversarial: λu(t) = 50 + 40 sin(tπ/12) +
nt, where nt ∼ U [−10, 10] a uniformly distributed noise, and

0 200 400 600 800 1000

Time (slots)

-6000

-5000

-4000

-3000

-2000

-1000

R
e
g
re

t

Figure 1: OJOSO’s regret w.r.t. static benchmark

(c) Random adversarial: λu(t) = 50 + Xt + nt, where X ∼
[−40 sin(tπ/12), 40 sin(tπ/12)] and nt as before. Distribution (a) is
stationary, but (b) and (c) are non-stationary, because their mean
value and variance change with time. Generating the computation
demand vectors λ(t) through the above procedures obstructs the
operation of online algorithms, that apply decisions x(t) and y(t)
over the computation demand λ(t − 1) of the most recent past.
Indeed, for λ generated through (a), the computation demands
λ(t) and λ(t − 1) will vary on average 50 units, while for λ
generated through (b) and (c) the intervals from which λ(t) and
λ(t− 1) are drawn additionally change over time.

We let |U| = 100 users with two levels of normalized comput-
ing and energy capacity: fu ∈ {F, 2F}, eu ∈ {E, 2E}, i.e., four
user categories w.r.t their available resources: High-energy-High-
speed (HeHs), High-energy-Low-speed (HeLs), Low-energy-
High-speed (LeHs), and Low-energy-Low-speed (LeLs). Under
any offloading policy, LeHs users have enough resources to
accommodate at most half of their maximum demand, HeHs and
LeLs can accommodate it exactly, and HeLs could accommodate
the double of it. The server can accommodate all demand.

Our utility functions g(·), as presented in (3), are logarithmic for
non-negative residuals and linear for negative, severely penalizing
possible resource overloads that may occur. Let x∗

u and y∗u be the
offloading and scheduling decisions of the static for user u, and
xu(t) and yu(t) be OJOSO’s respective decisions.

In Fig. 1 we depict OJOSO’s regret for the three presented
synthetic datasets. We can make two main observations:

• OJOSO is a no-regret algorithm. We confirm our theoret-
ical result of Theorem 1, since its regret scales sublinearly
with the time horizon in all datasets (i)-(iii).

• OJOSO adapts to unpredictable demand changes. The
regret starts from low negative values, and it is stabilized
in higher, but always negative, values, Thus, it performs on
average better than the static policy, obtaining a utility higher
than the static. Intuitively, while the static is constrained to
take only one decision, OJOSO dynamically adapts to the
demand unpredictability, learning to optimally offload and
schedule, despite deciding under lack of information about

10
0

10
2

-40

-20

0
LeLs

10
0

10
2

-10

-5

0
HeLs

10
0

10
2

-1

-0.5

0
LeHs

10
0

10
2

-40

-20

0
HeHs

Figure 2: ∆DMu vs. time,vs. user category, for time horizon
T = 1000 (x-axes in log scale), for three adversarial datasets:
“uniform” in blue points, “adversarial sine” in red dashes, and
“adversarial random” in black solid line.

10
0

10
2

-2

-1.5

-1

-0.5

0
LeLs

10
0

10
2

-2.5

-2

-1.5

-1

HeLs

10
0

10
2

-1

-0.8

-0.6

-0.4

LeHs

10
0

10
2

-2

-1.5

-1

-0.5

0
HeHs

Figure 3: ∆Due vs. time,vs. user category, for time horizon
T = 1000 (x-axes in log scale), for three adversarial datasets:
”uniform” in blue points, ”adversarial sine” in red dashes, and
”adversarial random” in black solid line.

the computation demand over which they will be applied.
We now depict the difference between the residuals (without

applying a utility over them) obtained by the static and those
obtained by OJOSO, i.e.,
∆Due(t) =

∑
u∈U

(
Due

(
λu(t), x

∗
u

)
−Due

(
λu(t), xu(t)

))
,

∆DMu =
∑
u∈U

(
DMu

(
λu(t), π

∗
u, w

∗
u

)
−Due

(
λu(t), πu(t), wu(t)

))
.

In Fig. 2 we depict ∆DMu per user category, focusing on the
server’s computing residual resources. We observe that:

• OJOSO learns the optimal amount of computations to
offload. Indeed, ∆Duc → 0 for all user categories. All

subplots here start from negative values and converge to zero,
which indicates that at the beginning of the time horizon
OJOSO performs better than the static and that it later learns
how many tasks to offload for remote execution.

• OJOSO learns to share the server’s resources. For HeLs
and LeHs users, OJOSO’s scheduling learns extremely fast
(t = 10) to behave as that of the static: it allocates more
computing resources to LeHs, letting them offload more
tasks for remote allocations, while it locally executes HeLs’s
demand, given their increased capabilities. The opposite
holds for HeHs, who have enough resources for executing
all of their demand locally, for which OJOSO needs more
time (t = 130) to learn the resources to allocate.

In Fig. 3 we depict ∆Due per user category, focusing at the
residual energy resources at the users’ devices. We observe that:

• OJOSO learns to identify and respect energy-limited
devices. Although ∆Due oscillate, they are always negative,
i.e., the energy residuals left by OJOSO are higher that those
left by the static, i.e., all user devices use less energy under
OJOSO compared to what they use under the static policy.

Similar results holds also for computation residuals locally, i.e.,

∆Duc(t) =
∑
u∈U

(
Duc

(
λu(t), x

∗
u

)
−Duc

(
λu(t), xu(t)

))
,

but due to space limitations we will omit them. Our main obser-
vation for these residuals are that: (i) OJOSO learns the optimal
amount of computations to execute locally, and (ii) OJOSO learns
to identify and respect computationally-limited devices.

VII. CONCLUSIONS

We consider a multi-user MEC system with limited energy
autonomy for the mobile devices and with limited computing
capabilities for both mobile devices and the edge server where
users can offload part of their computation load. We consider
a utility over “resource residuals”, that capture the difference
between the assigned and the needed resources, and we aim at
the regret minimization, i.e., of the difference between the utility
obtained by the static offline benchmark that knows the system
evolution in hindsight, and our online decisions. We design an
algorithm that jointly learns policies for offloading computations
and scheduling them for execution at the shared MEC server.
We prove that it is asymptotically optimal, i.e., it has no regret,
and that its performance is independent of the number of devices
in the system. From our numerical evaluation, we conclude that
OJOSO adapts to unpredictable demand changes, it learns to
identify resource-limited devices, and it learns to share the server’s
compute resources so as to optimize the defined utility function.

VIII. ACKNOWLEDGEMENT

This paper was supported by the Hellenic Foundation for
Research and Innovation (H.F.R.I.) under the “1st Call for H.F.R.I.
Research Projects to support Faculty Members & Researchers and
the Procurement of high-cost research equipment grant” (Project
Number: HFRI-FM17-352, Project Title: Wireless Mobile Delay-
Tolerant Network Analysis and Experimentation, Project acronym:
LEMONADE).

APPENDIX

Proof of Theorem 1. Let w := (x,y) be a (|U|+ 1)x1 array
that captures the vertical concatenation of the decisions x and y.
Let w∗ := (x∗,y∗) be an optimal static decision over T time
slots as in (8). For notation simplicity, let

z(t) := ∇G
(
λ(t),x(t),y(t)

)
,

G(w(t)) := G
(
λ(t),x(t),y(t)

)
,

B = (|U|+ 1).

From Theorem 2.21 in [15] we get
T∑

t=1

⟨z(t),w(t)−w∗⟩ ≤
R(w∗)−R

(
w(1)

)
η

+

T∑
t=1

η∥z(t)∥2q
2B

,

(28)
where the q-norm is the dual norm of the p-norm w.r.t. which
the regularization R(·) is B-strongly-convex. Our utility G(·) is
Lipschitz-continuous, thus it exists a positive constant L such that:

L ≥ ∥z(t)∥q, (29)
for all q-norms. Then, due to eq. (29), eq. (28) becomes:

T∑
t=1

⟨z(t),w(t)−w∗⟩ ≤
R(w∗)−R

(
w(1)

)
η

+

T∑
t=1

ηL2

2B
, (30)

All decision variables belong in [0, 1], which implies that r(xu) <
0 and r(y) < 0. Combining with (18), trivially:

R(w∗)≤0. (31)
Based on OJOSO’s initialization, it is:

R
(
w(1)

) (18)
= − log |U| − |U| log 2 = − log |U| − |U|. (32)

Combining (30), (31) and (32) we get:
T∑

t=1

⟨z(t),w(t)−w∗⟩ ≤ log |U|+ |U|
η

+
ηL2T

2B
, (33)

where we omitted the first term in the Right Hand Side (RHS) of
(30) because it is negative. Due to convexity of G(·) it holds:

G
(
w(t)

)
−G(w∗) ≤ ⟨z(t),w(t)−w∗⟩. (34)

Then:

Reg(T)
(9),(8)
≤

T∑
t=1

(
G
(
w(t)

)
−G(w∗)

) (34)
≤

T∑
t=1

⟨z(t),w(t)−w∗⟩.

The first inequality holds by definition and the second is due to
the convexity of G(·). Substituting the RHS of (33) concludes the
first part of the proof. For the second part, it is easily verifiable
that (26) is minimized for η as given in Theorem.

REFERENCES

[1] W. Zhang, B. Han, and P. Hui, “On the networking challenges of mobile
augmented reality,” in Proceedings of the Workshop on Virtual Reality and
Augmented Reality Network, VR/AR Network ’17, pp. 24–29, ACM, 2017.

[2] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE Com.
Surveys Tutor., vol. 19, no. 4, pp. 2322–2358, 2017.

[3] N. Liakopoulos, G. Paschos, and T. Spyropoulos, “No regret in cloud
resources reservation with violation guarantees,” in proc. IEEE International
Conference on Computer Communications - INFOCOM, pp. 1747–1755,
2019.

[4] S. Mahmoodi, R.Uma, and K.Subbalakshmi, “Optimal joint scheduling and
cloud offloading for mobile applications,” IEEE Trans. on Cloud Computing,
Special Issue on Mobile Clouds, Vol. 7, No. 2, pp. 301-313, 2016.

[5] Z. Kuang, L. Li, J. Gao, L. Zhao, and A. Liu, “Partial offloading scheduling
and power allocation for mobile edge computing systems,” IEEE Internet of
Things Journal, vol. 6, no. 4, pp. 6774–6785, 2019.

[6] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and computing
optimization in wireless powered mobile-edge computing systems,” IEEE
Transactions on Wireless Communications, vol. 17, no. 3, pp. 1784–1797,
2018.

[7] LE. Chatzieleftheriou, A. Destounis, GP. Paschos and I. Koutsopoulos, “Blind
optimal user association in small-cell networks,” in proc. IEEE International
Conference on Computer Communications - INFOCOM, 2021.

[8] T. Chen, Y. Shen, Q. Ling, and G. B. Giannakis, “Online learning for “thing-
adaptive” fog computing in IoT,” in Asilomar Conf. on Signals, Systems, and
Computers, pp. 664–668, 2017.

[9] M. Shoaib, S. Venkataramani, X. Hua, J. Liu, and J. Li, Exploiting On-
Device Image Classification for Energy Efficiency in Ambient-Aware Systems,
ch. Mobile Cloud Visual Media Computing, pp. 167–199. Springer, 2015.

[10] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Ap-
proach. Elsevier, 2012.

[11] S. Mannor, J. N. Tsitsiklis, and J. Y.Yu, “Online learning with sample path
constraints,” Journal of Machine Learning Research, vol. 10, pp. 569–590,
2009.

[12] A. Parekh and R. Gallager, “A generalized processor sharing approach to flow
control in integrated services networks: The single-node case,” IEEE/ACM
Trans. on Networking, vol. 1, pp. 344–357, June 1993.

[13] D. Bertsekas, Convex Optimization Algorithms. Athena Scientific, 2015.
[14] E. Hazan, “Introduction to Online Convex Optimization,” Foundations and

Trends in Optimization, vol. 2, no. 3-4, pp. 157–325, 2015.
[15] S. Shalev-Shwartz, “Online Learning and Online Convex Optimization,”

Found. and Trends Machine Learning, vol. 4, no. 2, pp. 107–194, 2012.

